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ABSTRACT
The importance of IP network will further increase and it will serve as a 

platform for more and more services, requiring different types and degrees of service 
quality. In this paper, we investigate the queueing behaviour found in input buffers in 
IP switch or router. To analyze these types of behaviour, we study the discrete-time 
version of the “classical” queue model M/M/1/k called Geo/MM/1/k and P/MM/1/k. 
We use a geometric (Geo) and Pareto (P) distributed inter-arrival time and a discrete 
multimodal packet length distribution (MM), defined on a range between a minimum 
and maximum value. In this model, the time unit is reduced from a packet service time 
to the time to transmit a byte. We develop balance equations for the state of the 
system, from which we derive packet delay and loss results. The finding that 
Geometric and Pareto distributions are adequate to model Internet packet inter-
arrival times has motivated the proposal of methods to evaluate steady-state 
performance measures of Geo/MM/1/k queue. We propose a real time trace 
simulation model for estimating the steady-state probability showing the loss 
probability and delay of the P/MM/1/k queue. This model can be used to study the 
long-tailed queueing systems.

Categories and Subject Descriptors: 
C.4 [PERFORMANCE OF SYSTEMS]: Modelling techniques
G.3 [PROBABILITY AND STATISTICS]: Queueing theory
I.6 [SIMULATION AND MODELING]: I.6.8 Types of Simulation, Discrete 
event
General Terms: Performance, Design, Experimentation, Theory, Verification.
Keywords: Pareto distribution, discrete time queue, simulation model, queueing 

analyses, packet size distribution.
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INTRODUCTION
Managed IP networks have become a dominant factor in bringing information to 

users worldwide. Until recently, IP networks supported only a best effort service. 
This limitation has not been a problem for traditional Internet applications like web 
and email, but it does not satisfy the needs of many new applications like audio and 
video streaming, which demand high data throughput capacity (bandwidth) and have 
low-latency requirements. Thus, it is becoming increasingly important to provide 
Quality of Service (QoS) in managed IP networks.

As pointed out by several authors who have been collecting traffic data from 
the Internet, there is no a queueing theory method for queue analyses when one is 
given a set of packet inter-arrival times. Obviously, one could fit the resulting data 
to a distribution and then use a queueing model if it exists. There are some papers 
concerning batch arrivals like [1]. Traffic growth and its influence to the 
congestion management are demonstrated in [2]. Internet traffic can be described 
as having one or more of the following related characteristics [3], [4]: Self-similar 
(or fractal) traffic traces; Long-range dependence; Burstiness on multiple scales; 
Long- or heavy-tailed packet inter-arrival times or service requirements.

INTERNET TRAFFIC AND SELF-SIMILAR PROCESS
The Internet traffic data are well known to possess extreme variability and 

bursty structure in a wide range of time scales. This characteristic is not found on the 
Poisson process. The properties can be characterized by self-similar process. The 
large variation pertaining to the self-similar nature of data traffic causes congestion 
problems in the data network. The arrival process with Pareto distributed inter-arrival 
time is a popular model of self-similar processes. 

The queue performance of P/M/1/k was studied by simulations in [5], [6]. They 
are investigated the queue behaviour with Pareto inter-arrival distribution. By 
numerical analysis and simulations, they have been analyzed the asymptotic and the 
exact loss probabilities of GI/M/1/k to show the big discrepancy between the 
asymptotic and the actual loss probability and propose a model for the loss 
probability of P/M/1/k as a function of the buffer size and the geometric parameter.

The Pareto distribution is a model for nonnegative data with a power law 
probability tail. A natural upper bound truncates the probability tail in many 
practical applications. An estimator is derived for the truncated Pareto distribution 
in [7]. They investigate distribution properties and illustrate its applicability in 
practice.

SYSTEM SIMULATION
Some limited analytical derivation for queueing models with Pareto distribution 

is proposed in the literature, but their solutions are often of a great mathematical 
challenge. To overcome such limitations, simulation tools that can deal with general 
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queueing systems have to be developed. Despite certain limitations, simulation 
algorithms provide a mechanism to obtain insight and good numerical approximation 
to parameters of networks of queues. The Internet traffic simulation is a difficult task 
due to the heterogeneous structure, immense size, and changing property of the 
network [8], [9].

Simulations that use traces generated by network traffic models usually examine 
a single node in the network, such as a router or switch; factors that depend on 
specific network topologies or routing information are specific to those topologies 
and simulations.

