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Abstract. One of the aims of the mathematical educatioroignable students to
understand and use connections between mathematogats and to apply
mathematics in context outside it. Purposely wegméan educational module based
on example of a discrete Dirichlet problem conngatéth random walk on a discrete
lattice. Problems discussed in this article integradeas from Physics, Numerical
Methods, Probability Theory and Mathematical Modglwithin the capacity of high
school students.
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The dynamics of the contemporary society provokeschange of the way of
the education. This change is connected not just the questiommow muclhto teach
but rather with the questidmow to teach. Daniel Pink comments this in his bdok
Whole New Mind: Moving from the Information Agehe Conceptual Agg4]):

In a new quickly changing world one needs in a calhmg way ability to

apprehend the large-scale picture rather than amiglg from single point of

view.
The contemporary teaching is oriented towards tieception of combining the
elements horizontally instead the narrow speciaimpa Many colleges and
universities offer various courses from differergas of science that comprehend in a
flexible and intuitive way. This kind of educatismaimed to develop different form
of thinking, qualities like inventiveness and me®ppredominate and to create
meaning makers and big picture thinkers in result.

Of course, these are not new ideas. At the begynoin20th century Felix
Klein debated this "more vital direction of advahoé mathematics and teaching it
which "stresses on the organic connection betweestindd areas ... and
correspondingly prefers those methods giving siamdbus understanding of many
topics from one and the same point of view" ([8]).

The proposed essay is an attempt to connect thaigahymodel of thermal
equilibrium and random walk problem from the pahview of grid modeling.



1 A Lattice Model of the Temperature Distribution in Thermal Equilibrium

Consider a square plate with fixed temperatureridigion on its boundary.
Let the temperature inside the plate be in equibr To find the equilibrium
temperature distribution at different points on pikegte is an interesting and important
problem. Theoretically, it is given by the solutiém the corresponding Dirichlet
problent involving partial differential equations. In praet we can grid the plate and
choosing a fine lattice, we approximate the tentpeeaatX with this at the closest to
X lattice point. So we will be interested in the temgiures at lattice points in the
plate. Following this way, we face a new problednscrete Dirichlet problem

Both the intuition and experiment prompt that tlygikbrium temperature at
the midpoint of a segment is the average of the&zatures fixed at its ends. More
generally, in one-dimensional case we have lineaperature distribution. That way,
taking into consideration symmetry and for otheygital reasons ([5]), we establish
that if we have two conductors of equal length vatmmon mid-poin©, then the
equilibrium temperature & is the average of temperatures at the four condsicto
ends. This experimentally verified conjecture (M&&iue Property) serves as basis
of modeling the temperature equilibrium.

Let D be the set of all lattice points ah@) be the set of the interior lattice
points ofD (i.e. the points with four neighbors ). The points of"(D)=D\1(D)

are called boundary points. Denote[B§] the set of the neighbor lattice points of any
X € D. The statement of the discrete Dirichlet problem i
Given a temperature distributioh(X), X €I'(D) on the boundary, find a function

T(X), satisfying the conditions:

T<x):%Y% T(Y),  Xe (D

T(X)= f(X), Xer(D

The above means that if the plate is in thermallibgum and X is an interior lattice
point, then the temperatuiié€X) is the average of the temperatures at the faseskt
to X lattice points.

(1)

! The Dirichlet problem for Laplace's equation canfbrmulated in the following way: find a
function T(X) in some domairD c R? such that

T 0°T

“—4+——=0

X’y :

T(X)= f(X) for XeI'(D)
whereI'(D) is the boundary db ([2]).



From physical point of view, the existence of auioh of (1) follows from the
existence of thermal equilibrium. Further, for teelutions of (1) the Maximum
Value principle holds; it claims that the temperatdistribution reaches its maximal

and minimal values on the boundaryf Thus, if f (X)=0, X I'(D) it follows

thatT(X)=0, Xe I(D) is the only solution of (1). Hence the homogenesyssem

corresponding to (1) has an unique solution andefoee (1) also has an unique

solution.
Note that it is convenient to choose a system ofdioates in such a way that
the coordinates of the lattice points are integers.

