MATHEMATICS & INFORMATICS

VOLUME 17 No 1/2 QUARTERLY MARCH/JUNE 3007

Following a Sangaku
Nevena Sybeva

Institute of Mathematics, Bulgarian Academy of Sciences,
Acad. G.Bonchev str. bl.8, Sofia 1113, Bulgaria

. there is that maketh himself poor, yet hath great reaches.
Proverbs 13:7

One can see wooden tablets hung under the roof of ancient Japanese temples. On
these tablets, named sangaku, geometrical configurations were represented. Their
properties, in antiquity, had excited Japanese mathematicians and at the present
time still remain intriguing. At first sight some sangaku configurations seem too
simple and ordinary, but upon a closer look are revealed to be rather challenging.
This is the case with the problem given in [1].

Problem 1. Consider a unit equilateral triangle ABC
with center O. Centered at O, equilateral triangle
A1 B, Cy of side z is positioned so that its sides are By Ay
parallel to the respective sides of AABRC. Find the

value of =, minimizing the combined area of the parts,

which belongs to exactly one of the triangles ABC and A \/ B
A B1Ch. c,

Perhaps the shortest way to solve this extreme value problem is by the use of
parametrization and the properties of the quadratic function. Since such a solution
hides some geometric properties of the configuration, we choose a more ” geometrical”
approach.

Solution of Problem 1. Parts belonging to exactly one of the triangles ABC and
A1B1Cy will be called non-overlapping. By symmetry it follows that there are
three non-overlapping congruent equilateral triangles inside each of AABC and
AA1 B C,. Therefore the desired minimum is attained when the sum of the squares
of respective altitudes CF and CyE; of ACDF and ACyDyFy (Fig. 1) reaches its
minimum possible value.
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Note that the segments DD; and FF; are parallel, respectively, to the sides BC
and AC. The intersection of these segments forms equilateral triangles DFP and
D\ Fy P, congruent to DFC and D, F;C}, respectively. It is easy to see that P lies
on CC}, and since CP = 2-CFE and C1 P = 2 - C1 E1, we have to find the value of
z which minimizes the sum CP? + C; P?. Constructing segment PT, equal to C; P
and perpendicular to CC; (as shown in Fig. 2), we obtain CP? 4+ C, P? = CT?. So
the problem is to minimize CT.
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On the other hand, we have tan 4 CE1T = PE 2. This means that point T

lies on a line ¢ through the midpoint F; of A, whicli does not depend on A4, B, C).
Consequently C'T is a minimum when it is perpendicular to . Then tan 4 PTC = 2,
e.g. CP=2-PT.

The latter equality implies that the side of ADF'C' is twice the side of AD; F)C}.
Since the side of AABC equals 1 it follows that the sides of triangles D11 Cy, DFC

1 2 4
and Ay B1Cy equal 55 and & = 5 respectively. o

Now a remarkable result follows: the common area of non-overlapping parts is
minimized when A;B; = 2- DF. In other words, the desired minimum is attained
when half the perimeter of AA;B31C} is inside the given triangle.

The next sangaku (see [1]) is a generalization of Problem 1.

Problem 2. Solve the preceding problem if the center of AA;B;C is not necessarily
the same as the center of the given triangle ABC.

Solution of Problem 2. Let a, b, ¢ be the sides of non-overlapping equilateral

triangles with respective vertices A1, B1,Cj as shown in Fig. 3. Then the sides of

the equilateral triangles with respective vertices A, B, C are t—b—c, z—c—a, z—a—b.

Since the side of AABC is of length 1, we conclude that a +b+ ¢ =2z — 1.
Denoting by S the common area of non-overlapping parts, we have

4
ﬁS = 4P+ +(z—a-b*+(@—b—0c)?+(z—c—a)?

