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The algebra R(1, j, j2, j3), j4 = −1 of the fourth-R numbers, or in other words the
algebra of the double-complex numbers C(1, j) and the corresponding functions, were studied
in the papers of S. Dimiev and al. (see [1], [2], [3], [4]). The hyperbolic fourth-R numbers form
other similar to C(1, j) algebra with zero divisors. In this note the square roots of hyperbolic
fourth-R numbers and hyperbolic complex numbers are found. The quadratic equation with
hyperbolic fourth-R coefficients and variables is solved. The Cauchy-Riemann system for
holomorphicity of fourth-R functions is recalled. Holomorphic homogeneous polynomials of
fourth-R variables are listed.
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1. Fourth-R numbers and hyperbolic fourth-R numbers

The algebra of fourth-R numbers is defined as follows

R(1, j, j2, j3) = {x = x0 + jx1 + j2x2 + j3x3, j4 = −1},
where x0, x1, x2, x3 are real numbers and j is a formal symbol with the property
j4 = −1, j0 = 1, j 6∈ C. The addition and multiplication with scalar are
componentwise, and multiplication of fourth-R numbers is made by the rule of
opening of brackets, using the identities for the symbol j, namely

xy = x0y0 − x1y3 − x2y2 − x3y1 + (x0y1 + x1y0 − x2y3 − x3y2)j

+(x0y2 + x1y1 + x2y0 − x3y3)j2 + (x0y3 + x1y2 + x2y1 + x3y0)j3.

This algebra is associative and commutative one, but it has zero divisors.
Such are for example the numbers x(1+ j2 +

√
2j) and x(1+ j2−√2j) for each
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fourth-R number x. The algebra R(1, j, j2, j3) is isomorphic to the algebra of
double-complex numbers C(1, j), which consists of couples of complex numbers
(z, w) = z + jw with specific multiplication, ruled by the same formal symbol
j. More precisely,

C(1, j) = {α = z + jw, j4 = −1, z, w ∈ C},
i.e. z, w are complex numbers and j is a formal symbol with the property
j4 = −1, j0 = 1, j 6∈ C.

The algebra of the hyperbolic fourth-R numbers is the following one

R(1, j, j2, j3) = {x = x0 + jx1 + j2x2 + j3x3, j4 = +1},
where x0, x1, x2, x3 are real numbers and j is a formal symbol with the property
j4 = +1, j0 = 1, j 6∈ C. It is endowed with a structure of a commutative and
associative algebra with respect to the (open brackets) multiplication using the
identities jk+4 = jk, k = 0, 1, . . . and j0 = 1, j4 = +1 for the symbol j:

xy = x0y0 + x1y3 + x2y2 + x3y1 + (x0y1 + x1y0 + x2y3 + x3y2)j

+(x0y2 + x1y1 + x2y0 + x3y3)j2 + (x0y3 + x1y2 + x2y1 + x3y0)j3,

where x = x0 + jx1 + j2x2 + j3x3 and y = y0 + jy1 + j2y2 + j3y3, xk, yk ∈ R for
k = 0, 1, 2, 3. Here the addition and the multiplication with scalar from R are
componentwise. This algebra has divisors of zero, too.

The idea of fourth-R numbers, in more general form, appears for the first
time in the framework of Kazan geometric school [5] with formal level for j. A
matrix representation of the formal symbols j, j2, j3, j4 was developed in [3],
[4] and in definite form, separating the hyperbolic case j4 = +1 from the elliptic
one j4 = −1, in [1].

