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Abstract. One of the aims of the mathematical education is to enable students to 
understand and use connections between mathematical topics and to apply 
mathematics in context outside it. Purposely we present an educational module based 
on example of a discrete Dirichlet problem connected with random walk on a discrete 
lattice. Problems discussed in this article integrate ideas from Physics, Numerical 
Methods, Probability Theory and Mathematical Modeling within the capacity of high 
school students. 
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The dynamics of the contemporary society provokes the change of the way of 
the education. This change is connected not just with the question how much to teach 
but rather with the question how to teach. Daniel Pink comments this in his book A 
Whole New Mind: Moving from the Information Age to the Conceptual Age ([4]): 

In a new quickly changing world one needs in a compelling way ability to 
apprehend the large-scale picture rather than analyzing from single point of 
view. 

The contemporary teaching is oriented towards the conception of combining the 
elements horizontally instead the narrow specialization. Many colleges and 
universities offer various courses from different areas of science that comprehend in a 
flexible and intuitive way. This kind of education is aimed to develop different form 
of thinking, qualities like inventiveness and meaning-predominate and to create 
meaning makers and big picture thinkers in result. 

Of course, these are not new ideas. At the beginning of 20th century Felix 
Klein debated this "more vital direction of advance" of mathematics and teaching it 
which "stresses on the organic connection between distinct areas ... and 
correspondingly prefers those methods giving simultaneous understanding of many 
topics from one and the same point of view" ([8]). 
The proposed essay is an attempt to connect the physical model of thermal 
equilibrium and random walk problem from the point of view of grid modeling. 



1 A Lattice Model of the Temperature Distribution in Thermal Equilibrium 
 

Consider a square plate with fixed temperature distribution on its boundary. 
Let the temperature inside the plate be in equilibrium. To find the equilibrium 
temperature distribution at different points on the plate is an interesting and important 
problem. Theoretically, it is given by the solution to the corresponding Dirichlet 
problem1 involving partial differential equations. In practice we can grid the plate and 
choosing a fine lattice, we approximate the temperature at X with this at the closest to 
X lattice point. So we will be interested in the temperatures at lattice points in the 
plate. Following this way, we face a new problem - discrete Dirichlet problem. 
 

Both the intuition and experiment prompt that the equilibrium temperature at 
the midpoint of a segment is the average of the temperatures fixed at its ends. More 
generally, in one-dimensional case we have linear temperature distribution. That way, 
taking into consideration symmetry and for other physical reasons ([5]), we establish 
that if we have two conductors of equal length with common mid-point O, then the 
equilibrium temperature at O is the average of temperatures at the four conductors' 
ends. This experimentally verified conjecture (Mean-Value Property) serves as basis 
of modeling the temperature equilibrium. 

Let D be the set of all lattice points and I(D) be the set of the interior lattice 
points of D (i.e. the points with four neighbors in D). The points of ( ) ( )\D D I DΓ =  

are called boundary points. Denote by [ ]X  the set of the neighbor lattice points of any 

X D∈ . The statement of the discrete Dirichlet problem is: 
Given a temperature distribution ( ) ( ),   f X X D∈Γ  on the boundary, find a function 

( )T X , satisfying the conditions: 
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The above means that if the plate is in thermal equilibrium and X is an interior lattice 
point, then the temperature T(X) is the average of the temperatures at the four closest 
to X lattice points. 

                                                 
1 The Dirichlet problem for Laplace's equation can be formulated in the following way: find a 

function T(x) in some domain 2D⊂ℝ  such that 
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where ( )DΓ  is the boundary of D ([2]). 

 



From physical point of view, the existence of a solution of (1) follows from the 
existence of thermal equilibrium. Further, for the solutions of (1) the Maximum 
Value principle holds; it claims that the temperature distribution reaches its maximal 
and minimal values on the boundary of D. Thus, if ( ) ( )0,   f X X D≡ ∈Γ  it follows 

that ( ) ( )0,   T X X I D≡ ∈  is the only solution of (1). Hence the homogeneous system 

corresponding to (1) has an unique solution and therefore (1) also has an unique 
solution. 

Note that it is convenient to choose a system of coordinates in such a way that 
the coordinates of the lattice points are integers. 

 
Problem 1. Let us start with a square grid of nine interior points, and let t(i; j) be the 
temperatures at points (i; j); i; j = 1,..., 5 (Fig. 1). Using the boundary conditions in 
the figure, determine the equilibrium values at the lattice points of the plate. 

Figure 1 

By the Mean-Value Property we obtain the following system of linear equations: 
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(this is in fact the first row of (1)). Solving the above system is a standard technique 
for school students but requires a lot of computations. In practice many problems lead 
to similar systems with more equations because the temperature approximation is 
more accurate if we consider a grid with more interior points. 

This requires using numerical methods; for example, the method of iteration. 
Assuming an arbitrary temperature (say 0) at each interior point, 

( ) ( )(0) 0,   T X X I D≡ ∈ , we construct a sequence ( ) ( )( ) ,   ,   1,2,kT X X I D k∈ = …, 



called successive approximations, as average of the previous temperatures at the 
neighbors of each point: 

( ) ( )
[ ]

( )

( ) ( ) ( )

( ) ( 1)

( )

1
 ,    

4

,                     .

k k

Y X

k

T X T Y X I D

T X f X X D

−

∈

= ∈

= ∈Γ

∑
 

The iterations could be interpreted as stages of reaching the heat equilibrium. We 
stop computing when the difference between two successive values of temperature 

( ) ( )( ) ( 1)k kT X T X−−  at each point ( )X I D∈  becomes small enough. This process is 

convergent ([3]). School students could easily model it using Excel and so find the 
solution (Fig. 2). 
 