(a+b+c)? (z—a—bt+z—b—c+z—c—a)
i 3 i 3
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The above inequality means that when « is fixed, the minimum value of S is attained
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whena =b=c¢= e.g. when triangles ABC and A, B;C) have a common
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‘We can interpret these old Japanese problems in terms of contemporary mathe-
matics. The common area of parts belonging to exactly one of the polygons A and
B (e.g. parts of (AUB)\ (AND)) is defined in [2] as the symmetric distance A(A4, B)
between the polygons. Considering this distance as a special case is the idea of the
above sangaku. Given polygon A and the set of polygons M, the polygon B € M of
minimum distance to A will be called the closest to A in M. The set of equilateral
triangles with sides parallel to the respective sides of AABC defined in problem 1
was widened in problem 2 without changing the answer. Let us consider other sets
of equilateral triangles in which we seek the invariant property of being the closest
to AABC.

'Some of these results liold in general without the equilateral assumption. Consider trian-
gles AABC and AA,B1C; with parallel corresponding sides and coefficient of similarity z. The
non-overlapping triangles inside AA4;B1C; are similar to AABC and let a.b, ¢ be the respective
coefficients of similarity. One can repeat the exact solution of problem 2 to prove that e =b = c.
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Problem 3. Let ABC be a unit equilateral triangle with center O. Consider the set
M, of equilateral triangles A;3;C; with the same center having sides which form
a fixed angle ¢ € (0°,60°) with the respective sides of AABC. Prove that half the
perimeter of the closest to AABC in M, is inside AABC.

Solution of Problem 8. Assuming the notation in Fig. 4 it suffices to prove that
A1By = 2- EF. Suppose A1B; < 2:DF for AA1B,Cy € M,. We will find that
AA'B'C' € My is "closer” to AABC. Let the sides of AA'B'C’ be e-more distanced
to the center O than are the sides of AA;B1C) (Fig. 4). Then

A(ABC,A'B'C") = A(ABC, A1 B,C1) — 3¢(2 - DF — A1 B1) + 3V3e%k,,

3+ 2cos2p
S iti ber for the gi 1 s AN )
1 + 9 o0 2(:0 15 a posltlve nummper 1or e glven values o 72 oW choos

ing £ € (0, —‘feim—'lj-—si:ql—‘eﬁ) we obtain that AA'B'C’ is closer” to AABC than
AA B Cy.

Similar considerations hold in the case A;B; > 2+ DF. Consequently, for the
AA1B,Ch in M, closest to AABC, the equality A1 By =2 DF holds.2o

One can prove in the same way as in Problem 2 that translating triangles of M,

does not change the situation. Further generalizations are available in the case of
arbitrary triangles. We will note that similar results may be obtained for regular
n-gons.
Problem 4. Let A = Aj Ay ... A, be a unit regular n-gon with its center at O.
Consider the set M, of regular n-gons B = B1DBs... B, with side z and center O,
whose sides form the fixed angle ¢ with respective sides of A. Prove that half the
perimeter of the closest regular n-gon to A in the set of n-gons M, is inside A.

where k, =

B
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Figure 5

Solution of Problem 4. Denote the angle of the regular n-gon by 2, and assume
the notation in figure 5. If DFE = y by the Law of Sines for AA;DE we get

AD+ A E = yt,, where £, = Smi#w—ﬂ)
A1 D = Ao F and therefore BEF = 1—yt,. §; the Law of Sines for A By EF we obtain
BoE+DBoF = EF-t, = (1—ytn)ts. Since BoF' = B D it implies that y+(1—yt, ), =
z. The symmetric distance A(A, B) is a minimum if and only if the sum of areas
of similar triangles A1 DE and By EF is a minimum. The angles of this triangles do
not depend of z, so we have to find min{ DE? + EF?} = min{y® + (1 — yt,)?}. The

n dz=
1+ T e
Ancient Japanese mathematics can be characterized by its shrewd but brief de-
scriptions of the properties of geometric figures. Understanding these terse descrip-
tions and revealing their meanings presents a challenge. However, such research is
exciting every step of the way toward understanding.

By symmetry it is obvious that

desired minimum is attained when y =

®The existence of such a triangle follows by continuity.
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