The simulation of systems using heavy-tailed distributions presents difficulties 
and needs efficient methods to study. In [10] there is a trial to go into insight nature 
of simulation difficulties of M/G/n queues with G heavy-tailed distribution. They 
have proposed and developed a method to speed up simulations and used M/G/1 
systems as workbenches since they have some analytical results to check the 
simulation grades. 

Stochastic simulation has become a well established paradigm used in 
performance evaluation of various complex dynamic systems. In [11] a method for 
estimating time evolution of several quantiles within some time interval is described. 
It is based on independent replications and its capability is demonstrated by 
simulating processes with different kinds of stationary, non-stationary or transient 
behaviour.

The concept of self-similarity (or fractal behaviour) is the best understood by 
looking at [12]. The use of synthetic self-similar traffic in computer networks 
simulation is of vital importance for the capturing and reproducing of actual Internet 
data traffic behaviour. Fernandes uses a technique for self-similar traffic generation 
that is achieved by aggregating On/Off sources where the active (On) and idle (Off) 
periods exhibit heavy tailed distributions. This work analyzes the balance between 
accuracy and computational efficiency in generating self-similar traffic and presents 
important results that can be useful to parameterize existing heavy tailed distributions 
such as Pareto, Weibull and Lognormal in a simulation analysis.

The Pareto distribution is a special heavy tailed distribution called a power-
tailed distribution. It is found to serve as adequate model for many situations. In [13] 
many difficulties in simulating queues with Pareto service are investigated. They 
considered truncated Pareto service.

A method for studying Pareto queues is presented in [14]. The paper discusses 
the properties and use of the Pareto distribution. The method is used to study the 
Pareto/M/1 queue and look at the M/Pareto/1 queue. The first could be used to model 
arrivals of packets at a packet switched network, and the second, the time to transmit 
files through such a network. 

The Pareto distribution has various forms. A one and two-parameter form is 
considered in [15]. The two Pareto forms are studied in detail. It is shown that the 
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usage of the two-parameter Pareto results in lower congestion than the comparable 
one-parameter Pareto.

A modelling and simulation approach using heavy-tailed mixture distributions is 
introduced in [16]. Their approach is used to build analytical models for random 
variables of several major Internet applications of a campus network. Several 
statistical features of an NS2 simulation are compared against those of the traffic 
traces being simulated. The comparison indicates that the simulation is statistically 
similar to the real traffic.

This paper presents a stochastic simulation method for studying Pareto queues. 
The paper discusses the properties and use of the Pareto distribution. We make the 
comparison between P/MM/1/k and Geo/MM/1/k and propose a real time trace 
simulation model for estimating the steady-state probability showing the tail-raising 
effect, the loss probability and delay. The data collected from network helps to do the
evaluation correctly. The model can be used to study the long-tailed queueing 
systems.

PACKET LENGTH DISTRIBUTION
There are two major parameters generated by network traffic models: packet 

length distributions and packet inter-arrival distributions. Other parameters, such as 
routes, distribution of destinations, etc., are of less importance.

The packet queueing in an IP router arises because multiple streams of packets 
from different input ports are being multiplexed together over the same output port. A 
key characteristic is that the packets have different length. The minimum header size 
in IPv4 is 20 octets, and in IPv6 it is 40 octets. The maximum packet size depends on 
the specific sub-networks technology: 1500 octets in IPv4, 1280 octets in IPv6, more
in Ethernet and Frame Relay, 1000 octets in X.25 networks. 

The packet length distribution measured from the real traces exhibits the well-
known multi-mode behaviour, with peaks for very short packets because of UDP 
traffic and acknowledgements. For the different maximum transfer units in the 
network the dominating peak is at 1500 bytes, due to the size of Ethernet frame and 
TCP services. This specific packet length distribution has a direct impact on the 
service time and we need a different approach to the queueing analysis in both cases.

The packet size distribution is one of the features that exhibit the most 
consistent behaviour, even among different networks. The packets are typically 
concentrated around the 40, 576, and 1500 byte regions and these values represent 
the IP packet header size and small UDP segments, the maximum transfer unit 
supported by most of IP routers and maximum packet size for IP networks.

DISCRETE TIME QUEUE
Discrete-time queueing systems have been a research topic for several decades 

now and there are many reference works on discrete-time queueing theory. Over the 
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years, different methodologies have been developed to assess the performance of 
queueing systems. The two main analytical approaches are the matrix analytic 
method and the transform method for discrete and for continuous-time analyses. 
Many authors have considered the Geo/G/1 queueing system [17], [18], [19], [20]. 