2. Hyperbolic fourth-R square roots and hyperbolic fourth-R
quadratic equation

First we shall consider the hyperbolic fourth-R square root√
m0 + jm1 + j2m2 + j3m3, (1)

of the hyperbolic fourth-R number m = m0+jm1+j2m2+j3m3 ∈ R(1, j, j2, j3),
j4 = +1, mk ∈ R for k = 0, 1, 2, 3. For this purpose we shall consider the
quadratic equation

a2 = m0 + jm1 + j2m2 + j3m3, (2)

where a = a0+ja1+j2a2+j3a3 ∈ R(1, j, j2, j3) j4 = +1, ak ∈ R for k = 0, 1, 2, 3
is a hyperbolic fourth-R number. The equation (2) is equivalent to the following
system of four second degree equations with real variables:
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I) a2
0 + a2

2 + 2a1a3 = m0, II) 2a0a1 + 2a2a3 = m1, (3)
III) 2a0a2 + a2

3 + a2
1 = m2, IV) 2a0a3 + 2a1a2 = m3,

which arises from the equalities a2 = (a0 + ja1 + j2a2 + j3a3)2 = a2
0 + a2

2 +
2a1a3 +j(2a0a1 +2a2a3)+j2(2a0a2 +a2

3 +a2
1)+j3(2a0a3 +2a1a2) = m0 +jm1 +

j2m2 + j3m3.
The sums and the differences of the equations I) and III), and II) and IV)

in (3), respectively, gives the following system of four real quadratic equations

i) (a0 + a2)2 + (a1 + a3)2 = m0 + m2,

ii) 2(a0 + a2)(a1 + a3) = m1 + m3. (4)
iii) (a0 − a2)2 − (a1 − a3)2 = m0 −m2,

iv) 2(a0 − a2)(a1 − a3) = m1 −m3.

Then the sum of the equations i) and ii) and the difference between i) and ii) in
(4) gives, respectively,

a) (a0 + a2 + a1 + a3)2 = m0 + m1 + m2 + m3 (5)
b) (a0 + a2 − a1 − a3)2 = m0 −m1 + m2 −m3.

The necessary condition for existing of the square root

m0 + m2 ≥ |m1 + m3| (6)
arises from (5).

Let us introduce the variables X and Y in the following way:

X := a0 − a2, Y := a1 − a3. (7)
The equations iii) and iv) from (4) in these variables seems as follows:

X2 − Y 2 = m0 −m2, 2XY = m1 −m3. (8)
Solving this auxiliary system, we obtain the equations

Y =
m1 −m3

2X
, X2 − (m1 −m3)2

4X2
= m0 −m2, for m1 6= m3. (9)

The equation of fourth degree 4X4 − 4(m0 −m2)X2 = (m1 −m3)2 can
be written also as (2X2 −m0 + m2)2 = (m1 −m3)2 + (m0 −m2)2, from where
we obtain

2X2 = m0 −m2 ±
√

(m0 −m2)2 + (m1 −m3)2. (10)
As we look for the real solutions of the system (3) of 4 equations of second degree,
the sign minus in the formula (10) does not give a solution. So we obtain the
following two real solutions for X and two real solutions for Y , respectively,
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X = ε
1√
2

√√
(m0 −m2)2 + (m1 −m3)2 + m0 −m2, (11)

Y = ε sign(m1 −m3)
1√
2

√√
(m0 −m2)2 + (m1 −m3)2 − (m0 −m2),

where ε = ±1.
We consider again the system of equations (5). As the condition (6)

holds, it is fulfilled m0 + m1 + m2 + m3 ≥ 0 and m0 −m1 + m2 −m3 ≥ 0 and

a0 + a2 + a1 + a3 = ε1

√
m0 + m1 + m2 + m3 (12)

a0 + a2 − a1 − a3 = ε2

√
m0 −m1 + m2 −m3,

where ε1, ε2 = ±1 and the roots in the right hand sides are the arithmetic roots
of the corresponding real nonnegative numbers.

