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The algebra R(1,4,52,5%), j* = —1 of the fourth-R numbers, or in other words the
algebra of the double-complex numbers C(1,j) and the corresponding functions, were studied
in the papers of S. Dimiev and al. (see [1], [2], [3], [4]). The hyperbolic fourth-R numbers form
other similar to C(1,7) algebra with zero divisors. In this note the square roots of hyperbolic
fourth-R numbers and hyperbolic complex numbers are found. The quadratic equation with
hyperbolic fourth-R coefficients and variables is solved. The Cauchy-Riemann system for
holomorphicity of fourth-R functions is recalled. Holomorphic homogeneous polynomials of
fourth-R variables are listed.
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1. Fourth-R numbers and hyperbolic fourth-R numbers
The algebra of fourth-R numbers is defined as follows

R(1,5,5%,7%) = {& = w0 + jo1 + j2a2 + joms, j* = -1},
where zq, x1, T2, x3 are real numbers and j is a formal symbol with the property
g4 = -1, 5 =1, j € C. The addition and multiplication with scalar are
componentwise, and multiplication of fourth-R numbers is made by the rule of

opening of brackets, using the identities for the symbol j, namely

Y = ToYo — T1Y3 — Taye — 3Y1 + (Toy1 + T1Yo — T2y3 — T3Y2)]

+ (zoy2 + 1y1 + T2y — T3Y3)5° + (Toys + T1y2 + Tay1 + T3Y0)5°

This algebra is associative and commutative one, but it has zero divisors.
Such are for example the numbers z(1 + 52 +1/25) and z(1 + 52 — v/25) for each



16 L.N. Apostolova

fourth-R number z. The algebra R(1, 4, 2, j2) is isomorphic to the algebra of
double-complex numbers C(1, j), which consists of couples of complex numbers
(z,w) = z + jw with specific multiplication, ruled by the same formal symbol
j. More precisely,
C(L,j) = {a=z+jw, j*=-1, z,w € C},
i.e. z,w are complex numbers and j is a formal symbol with the property
jt=-1,=1,j¢C.
The algebra of the hyperbolic fourth-R numbers is the following one

R(1,7,5%5°) = {& = o + ja1 + j°wa + jous, j* = +1},
where xg, x1, T2, r3 are real numbers and j is a formal symbol with the property
j* =41, =1, j ¢ C. Tt is endowed with a structure of a commutative and
associative algebra with respect to the (open brackets) multiplication using the

identities j¥t4 = j* k =0,1,... and j° = 1, j4 = +1 for the symbol j:
xy = oyo + x1y3 + Toy2 + w3y1 + (Toyr + T1yo + T2y3 + 3Y2)J

+(zoya + T1y1 + Tayo + 3y3)5° + (Toys + T1y2 + Tay1 + T3Y0)5°,
where © = o + jz1 + j2w2 + j3xs and y = yo + jy1 + j2y2 + jy3, Tk, yk € R for
k =0,1,2,3. Here the addition and the multiplication with scalar from R are
componentwise. This algebra has divisors of zero, too.

The idea of fourth-R numbers, in more general form, appears for the first
time in the framework of Kazan geometric school [5] with formal level for j. A
matrix representation of the formal symbols j, j2, 53, j* was developed in [3],
[4] and in definite form, separating the hyperbolic case j4 = +1 from the elliptic
one j* = —1, in [1].

2. Hyperbolic fourth-R square roots and hyperbolic fourth-R
quadratic equation

First we shall consider the hyperbolic fourth-R square root

\/mo + jma + j*ma + j3ms, (1)

of the hyperbolic fourth-R number m = mg+jmi+j2ma+j3ms € R(1, 4,52, 53,
j* = 41, m € R for kK = 0,1,2,3. For this purpose we shall consider the
quadratic equation

a? = mo + jmi + j2ma + j>ms, (2)

where a = ag+ja;+j2as+j%a3 € R(1,7,52,5%) j* = +1,ar € Rfor k=0,1,2,3
is a hyperbolic fourth-R number. The equation (2) is equivalent to the following
system of four second degree equations with real variables:
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I) a% + a% + 2a1a3 = my, IT) 2apa1 + 2a2a3 = myq, (3)
III) 2apas + (I% + (I% = ma, IV) 2apas + 2a1a2 = ms,

which arises from the equalities a? = (ag + ja1 + j2az + j3a3)? = a3 + a3 +
2a1a3 + j(2apa; +2aza3) + j2(2apaz + a3 +a?) + j3(2apas +2aia2) = mo +jmi +
7*ma + j3ms.