In [21] a complete study of a discrete-time single-server queue with geometrical 
arrivals of both positive and negative customers is carried out. Negative arrivals are 
used as a control mechanism in many telecommunication and computer networks. 
The study of a discrete-time single-server retrial queue with geometrical inter-arrival 
times and a phase-type service process is concerned in [22]. An iterative algorithm to 
calculate the stationary distribution of Markov chain is given. 

Salvador in [4] proposes a traffic model and a parameter fitting procedure that 
are capable of achieving accurate prediction of the queuing behaviour for IP traffic 
exhibiting long-range dependence. The modelling process is a discrete-time Batch 
Markovian Arrival Process (dBMAP) that jointly characterizes the packet arrival 
process and the packet size distribution. In the proposed dBMAP, packet arrivals 
occur according to a discrete-time Markov Modulated Poisson Process (dMMPP) and 
each arrival is characterized by a packet size with a general distribution that may 
depend on the phase of the dMMPP.

In [3] Cao presents an introduction to bandwidth estimation and a solution to the 
problem of the best-effort traffic for the case where the quality criteria specify 
negligible packet loss. The solution is a simple statistical model, which is built and 
validated using queueing theory and extensive empirical study.

It has been shown [23] that in the case of real-time communications, for which 
small buffers are used for delay reasons, short range dependence dominates the loss 
process and so the Markov-Modulated Poisson Process (MMPP) might be a 
reasonable source model. They have presented an exact mathematical model for the 
loss process of a MMPP+M/Ek/1/K queue and have concluded that the packet size 
distribution affects the packet loss process and thus the efficiency of forward error 
correction.

In this paper, we investigate the basic queueing behaviour of packets found in IP 
output buffers. It is complicated because multiple streams of packets are being 
multiplexed together. The traffic is being generated from the packets of varying sizes 
that arrive for transmission on the link. The packets can wait or be dropped if their 
size is bigger than the free positions in the buffer. The quality metrics for the traffic 
on the Internet are the packets loss and delay. To analyze these types of behaviour, 
we study the discrete-time version of the “classical” queue model M/M/1/k called 
Geo/MM/1/k, where MM denotes a discrete multimodal packet length distribution.

BALANCE EQUATIONS FOR THE Geo/MM/1/K QUEUE
Let us consider a single server finite queue delay system Geo/MM/1/k with a 

geometric distributed inter-arrival time and a multimodal distributed packet length. 
The packet length distributions are defined on a range between a minimum and 
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maximum value.
We consider queueing phenomena in discrete-time queueing systems. We 

assume a fundamental time unit (time slot), the time to transmit an octet (byte), Tb. 
Customers arrive in the queueing system under consideration during the consecutive 
slots, but they can only start service at the beginning of slots. That is, service of 
customers is synchronized with respect to slot boundaries. Further, customer service 
times are integer multiples of the slot length, which implies that customers leave the 
system at slot boundaries. During the consecutive slots, packets arrive in the system, 
are stored in a finite capacity queue and are served by a single server on a first in first 
out (FIFO) basis (Fig. 1).

We use a Bernoulli process for the packet arrivals, i.e. a geometrically 
distributed number of slots between arrivals. Let the probability that a packet arrives 
in an octet slot is p.

Thus we have a batch arrival process with geometrically distributed inter-arrival 
times. That is, the number of slots that separate consecutive slots where there are 
customer arrivals, constitute a series of independent and identically geometrically 
distributed random variables. 

The probability of no octets arriving in a time slot is

pa 10 (1)

In this model, we assume three modal packet size distributions with a minimum 
value m1 with probability b1, a maximum value m2 with probability b2, and a value 
between minimum and maximum m3 with probability b3.

The mean number of bytes in the packet is:

223311 bmbmbmb  (2)

Packet 
size in 
bytes

Time

Inter-arrival packet time

Transmitting bytes from the packets

Time slot, Tb

Fig. 1. Timing of events in the Geo/MM/1/k and P/MM/1/k queue.
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The probability that n octets arrive in a time slot is

32,1, ornbpa nn  (3)

The mean packet service time is the octet transmission time multiplied by the 
mean number of octets

sbTb , (4)
The mean arrival rate is

spacketsTp b /, (5)

Therefore, the offered traffic is given by

ErlbpA ,  (6)

The average inter-arrival time of the packets in time slots of the geometric 
distribution is

pmo 1 (7)

The variance of the inter-arrival time of the packets is

2)1( ppdi  (8)

We define the state probability Pi of being of state i, as the probability that there 
are i octets in the system at the end of any time slot. For the system to contain i bytes 
at the end of any time slots it could contain any of 0, 1, 2,….., i+1 at the end of the 
previous slot. State i can be reached from any of the states 0 up to i by a precise 
number of arrivals. To move from i+1 to i there should be no arrivals.