Problem 1. Let us start with a square grid of nine interiomps, and let(i; j) be the
temperatures at pointsg (); i; j = 1,..., 5 (Fig. 1). Using the boundary conditioms
the figure, determine the equilibrium values atldtgce points of the plate.
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Figure 1

By the Mean-Value Property we obtain the followsygtem of linear equations:

t(2,2)::11(45+t(2,3+t( 3,2+ 10p

t(2,3):%(30—|—t( 2,441 3,3+1( 2,9

t(4,4)=5(t(3.4+ 30+ B4-1( 47

(this is in fact the first row of (1)). Solving treove system is a standard technique
for school students but requires a lot of compateti In practice many problems lead
to similar systems with more equations becausetéh®erature approximation is
more accurate if we consider a grid with more iotgpoints.

This requires using numerical methods; for examible, method of iteration.
Assuming an arbitrary temperature (say 0) at eadfterior point,

TO(X)=0, Xe I(D), we construct a sequend@” (X), Xe I(D), k=1.2,..,



called successive approximations, as average ofptbeious temperatures at the
neighbors of each point:

TO(X)=2 3 TED(Y), xe (D
Ye[ X
TO(X)= f(X), Xel'(D
The iterations could be interpreted as stages athiag the heat equilibrium. We
stop computing when the difference between two esgige values of temperature
‘T(k)(x)— T X)‘ at each pointX € | (D) becomes small enough. This process is

convergent ([3]). School students could easily nhaidesing Excel and so find the
solution (Fig. 2).
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Figure 2

Note that the lattice model has an important acget- it does not require
using of partial derivatives. Moreover, its appiica in more complicated domains is
intuitively clear ([6]). The combination of the fise model with modern computer
tools makes it suitable for school teaching.

Now we shall show that the solution of the discrietachlet problem seems
similar to that of a random walk problem althoulgayt come from different topics.

2 Equal Probability Random Walk on a Discrete Lattce

Let us consider 4 x 4 lattice (Fig. 3). A point &krandomly on the lattice so
that no direction is more probable than anotheis Tieans that if the point occupies
a point withk neighbor lattice points, then the probability @iting any of them at

the next step of its walk equakis.

Problem 2. A random walk starts at lattice poixt §); x; y = 1,..., 5 (Fig. 3). Find the
probabilityp(x; y) to reach the lattice boundary for the first tiee\(3; 1Y.

2 Similar problem is discussed in [1].
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Figure 3

The symmetry of the lattice implies that
p(2,i)=p(4)), i= 2.4 (2)
Obviously, on the boundary we have

pBY=L p(21=p 4)= f Y= G=p(i 5= 0= 1. (3

Let the point land at interior poir(tx, y) with 4 neighbors. With probability% it

moves to the neighbdix’, y/) at the next stage. At the poifit, y') the probability of
touching the boundary firstly @& is p(x, y). So the conditional probability equals

le- p(X,Y). Since the pointx, y) has 4 neighbors it follows that

Pxy)= 3> LRy @
(X.y)el(x Y]

From (2), (3) and (4) we obtain a system of sixalzes:
1
p(2.2=7(0+ p(2.3+ P( 3.2+ 9

p@a:§@+mza+m3$+qu.

1
p(3,4):z(p(3,3+ p(2,4+ O p( 2,9
Applying a linear system solving program (as Mapjegs:

p(2,2) | p(32 | p(2,3 | p(33 | p(24) | p(34

112 112 16 8 112 112

The systems of equations giving the solutions &athrequilibrium and random
walk problems seem similar. It is interesting theablems from completely different
areas lead to almost equivalent lattice modelsrélt'eone more connection between



the heat equilibrium problem and random walk whiall be revealed in the next
section.