The sums and the differences of the equations I) and III), and II) and IV)
in (3), respectively, gives the following system of four real quadratic equations

i) (a0 +a2)* + (a1 + a3)* = mo + ma,
ii) 2(ap + a2)(a1 + asz) = mq + mg. (4)
iii) (ap — a2)2 — (a1 — a3)2 = mg — Mma,
iv) 2(ap — az)(a; — az) = my — ms.
Then the sum of the equations i) and ii) and the difference between i) and ii) in
(4) gives, respectively,
a) (ag + az + ay + a3)® = mg +my + mg + m3 (5)
b) (ap + az — a1 —a3)2 =mo — m1 + Mg — Mm3.

The necessary condition for existing of the square root

mo +mg > [my + mg (6)
arises from (5).
Let us introduce the variables X and Y in the following way:

X :=ag — as, Y :=a1 —as. (7)
The equations iii) and iv) from (4) in these variables seems as follows:
X2 —Y? = mg —ma, 2XY = my — ma. (8)

Solving this auxiliary system, we obtain the equations

mi—my (M1 — mg)>

Y =
2X 4X2

=my—mg, for mi#ms.  (9)

The equation of fourth degree 4X* — 4(mg — m2)X? = (m1 — m3)? can
be written also as (2X2 —mg + ma2)? = (m1 — m3)? + (mo — my)?, from where
we obtain

2X? = mg — Mg = \/(TTLO — m2)2 + (m1 - m3)2. (10)
As we look for the real solutions of the system (3) of 4 equations of second degree,
the sign minus in the formula (10) does not give a solution. So we obtain the
following two real solutions for X and two real solutions for Y, respectively,
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Xza\g\/\/(mo—mgﬁ—i—(ml—m3)2+m0—m2, (11)

Y = e sign(m; — m3)\}§\/\/(mo —mg)? + (m1 —m3)? — (mg — m2),

where € = 1.
We consider again the system of equations (5). As the condition (6)
holds, it is fulfilled mg + mq + ms +m3 > 0 and mg — m1 +me — m3 > 0 and

a0+a2+a1+a3:51\/m0+m1+m2+m3 (12)

ap + a2 — a1 — ag = €2y/mgy — my +mg —ms,

where €1,62 = +1 and the roots in the right hand sides are the arithmetic roots
of the corresponding real nonnegative numbers.
From the system (12), we obtain

19 13
ao—l—agz51\/m0+m1+m2+m3+52\/m0—m1+m2—mg, (13)

€ €
a1+a3:51\/m0+m1+m2+m3—52\/m0—m1+m2—m3,

where 1,9 = +1.
The following real numbers ag, a1, a2 and ag are obtained by the expres-
sion for X and Y in (7) and the equalities (13)

€ £
ap(e,€1,62) = le/mo +my + mg +ms + f\/mo —my + my —mg

£
—I-\/ mo —ma)? + (m1 — mg3)? + mo — ma,
>3 \/( 0 —ma)? + (m1 —m3) 0 — M2

1 €2
ai(e,e1,€2) = Z\/m0+ml + mg +m3 — Z\/mo — mj + mg —ms3

45 Sign(;:l/li_ ms) \/\/(mo —m2)2 + (mq —m3)? — (mg — ma),

€ €
as(e,e1,e2) = le/mo +my +mg +mg + fx/mo —my +mg —mg3

—;&\/\/(mo —mg)? 4+ (m1 — m3)? + my — ma

and

1 €2
as(e,e1,€2) = Z\/mo+m1 +mo +m3 — Z\/mo —mj + mg — m3
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E
slgn m1 m3 \/\/ (mo — m2)? + (m1 — mg3)? — (mo — ma),

where €, ¢ and g9 = +1 and sign(z) denotes the real-valued function of real
1 when z >0,
variable: sign (z) = 0 when x=0,
—1 when 2 <0.
So we obtain the formula for the square root in the case m; # ms as
follows:

aler,2,¢) = \Jmo + jma + 2my + jPmy

a4+ + 5%
- 4

e2(1—j+j%—J°)
4

1—]
\/\/mo—m2 + (m1 — mg3)? 4+ mg — ma

gj(l — 42 sign(m m
+J( j°) sig 1— 3\/\/mo—m2 (ml_m3)2_(m0_m2)'