We can write the first equation by considering all the ways in which it is
possible to reach the empty state

  0100 aPPP  . (9)

Similarly, we find a formula for the next state probabilities by writing the 
balance equations

11, 101   miaPP ii (10)

We continue with this process and take into account that it is possible to enter a 
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packet in a time slot with length m1, m2 or m3 bytes
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Then using the fact that all the state probabilities must sum to 1 we write the last 
equation

1
1

0
 

 i
k

i
P (12)

We can solve the system (9), (10), (11) and (12) and calculate the state 
probabilities.

GENERALISED PARETO DISTRIBUTION
The most common choice for telecommunication network design is based on the 

exponential assumption. Usual choice is the Poisson arrivals and exponential holding 
times. However, networks and applications of today generate a traffic that is bursty 
over a wide range of time scales. A number of empirical studies have shown that the 
network traffic is self-similar or fractal in nature.

The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a 
power law probability distribution that coincides with social, scientific, geophysical, 
actuarial, and many other types of observable phenomena.

The family of Generalized Pareto Distributions (GPD) has three parameters: the 
location parameter, the scale parameter  and the shape parameter .

The cumulative distribution function of the GPD is:
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We choose these substitutions
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Therefore, we receive another form of the generalized-Pareto distribution
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The mean value of the generalized-Pareto distribution is:

1GPm . (16)

The mean value is the average inter-arrival time for our study. The parameter 
is the packets arrival intensity.

The variance of the generalized Pareto distribution is:
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It follows that the probability density function of the GPD:
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It is convenient to define the mean value and variance of the arrival stream. We 
can easy calculate the parameter  (the ratio of the shape and scale parameter):
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One can easily generate a random sample from Pareto distribution by using 
inverse distribution function. Given a random variable U with uniform distribution on 
the unit interval (0,1), the random variable x is Pareto-distributed.
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To receive the discrete inter-arrival time intervals we accept that packet arrived 
in the time interval will be served at the end of the time slot, Tb. 
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(21)

SIMULATION MODEL DESCRIPTION
The problem of packet inter-arrival distribution is much more difficult. 

Understanding of network traffic has evolved significantly over the years, leading to 
a series of evolutions in network traffic models.

Simulations are the main tools for studying the performance of 
telecommunication networks. Our simulation model is used to study the P/MM/1/k 
queue. It could be used to model arrivals of packets at a packet switched network.

Let us consider a single server queue P/MM/1/k with a Pareto input stream, 
which is defined by packet arrival intensity , variance of the inter-arrival time diGP,
three-modal service time with mean number of bytes in the packet b and limited 
waiting room k. This queueing system with peak input stream and three-modal 
service time is a non-Markovian model (Fig. 2). It is assumed that customers are 
served in FCFS order. 

The arrival process in P/MM/1/k queue is considered to be renewal process. The 
queues with a heavy-tailed distribution of inter-arrival time are used to model queue 
systems where a range of values of the inter-arrival time, whose probability is very 
low, have a drastic impact on the overall performance of the system. The Pareto 
distribution is one of these heavy-tailed distributions and it is proposed to describe 
peak streams in the packet switched networks. The accurate analytical treatment of 

ServerQueue

k 3 2 1 

Input stream

, diGP

A = 

Ao

Fig. 2.  Pareto input stream model with multimodal service time and finite waiting positions.
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P/MM/1/k systems is very difficult and in many cases it cannot be applied. 
Simulation is a possible method to study. Simulations with heavy-tailed random 
variables present some additional difficulties. A care must be taken during analyses 
of the results of these simulations. It is necessary to have accurate and efficient 
simulation methods. The efficacy is important because we need to generate big 
quantities of data for our simulation study and be accurate enough. The data accuracy 
can be estimated by means of comparisons with known results from simpler systems 
with analytical solution. One of these simpler queue systems that are studied 
analytically is the Geo/MM/1/k queue. This queue is used as a workbench for more 
efficient simulation methods that are able to deal with the heavy-tail difficulties.

