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1. Introduction Separate Layer Investigation

Study each time network individually Contrlbutlpns
while ignoring the dependence between A novel T.emporal Multl-ScaIe
Multi-scale Communities Importance neighbouring time points. Community Detection (TMSCD) [6]
A community is a group of nodes that \ of Multi-scale method, which
are more densely connected to each . . ) e Extends the notion of spectral
other than to the rest of the network | CommUﬂltV Detection Layer Aggregatlon Procedures graph wavelets [3] to temporal
Complex [8]. Communities can have a | Extract the relevant information at Time layers are collapsed into a single networks.
Networks hierarchical structure such as a

Lancichinetti-Fortunato-Radicchi (LFR)

each level of the network and its network. Afterward traditional algorithms * Automatically selects the range of
communities. ‘ for community detection can be used. relevant scales within which multi-
graph or a Sales-Pardo graph. |

Networks rT\odeI. | scale community partitions are
complex relationships |
in the social,

biological, IT and

f” * In monoplex networks - |
indicative of the in-depth sought .

|
organization of the system. J\;Modularity Maximization (MM)_ * Takes advantage of the multilayer

engineering sciences. * Intemporal networks — changes | Generalization of MM to temporal networks [7] et el |2} 8 e (g e
Temboral Networks over time taking place at one or Advantages: layer weights relevant to
P community detection in temporal

across all scales of the
community structure indicate
important turns in the evolution
of the system as a whole.

| e Multilayer formulation [5] accounts for

L dependence of consecutive time points.
e Resolution A controls the community scales [8].
Disadvantages:

* Range of A values is manually selected.

e Effect of inter-layer weights is unaccounted for,

networks.

e Has competitive performance to
the modularity maximization
method [7], and is successfully
applied to a social network.

Many systems have relationships
that evolve over time. The
sequence of networks describing
changes occurring over time are
known as temporal networks [4].

2. Temporal Multi-Scale Community Detection TMSCD Method

§pectra| Gra ph Wavelets The TMSCD method is an extension of
Inter-layer WEightS Su pra-La placian Matrix Let the stretched wavelet filter the multi-scale community detection

method for monoplex networks using

spectral graph wavelets [10]. The

TMSCD follows the steps:

1. Obtain inter-layer weights a)f’t“.

2. Construct multilayer network A
and supra-Laplacian matrix L.

3. Obtain spectral components of L,

Let V;! be the number of

1 1
=D 2 — A 2
neighbours for node i in L=D2(D )D

Wavelet Filter g

Function g is the cubic B-spline range of
scales s, within which communities are
sought, is automatically selected as

New ‘Fiedler Vector’ o =Vade ¥
The eigenvector corresponding to e e @
Multilayer Framework eiéejnvalue 0 of layer t is v. I?igenvalue » : gigg . . .
Network Gt = (V, A%) indicates A” is the smallest non-zero eigenvalue o | o s794 Hierarchial Clusterlng

layert,t = 1,2,...,T, with N

- @\ At each scale s, use the
K l& . .
\ correlation distance between
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3.Comparative Performance

Discussion
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4. Real-Life Application Conclusion

o L. Number of Communities These results validate previous
Slgnlflca nt Communities findings on the data set [9], which
At the small scale: for pre- and after-lunch class ..

We detect statistically significant community o R R observe t.hat.the majority of

. scales by comparing the instability scale of the iti dine to thei t communication between students
Primary School Data | kitothat of d h Sl LU AR T A e s appears in class.
_ , temporal network to that of a random grap classes. Fewer defined communities appear at . . :
Data consists of temporal social patterns [10]. There appear to be two stable scales of lunch due to short face-to-face contacts. This application on real social

appearing in a primary school [9]. Data patterns demonstrates the strength

on face-to-face interactions between 242

Instability of detected communities
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