22

Remark 1. The case m; = m3 = 0 is consider in part 3 below. In the
case m1 = ms # 0 we obtain the following square roots of the fourth-R number
mo + 5°ma + j(1 + 5%)m

a(er,e2,€) = \/mo + 72ma + j(1 + j2)my

_ ej(1 3% e e+ L+ 7Y ei(l+

2 2[

£1j(1 — 42) sign m
L7( J ) g 1\/m0+m2—€2\/(m0+m2>2—4m%

2V/2

in the case mg > |mg|, mo + ma > 2|m,| and

a(er, e2,¢€) = \/mo +72ma + (14 5%)ma

Vmg +my +ma +m3

Vmg —my +mg —ms3

\/m0+m2+82\/(m0+m2) —4m3

_l’_

e(1+ 42 €
:(QJ)m+ 13(2\[ \/m0+m2+52\/(m0+m2) — 4m7

e1(1 — j%) sign ml\/ 2 2
mo +mg — € mo + mg)? — 4m
275 0 +mz — £2/ (mo + mp)? — dm?

in the case mg > |ma|, mo + ma > 2|m;|, where the numbers 1,5 and ¢ are
equal to +1.
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In the case mg = my = mg = m3 > 0, the square root \/mg(1 + j + 52 + j3)
is equal to 5%(1 + 54524+ 5).

In other cases square root of the corresponding fourth-R number does
not exist.

Theorem 1. The quadratic equation
2>+ pr+q=0
with hyperbolic fourth-R. coefficients p, q € R(1,7,5%,5%), j* = +1, p = po +
Jp1+3°p2+3%ps, 4= qo+iq +5°0+35%a, proar € R fork =0,1,2,3, which
satisfies the conditions

(po+p1+p2+p3)® > 4 (@o+q1+a2+a3), (po—p1+p2—p3)* > 4 (q0—q1+q2—33)

has the following solutions

x4(e1,69,€) = —g +a(er,e2,6) and x_(e1,69,¢) = —g —a(ey,e9,¢),
where
p?
a(e1,€2,€) = ok

2
are the given above hyperbolic fourth-R square roots of the discriminant pz —q.

3. Hyperbolic complex square root

Let us consider the hyperbolic complex numbers, forming two dimen-
sional commutative, associative algebra with zero divisors

c = {IEO +j2$27 j4 = 1a o, T2 € R}

The algebra C has as zero divisors the elements = + 42z and z — j%x, where
x € R. Let us consider the quadratic equation (ag + j2a2)? = mq + j2ma, i.e.
this is the equation (2) with conditions a1 = ag = 0 and m; = mg = 0. It is

equivalent to the system of two equation of second order
ag + a3 =mo, 2apaz = my. (14)
Then, for the hyperbolic complex square roots are obtained the equations
(a0+a2)2 = mgy + Mma, (ao —a2)2 = mg — Myo. (15)
So my +mg > 0 and my — mg > 0, i.e. my > |mal, is a necessary condition for

the existing of the square root of the hyperbolic complex number mg + j2ma.
It is fulfilled

ap + ag = e1vVmg + ma, ap — ag = €2/ My — My,
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where €1 and g9 = £1.
Then the asking square roots are the numbers

a(er, e2) = (1+] )\/mo+m2+ e2(1 5 j2)\/mo—m2-

So we obtain four different hyperbohc complex square roots of the hyperbolic
complex number mg + j2ms such that mg > |ma|.

4. Fourth-R holomorphy

The holomorphic fourth-R-functions
fR(1,5,5%.5%) = R(1,4,4%,5°),

j* = —1, are defined in terms of the classical conditions about the differential
df. Namely, it is fulﬁlledaf o/ af 3f
df = —d + = dg*
where
O (O p00y o0 pory
o 2\0zy Y 0w) 03 2\0m 7 ox3)’
O L(A 00y o L (0 o)
oo~ 2\ome P oms) a5 T 2\0m T s
where j* = —1.
The condition for holomorphicity is the following equation
of , of
Do, ~d 8 5 ds* =0, (17)

which implies the basic holomorphicity Cauchy-Riemann type system of PDE
of first order (see [2]):

O a0 g O a0l

0 =0 R, j*=-1. 18

5. Holomorphic homogeneous fourth-R polynomials

5.1. Holomorphic homogeneous fourth-R polynomials of first degree

Theorem 2. A homogeneous fourth-R polynomial of first degree P is
holomorphic, iff it is of the kind
P = P(x + j°2) + Qa1 + jx3), (19)
where P,Q € R(1,4,5%,7%), j* = —1.