We develop a real time trace simulation algorithm for evaluating the state 
probabilities of the queueing system, the packet congestion probability and the mean 
time in the queue. We use batch mean method for output results analysis and choose 
a confidence probability 95%. We define 20 batches and generate 20000 packets in 
every batch. We introduce an initial bias to eliminate the influence of the transient 
behaviour and time intervals between batches to received independent estimates of 
the packet congestion probability and the mean queueing time. We describe the 
accuracy of the estimates by means of a confidence interval, which with a given 
probability (95%) specifies how the estimate is placed relatively to the unknown 
theoretical value, using the Student’s t-distribution with 19 degrees of freedom. This 
organization of our algorithm leads to good accuracy from a practical point of view. 
The relative errors of the presented results are less than 10%.

Random errors are caused by the stochastic variations of the simulation. They 
appear because every simulation is similar to a statistical experiment. The next source 
of error is the bias of the estimator itself, being often called the systematic error. This 
kind of error usually appears if assumptions about the analyzed data are true only 
approximately or asymptotically. If both the variance and the bias tend to zero for 
large number of observations the estimator is called consistent.

PERFORMANCE MEASURES
The carried traffic is equivalent to the probability that the system is busy

erlPAo ,1 0 (22)

The packet congestion probability B is defined and evaluated by the simulation 
program as the ratio of lost and arrival packets. It can be calculated by offered and 
carried traffic (offered minus carried traffic) to offered traffic

  AAAB o (23)

The mean number of bytes and packets present in the system in steady state by 
definition is
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From the Little formula, we have the normalized mean queueing time of the 
bytes (time is measured in time slots)
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(25)

The real time simulation gives us possibility to calculate the queueing time for 
every arrival packets and it is easy to obtain the mean queueing time.

ANALYTICAL AND SIMULATION RESULTS
In this section, we give numerical results obtained. The described models are 

tested on a computer over a wide range of arguments.
Figure 3 shows the stationary probability distribution in a single server queue 

Geo/MM/1/k with 0.7 erl offered traffic, 199 waiting positions in bytes, 5 bytes 
minimum packet length with probability 0.3, 10 bytes packet length as a second 
mode, 20, 40 or 80 bytes maximum packet length and 15 mean number of bytes in 
the packet. We can see that the probability distributions are almost linear decreasing 
in logarithmic scale and the influence of the maximum packet length on the stationary 
probability is significantly.

Figure 4 illustrates the dependence on the packet congestion probability from 

A = 0.7 erl 
k = 199
b = 15
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Fig. 3.  The stationary probability distribution in a single server queue Geo/MM/1/k with 
different maximum packet size.
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the offered traffic and the same parameters of the multimodal distributed packet 
length. We can see that the influence of the maximum packet length on the packet 
congestion probability is immense.

Figure 5 presents the normalized mean queueing time of the bytes (W/Tb) as 
function of the traffic intensity when the queue length and the packet length 
distribution is the same as in the Figure 3. The influence of the maximum packet 
length on the mean queueing time is significant when the offered traffic is smaller 
then 0.9 erl.

Figure 6 illustrates the stationary probability distribution in a single server queue 
P/MM/1/k with a Pareto input stream, 0.8 erl offered traffic, 199 waiting positions 
and different variance of the inter-arrival time. It is seen that when the variance 
increases the probability that the queue is full increases significantly.
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Fig. 4. Packet congestion probability in a single delay system with geometrically distributed 
inter-arrival and multimodal service time.
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Figure 7 presents the packet congestion probability in a single delay system with 
199 waiting positions, different offered traffic and different variance of the inter-
arrival time. When the offered traffic is comparatively small (0.8 erl) the influence of 
the variance of the call congestion probability is big.

A = 0.8 erl  
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Fig. 6.  Steady-state distribution of the number of bytes in a single server queue P/MM/1/k
with different peakedness of the input stream.
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Figure 8 shows the normalized mean queueing time of the packets as function of 
the offered traffic when the number of queueing positions is 199, the service time is a 
three-modal distributed and different variance of the inter-arrival time.

It is shown that the influence of the variance of the input stream over the 
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Fig. 8.  Mean queueing time in time slots for a single delay system with a Pareto input 
stream and multimodal service time.
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Fig. 7.  Packet congestion probability in a single delay system with a Pareto input stream 
and multimodal service time.
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performance measures is significant. The heavy-tailed condition decisively 
contributes to raise the congestion and waiting time. The results are highly 
dependable from the number of packets in the queue. In this simulation we have 
relatively small number of packets of small size in the queue. 