From the system (12), we obtain

a0 + a2 =
ε1

2
√

m0 + m1 + m2 + m3 +
ε2

2
√

m0 −m1 + m2 −m3, (13)

a1 + a3 =
ε1

2
√

m0 + m1 + m2 + m3 − ε2

2
√

m0 −m1 + m2 −m3,

where ε1, ε2 = ±1.
The following real numbers a0, a1, a2 and a3 are obtained by the expres-

sion for X and Y in (7) and the equalities (13)

a0(ε, ε1, ε2) =
ε1

4
√

m0 + m1 + m2 + m3 +
ε2

4
√

m0 −m1 + m2 −m3

+
ε

2
√

2

√√
(m0 −m2)2 + (m1 −m3)2 + m0 −m2,

a1(ε, ε1, ε2) =
ε1

4
√

m0 + m1 + m2 + m3 − ε2

4
√

m0 −m1 + m2 −m3

+
ε sign(m1 −m3)

2
√

2

√√
(m0 −m2)2 + (m1 −m3)2 − (m0 −m2),

a2(ε, ε1, ε2) =
ε1

4
√

m0 + m1 + m2 + m3 +
ε2

4
√

m0 −m1 + m2 −m3

− ε

2
√

2

√√
(m0 −m2)2 + (m1 −m3)2 + m0 −m2

and

a3(ε, ε1, ε2) =
ε1

4
√

m0 + m1 + m2 + m3 − ε2

4
√

m0 −m1 + m2 −m3
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−ε sign(m1 −m3)
2
√

2

√√
(m0 −m2)2 + (m1 −m3)2 − (m0 −m2),

where ε, ε1 and ε2 = ±1 and sign(x) denotes the real-valued function of real

variable: sign (x) =





1 when x > 0,
0 when x = 0,
−1 when x < 0.

So we obtain the formula for the square root in the case m1 6= m3 as
follows:

a(ε1, ε2, ε) =
√

m0 + jm1 + j2m2 + j3m3

=
ε1(1 + j + j2 + j3)

4
√

m0 + m1 + m2 + m3

+
ε2(1− j + j2 − j3)

4
√

m0 −m1 + m2 −m3

+
ε(1− j2)

2
√

2

√√
(m0 −m2)2 + (m1 −m3)2 + m0 −m2

+
εj(1− j2) sign(m1 −m3)

2
√

2

√√
(m0 −m2)2 + (m1 −m3)2 − (m0 −m2).

Remark 1. The case m1 = m3 = 0 is consider in part 3 below. In the
case m1 = m3 6= 0 we obtain the following square roots of the fourth-R number
m0 + j2m2 + j(1 + j2)m1:

a(ε1, ε2, ε) =
√

m0 + j2m2 + j(1 + j2)m1

=
εj(1− j2)

2
√

m2 −m0 +
ε1(1 + j2)

2
√

2

√
m0 + m2 + ε2

√
(m0 + m2)2 − 4m2

1

+
ε1j(1− j2) sign m1

2
√

2

√
m0 + m2 − ε2

√
(m0 + m2)2 − 4m2

1

in the case m2 > |m0|, m0 + m2 > 2|m1| and

a(ε1, ε2, ε) =
√

m0 + j2m2 + j(1 + j2)m1

=
ε(1 + j2)

2
√

m0 −m2 +
ε1j(1 + j2)

2
√

2

√
m0 + m2 + ε2

√
(m0 + m2)2 − 4m2

1

+
ε1(1− j2) sign m1

2
√

2

√
m0 + m2 − ε2

√
(m0 + m2)2 − 4m2

1

in the case m0 > |m2|, m0 + m2 > 2|m1|, where the numbers ε1, ε2 and ε are
equal to ±1.
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In the case m0 = m1 = m2 = m3 > 0, the square root
√

m0(1 + j + j2 + j3)
is equal to ε

m0

2
(1 + j + j2 + j3).

In other cases square root of the corresponding fourth-R number does
not exist.

Theorem 1. The quadratic equation

x2 + px + q = 0

with hyperbolic fourth-R coefficients p, q ∈ R(1, j, j2, j3), j4 = +1, p = p0 +
jp1 + j2p2 + j3p3, q = q0 + jq1 + j2q2 + j3q3, pk, qk ∈ R for k = 0, 1, 2, 3, which
satisfies the conditions

(p0+p1+p2+p3)2 ≥ 4 (q0+q1+q2+q3), (p0−p1+p2−p3)2 ≥ 4 (q0−q1+q2−q3)

has the following solutions

x+(ε1, ε2, ε) = −p

2
+ a(ε1, ε2, ε) and x−(ε1, ε2, ε) = −p

2
− a(ε1, ε2, ε),

where

a(ε1, ε2, ε) =

√
p2

4
− q

are the given above hyperbolic fourth-R square roots of the discriminant
p2

4
− q.