0 10 20 30 40 

15 24,00 32,00 44,00 84 

30 39,00 40,00 30,00 6 

45 62,00 59,00 30,00 15 

60 105 104 16 15 

Figure 2 

Note that the lattice model has an important advantage - it does not require 
using of partial derivatives. Moreover, its application in more complicated domains is 
intuitively clear ([6]). The combination of the lattice model with modern computer 
tools makes it suitable for school teaching. 

Now we shall show that the solution of the discrete Dirichlet problem seems 
similar to that of a random walk problem although they come from different topics. 
 
2 Equal Probability Random Walk on a Discrete Lattice 
 

Let us consider 4 x 4 lattice (Fig. 3). A point walks randomly on the lattice so 
that no direction is more probable than another. This means that if the point occupies 
a point with k neighbor lattice points, then the probability of visiting any of them at 

the next step of its walk equals 
1

k
. 

Problem 2. A random walk starts at lattice point (x; y); x; y = 1,..., 5 (Fig. 3). Find the 
probability p(x; y) to reach the lattice boundary for the first time at A(3; 1)2. 

                                                 
2 Similar problem is discussed in [1].  



 
Figure 3 

The symmetry of the lattice implies that 

( ) ( )2, 4, ,   2..4p i p i i= = .    (2) 

Obviously, on the boundary we have 

( ) ( ) ( ) ( ) ( ) ( )3,1 1,   2,1 4,1 1, 5, ,5 0,   1..5p p p p i p i p i i= = = = = = = .  (3) 

Let the point land at interior point ( ),x y  with 4 neighbors. With probability 
1

4
 it 

moves to the neighbor ( ),x y′ ′  at the next stage. At the point ( ),x y′ ′  the probability of 

touching the boundary firstly at A is ( ),p x y′ ′ . So the conditional probability equals 

( )
1

4
,p x y′ ′⋅ . Since the point ( ),x y  has 4 neighbors it follows that 
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From (2), (3) and (4) we obtain a system of six variables: 
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Applying a linear system solving program (as Maple) gives: 

( )2,2p  ( )3,2p  ( )2,3p  ( )3,3p  ( )2,4p  ( )3,4p  
11
112  37

112  1
16  1

8  3
112  5

112  

The systems of equations giving the solutions for heat equilibrium and random 
walk problems seem similar. It is interesting that problems from completely different 
areas lead to almost equivalent lattice models. There is one more connection between 



the heat equilibrium problem and random walk which will be revealed in the next 
section. 
 
3 Probability and the Dirichlet Problem 

 
We will illustrate a solution of the discrete version of the Dirichlet problem (1) 

in terms of the random walk ([7]). 
For any point ( )X I D∈  consider random walks starting at X. Let XΓ  be the 

first point on the boundary that the walk gets to. We claim that the solution of (1) is 
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where ( )XP X
Γ

 is the probability to reach the boundary at first time in XΓ . 

Before proving the above formula, note that the multiplier ( )XP X
Γ

 represents 

the influence of the temperature at XΓ  on establishing the equilibrium temperature at 
X. And as the answer of problem 2 shows, the smaller the distance XXΓ , the greater 

the probability ( )XP X
Γ

. 

To prove (5) we have two steps to complete. First that ( ) ( )
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The second step that ( ) ( )T X f X=  on ( )DΓ  is obvious. 

Following this method we can use the probabilities computed in problem 2 to 
find the solution of problem 1. Because of symmetry, estimating all the probabilities 
( ) ( ) ( ),   ,   XP X X I D X D

Γ Γ∈ ∈Γ  needs only to find ( ) ( ),   BP X X I D∈ , where the 

point B has coordinates (2; 1) (Fig. 3). As in problem 2, we find ( ) ( )BP X q X= : 

( )2,2q  ( ) ( )3,2 2,3q q=  ( ) ( )4,2 2,4q q=  ( )3,3q  ( ) ( )4,3 3,4q q=  ( )4,4q  
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Example. Compute the equilibrium temperature t(2; 2). 

Using (5), we obtain 
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As expected, the result is the same as in the iterative solution. 
 
Conclusion 
 

Our attempt is to find such models of teaching process, that develops aptitude 
to combine seemingly unrelated ideas into something new and ability to stretch 
beyond the quotidian in pursuit of meaning. As the experiment in National High 
School for Natural Sciences and Mathematics shows, mathematical models 
considered in a simple way enable students to touch and connect concepts from 
Applied Mathematics, Physics, Probability Theory and Numerical Methods. 

The computational part of the problems could be carried out by one of the 
available computer packages (Excel and Maple) but also could be put as a separate 
programming task for the students. That's why in the described topic there are ample 
opportunities for research in the classroom. 
. 
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Един опит за интегриране на физични и математически идеи в обучението 
 

Резюме. Една от целите на математическото образование е да развива 
умение за съставяне на математически модел на реална ситуация. Това 
умение се базира на разбиране на математическите идеи и връзките им с идеи 
от други научни области. В тази насока представяме модул, който включва 
дискретен модел на задача на Дирихле за разпределение на температурата 
при топлинно равновесие и задача за блуждаене в крайна мрежа. На тази 
основа задачата на Дирихле се интерпретира от гледна точка на 
вероятностните процеси. Решенията интегрират знания по физика, числени 
методи, теория на вероятностите и математическо моделиране по достъпен 
за ученици начин. 
 