The computer simulation of P/MM/1/k queues presents important difficulties 
due to the slow decaying tail of the Pareto distribution. This makes extremely high 
values, with great influence on the statistical figures of the system. The 
probabilities are so low that in case we want to simulate the physical underlying 
processes, generating demanded times and arrival intervals, the cost in time will 
probably be prohibitive if we want accurate results. This forces to use all our 
knowledge of the statistics of the system inner processes, so the simulation can 
noticeably speed up. The results shown are applicable to UDP traffic that is carried 
usually with higher priority in the buffers and has small packets. The same 
derivates can be applied also to TCP traffic by simple scale multiplication of the 
queue length and packet size. In this case we will consider bigger queues with 
bigger packets but with approximate equal number of packets in the queue. TCP 
traffic is scheduled usually in different queues with less priority in comparison to 
the UDP traffic.

CONCLUSION
The importance of a discrete time single server queue in a case of a geometric 

and Pareto input stream and multimodal service time comes from its ability to 
describe behaviour that is to be found in more complex real queueing systems. It is 
one of the cases in a general teletraffic system that is important in telecommunication 
systems design.

In this paper, a basic discrete-time single server teletraffic system Geo/MM/1/k 
and P/MM/1/k are examined in detail.

We have presented an analytical model for evaluating the Geo/MM/1/k queue 
and a simulation method for studying the P/MM/1/k queueing systems. We have 
demonstrated its use by presenting numerical results. These results have shown that 
the Pareto distribution change significantly the queue behaviour. In the case of 
P/MM/1/k, congestion occurred even when the load is sufficiently small. But for that 
queue, the long-tailed nature of the Pareto helps to clear out congestion when a large 
inter-arrival time occurred. Our model can be applied for all P/G/1/k systems 
independently of the value of the parameters.

The proposed approach provides a unified framework to model discrete-time 
single server queue and peak input traffic. A generalised Pareto distribution is 
introduced and explained. Numerical results and subsequent experience have shown 
that this model is accurate and useful in analyses of teletraffic systems.

Our model permits us to look at the queueing behaviour. We show that as the 
load increases, the long-tailed nature of the queue brings to big losses and delays. 
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Comparisons with Poisson arrivals showed that the simple Markovian models 
seriously underestimate the performance of such systems. In a sense, our results help 
solidify those statements being made by other authors.

The simulation method we have presented could certainly be used to study 
congestion in the Next Generation Networks. Our method generates a complete 
probabilistic analysis of the queues we study. The method is quick and its accuracy 
can be easy evaluated. We have used the method with the Pareto only, but are 
investigating its use with other distributions and many different packet sizes. 

We feel that our simulation method has excellent promise to analyze the type of 
congestion problems and delays seen on the Internet. Thus, we are continuing our 
research using the simulation method for a larger class of queueing systems. Our 
further study also concerns the behaviour of the common output interface of the 
routers where traffic of different priorities is mixed. In this new approach we 
combine TCP and UDP traffic and estimate per service, per transport protocol, per 
queue, per interface Quality of Service and performance parameters. 

The results presented here add a new aspect to the evaluation of the discrete-
time queueing system, and serve as a basis for future research on guaranteeing the 
quality of service. We consider this study important for Next Generation Networks 
where different services are mixed together and where the Quality of Service 
requirements should be covered per service and per interface.
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РЕЗЮМЕ
Важността на IP мрежата ще нараства в бъдеще и ще бъде платформа 

за все повече и повече услуги, изискващи различни видове и качество на 
обслужване. В тази статия изследваме поведението на опаката на входящ IP
комутатор или маршрутизатор. За да анализираме това поведение, изучаваме 
дискретен вариант на класическия модел M/M/1/k, наречен Geo/MM/1/k и 
P/MM/1/k. Ние използваме геометрично (Geo) и Парето (P) разпределени 
интервали между моментите на постъпване и дискретно мултимодално (MM) 
разпределена продължителност на пакетите, дефинирана в интервал от 
минимална и максимална стойност. В този модел единицана за измерване на 
времето се намалява от времето за обслужване на пакет до времето за 
предаване на един байт. Фактът, че геометричното и на Парето  
разпределенията са подходящи за моделиране на интервалите между 
моментите на постъпване на пакетите в Интернет, ни мотивира да 
предложим метод за оценка на характеристиките, свързани с вероятностите 
на състоянията на системата Geo/MM/1/k. Ние предлагаме симулационен 
модел в реално време за оценка на вероятностите на състоянията, показващ 
закъсненията и вероятността за загуби на системата Р/MM/1/k. Този модел е 
подходящ за изучаване на системите с дълговременна зависимост.