3. Hyperbolic complex square root

Let us consider the hyperbolic complex numbers, forming two dimen-
sional commutative, associative algebra with zero divisors

C̃ := {x0 + j2x2, j4 = 1, x0, x2 ∈ R}.
The algebra C̃ has as zero divisors the elements x + j2x and x − j2x, where
x ∈ R. Let us consider the quadratic equation (a0 + j2a2)2 = m0 + j2m2, i.e.
this is the equation (2) with conditions a1 = a3 = 0 and m1 = m3 = 0. It is
equivalent to the system of two equation of second order

a2
0 + a2

2 = m0, 2a0a2 = m2. (14)

Then, for the hyperbolic complex square roots are obtained the equations
(a0 + a2)2 = m0 + m2, (a0 − a2)2 = m0 −m2. (15)

So m0 + m2 ≥ 0 and m0 −m2 ≥ 0, i.e. m0 ≥ |m2|, is a necessary condition for
the existing of the square root of the hyperbolic complex number m0 + j2m2.

It is fulfilled
a0 + a2 = ε1

√
m0 + m2, a0 − a2 = ε2

√
m0 −m2,
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where ε1 and ε2 = ±1.
Then the asking square roots are the numbers

a(ε1, ε2) =
ε1(1 + j2)

2
√

m0 + m2 +
ε2(1− j2)

2
√

m0 −m2.

So we obtain four different hyperbolic complex square roots of the hyperbolic
complex number m0 + j2m2 such that m0 ≥ |m2|.

4. Fourth-R holomorphy

The holomorphic fourth-R-functions

f : R(1, j, j2, j3) → R(1, j, j2, j3),

j4 = −1, are defined in terms of the classical conditions about the differential
df . Namely, it is fulfilled

df =
∂f

∂α
dα +

∂f

∂β
dβ +

∂f

∂α∗
dα +

∂f

∂β∗
dβ∗

where

∂f

∂α
:=

1
2

(
∂f

∂x0
− j2 ∂f

∂x2

)
,

∂f

∂β
:=

1
2

(
∂f

∂x1
− j2 ∂f

∂x3

)
, (16)

∂f

∂α∗
:=

1
2

(
∂f

∂x0
+ j2 ∂f

∂x2

)
,

∂f

∂β∗
:=

1
2

(
∂f

∂x1
+ j2 ∂f

∂x3

)
,

where j4 = −1.
The condition for holomorphicity is the following equation

∂f

∂α∗
dα∗ +

∂f

∂β∗
dβ∗ = 0, (17)

which implies the basic holomorphicity Cauchy-Riemann type system of PDE
of first order (see [2]):

∂f

∂x0
+ j2 ∂f

∂x2
= 0,

∂f

∂x1
+ j2 ∂f

∂x3
= 0, xk ∈ R, j4 = −1. (18)

5. Holomorphic homogeneous fourth-R polynomials

5.1. Holomorphic homogeneous fourth-R polynomials of first degree

Theorem 2. A homogeneous fourth-R polynomial of first degree P is
holomorphic, iff it is of the kind

P = P (x0 + j2x2) + Q(x1 + j2x3), (19)

where P, Q ∈ R(1, j, j2, j3), j4 = −1.
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P r o o f. Let us consider the homogeneous fourth-R valued polynomial of
first degree

P = Ax0 + Bx1 + Cx2 + Dx3,

where A,B, C, D ∈ R(1, j, j2, j3), j4 = −1 and x0, x1, x2 and x3 are real
variables. The conditions for holomorphicity (18) gives the following equalities

0 =
∂(Ax0 + Bx1 + Cx2 + Dx3)

∂x0
+ j2 ∂(Ax0 + Bx1 + Cx2 + Dx3)

∂x2
= A + j2C,

0 =
∂(Ax0 + Bx1 + Cx2 + Dx3)

∂x1
+ j2 ∂(Ax0 + Bx1 + Cx2 + Dx3)

∂x3
= B + j2D.