22 L.N. Apostolova

Proof. Let us consider the homogeneous fourth-R valued polynomial of
first degree

P = Axg + Bxy1 + Cxo + Dxs,

where A, B,C,D € R(1,7,52,5%), j* = —1 and =g, =1, 72 and z3 are real
variables. The conditions for holomorphicity (18) gives the following equalities
0(A B C D 0(A B C D
0= ( xo + bxry +Cxo + ZL‘3)+j2 ( xo + bxr1 + Cxo + $3):A+j20,
61'0 (9:132
0(A B C D 0(A B C D
0— ( xo + a:g;— o + x3)+j2 ( xo + l’g;- xro + $3):B+j2D.
1 3

So the holomorphic homogeneous polynomials of first degree are of the kind
P = P(mo + j2$2) + Q($1 + jzxg),

where P = A = —j2C and Q = B = —j?D. Conversely, it is clear that such
polynomials satisfy the system (18). This proves Theorem 2. [

5.2. Holomorphic homogeneous fourth-R polynomials of degree n

Theorem 3. A homogeneous fourth-R polynomial P of degree n is holo-
morphic iff it is of the following kind

n
P =" Cilzo+ j°22)" (21 + j%w3)" (20)
k=0
where Cy, € R(1,4,5%,7°), j* = -1, for k=0,1,...,n.
Proof. First let us check that the polynomial of n-th degree
n
P =73 Cylzo + j°ws)" (w1 + jPus)" "

k=0
satisfies the system (18). It is fulfilled

OP | 20P 3

or _ LC 2 k-1 2 \n—k
D20 + D2y ];) k(CL‘() +7 1’2) (:1:1 +7 (133)
n —
452 Z kCy(zo 4 j2x0)* 152 (21 4 j223)" % =0
k=0

and

orP  ,0P " ) . Nk
e +‘7287x3 = Z(” — k)Cr(wo + j2w2)* (w1 + j2a3)" !

k=0

n
+52> " (n— k)Cr(wo + ja2) (21 + j2a3)" 1% =0.
k=0
So all polynomials of the considered kind are solutions of the system (18).
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Now let P(xzq+jx1 + j2x2+ j323) be a holomorphic homogeneous fourth-

R polynomial of degree n, i.e.
n n—kn—k—l

P=>3 3 aumzialayayttom,

k=0 1=0 m=0
and let it satisfy the system (18), from where

OP L OP n n—Iln—k-l
0=7+]27=ZZ aklmkxlg Lol o™ k=l=m

g Y2 120 k=0 m=0
n n—Iln—k-—lI
-2 k.l m—1_n—k—Il-m
+ Z AplmMTGT1Ty X3
=0 k=0 m=0

> ((k + Dagsam + 52(m + Dagim 1)l agiay =1,
(k + Dagrum + 52 (m + Dagymer = 0

1
Aft1lm = —J 72:1 apima1 for k=0,1,...,n—1 and m=0,1,...,n—k—1—1.

Repeating this calculation, we obtain

— )k(m+1)(m+2)...(m—|—/~c)a0lm+k _ <m+k

k(k—1)...1 i )(—jZ)kaoszrk-

Setting p = m + k, the polynomial P looks like as follows

n n—lI D
—k =
P = ZZCLOZPZ< ) —J :Eo xg ﬂ?lll‘g p
=0 p=0
n n—l
= Z Z aoip(—3°)P (o +J azg)pajllx3 =p
=0 p=0
oP oP
Using the second equation o + 2= 5 = 0 from (18) for the so obtained
T3
polynomial P, we obtain a second term (1 + j223)" P for the variable z1 + j%z3
and this complete the proof of the theorem. [

Remark. The algebra of a kind of quaternion polynomials was studied
by the Bulgarian mathematician L. Tchakalov (1924) in [6].
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