3 Probability and the Dirichlet Problem

We will illustrate a solution of the discrete vensiof the Dirichlet problem (1)
in terms of the random walk ([7]).

For any pointX € I(D) consider random walks starting’atLet X be the
first point on the boundary that the walk getsWE cIaim that the solution of (1) is

Z R, (X)- f( %) 5)

X GF
whereP, (X) is the probability to reach the boundary at finstet in X .
Before proving the above formula, note that thetipiigr P, (X) represents

the influence of the temperature @t on establishing the equilibrium temperature at
X. And as the answer of problem 2 shows, the smidedistanceXX, the greater
the probabilityP, (X).

To prove (5) we have two steps to complete. FlnatT Z T for

X €1(D).As in (4) we can write

1
Py (X)= 2R (Y)
Ye[X]
Therefore
1
TX)= Y R (%)= ¥ ¥ Eg (¥ (%)
X.€'(D) X.€l(D) Ye[ X
1 1
=;Z >~ B.(Y)- =;Z T(Y)
Ye[X] X.€l'(D Ye[ X

The second step tha@t X)= f( X) onI'(D) is obvious.

Following this method we can use the probabilitemputed in problem 2 to
find the solution of problem 1. Because of symme#istimating all the probabilities
P, (X), Xe (D), X, €T(D) needs only to findR(X), Xe I(D), where the

point B has coordinates (2; 1) (Fig. 3). As in problenw&,find P, (X) = q( X):

42,2 | 4(3,2=0q(2,3 | a(42=0q(2,4) | a(3,3 | a(43=0q(3,4) | q(4.9

67 11 1 1 3 3

224 112 32 16 112 224




Example. Compute the equilibrium temperatu(2; 2).
Using (5), we obtain

(2,2 = p(2.2(t( 33+ 1( 13+ p( 24t 35t 5B
val 220t 2001 LR+l a2 43¢ g
va( 2.0t 2.5t 5P+al A 451 Sp

As expected, the result is the same as in thetiiteraolution.
Conclusion

Our attempt is to find such models of teaching pss¢ that develops aptitude
to combine seemingly unrelated ideas into sometmag and ability to stretch
beyond the quotidian in pursuit of meaning. As #&xperiment in National High
School for Natural Sciences and Mathematics shomsthematical models
considered in a simple way enable students to tarh connect concepts from
Applied Mathematics, Physics, Probability Theorgd &umerical Methods.

The computational part of the problems could beiedrout by one of the
available computer packages (Excel and Maple) mat eould be put as a separate
programming task for the students. That's why endbscribed topic there are ample
opportunities for research in the classroom.
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Enun onut 3a uHTerpupane Ha GU3MYHA U MaTEMATHYECKHU H1eH B 00y4eHHETO

Pezwome. Eona om yenume na mamemamuyeckomo obpazosanue e 0a pazeusa
VMeHue 3a CbCmassHe Ha mamemamudecku Mmoodel Ha peanHa cumyayus. Tosa
YMeHue ce bazupa Ha pazoupane Ha Mamemamuyeckume uoeu U 8pv3Kume um ¢ uoeu
om Opyeu HayuHu obnacmu. B masu macoka npeocmassime Mmooy, KOUmMo GKI0UEA
Ouckpemen mooel Ha 3adada Ha [{upuxine 3a paznpeoeiieHue HA memnepamypama
npu MONIUHHO pagHO8ecue U 3a0ada 3a Oayxcoaene 8 Kpauna mpedca. Ha maszu
ocHoga 3aoauama Ha [Jupuxie ce unmepnpemupa oOm 2leOHA MOYKA Ha
geposmHocmHume npoyecu. Pewenusama unmezpupam 3HAHUs O QuU3UKa, YUCIeHu
Memoou, meopus Ha 8EPOAMHOCIUME U MAMEMAMUYECcKo Moodeaupane no 00CMmvneH
3a Y4eHUuyu Ha4yuH.