So the holomorphic homogeneous polynomials of first degree are of the kind

P = P (x0 + j2x2) + Q(x1 + j2x3),

where P = A = −j2C and Q = B = −j2D. Conversely, it is clear that such
polynomials satisfy the system (18). This proves Theorem 2.

5.2. Holomorphic homogeneous fourth-R polynomials of degree n

Theorem 3. A homogeneous fourth-R polynomial P of degree n is holo-
morphic iff it is of the following kind

P =
n∑

k=0

Ck(x0 + j2x2)k(x1 + j2x3)n−k, (20)

where Ck ∈ R(1, j, j2, j3), j4 = −1, for k = 0, 1, . . . , n.

P r o o f. First let us check that the polynomial of n-th degree

P =
n∑

k=0

Ck(x0 + j2x2)k(x1 + j2x3)n−k

satisfies the system (18). It is fulfilled
∂P

∂x0
+ j2 ∂P

∂x2
=

n∑

k=0

kCk(x0 + j2x2)k−1(x1 + j2x3)n−k

+j2
n∑

k=0

kCk(x0 + j2x2)k−1j2(x1 + j2x3)n−k = 0

and

∂P

∂x1
+ j2 ∂P

∂x3
=

n∑

k=0

(n− k)Ck(x0 + j2x2)k(x1 + j2x3)n−k−1

+j2
n∑

k=0

(n− k)Ck(x0 + j2x2)k(x1 + j2x3)n−k−1j2 = 0.

So all polynomials of the considered kind are solutions of the system (18).
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Now let P (x0 +jx1 +j2x2 +j3x3) be a holomorphic homogeneous fourth-
R polynomial of degree n, i.e.

P =
n∑

k=0

n−k∑

l=0

n−k−l∑

m=0

aklmxk
0x

l
1x

m
2 xn−k−l−m

3 ,

and let it satisfy the system (18), from where

0 =
∂P

∂x0
+ j2 ∂P

∂x2
=

n∑

l=0

n−l∑

k=0

n−k−l∑

m=0

aklmkxk−1
0 xl

1x
m
2 xn−k−l−m

3

+j2
n∑

l=0

n−l∑

k=0

n−k−l∑

m=0

aklmmxk
0x

l
1x

m−1
2 xn−k−l−m

3

=
n∑

l=0

n−l−1∑

k=0

n−k−l−1∑

m=0

((k + 1)ak+1lm + j2(m + 1)aklm+1)xk
0x

l
1x

m
2 xn−k−l−m

3 .

Then
(k + 1)ak+1lm + j2(m + 1)aklm+1 = 0

and

ak+1lm = −j2 m + 1
k + 1

aklm+1 for k = 0, 1, . . . , n−1 and m = 0, 1, . . . , n−k−l−1.

Repeating this calculation, we obtain

aklm = (−j2)k (m + 1)(m + 2) . . . (m + k)
k(k − 1) . . . 1

a0lm+k =

(
m + k

k

)
(−j2)ka0lm+k.

Setting p = m + k, the polynomial P looks like as follows

P =
n∑

l=0

n−l∑

p=0

a0lp

p∑

k=0

(
p

k

)
(−j2x0)kxp−k

2 xl
1x

n−l−p
3

=
n∑

l=0

n−l∑

p=0

a0lp(−j2)p(x0 + j2x2)pxl
1x

n−l−p
3 .

Using the second equation
∂P

∂x1
+ j2 ∂P

∂x3
= 0 from (18) for the so obtained

polynomial P , we obtain a second term (x1 +j2x3)n−p for the variable x1 +j2x3

and this complete the proof of the theorem.

Remark. The algebra of a kind of quaternion polynomials was studied
by the Bulgarian mathematician L. Tchakalov (1924) in [6].
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