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Here we investigate a problem of approaching terminal (target) set by a system of
impulse differential equations of fractional order in the sense of Caputo. The system is under
control of two players pursuing opposite goals. The first player tries to bring the trajectory of
the system to the terminal set in the shortest time, whereas the second player tries to maximally
put off the instant when the trajectory hits the set, or even avoid this meeting at all. We derive
analytical solution to the initial value problem for a fractional-order system involving impulse
effects. As the main tool for investigation serves the Method of Resolving Functions based on
the technique of inverse Minkowski functionals. By constructing and investigating special set-
valued mappings and their selections, we obtain sufficient conditions for the game termination
in a finite time. In so doing, we substantially apply the technique of L × B-measurable set-
valued mappings and their selections to ensure, as a result, superpositional measurability of
the first player’s controls.
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1. Introduction

There exists a number of definitions of the fractional order derivative.
The classical one is the definition by Riemann-Liouville [1]. The Riemann–
Liouville fractional derivatives have a singularity at zero. That is why differential
equations involving these derivatives require initial conditions of special form
lacking clear physical interpretation. These shortcomings do not occur with the
regularized fractional derivative in the sense of Caputo. The fundamental theory
of fractional differential equations is developed in the monographs [2, 3]. The
papers [4, 5, 6] are devoted to solving fractional differential and differintegral
equations including those with partial derivatives.
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The impulse (integer-order) differential equations have become important
in recent years as mathematical models of processes where some parameters can
change instantly in a jump-like manner. The monographs [7, 8] are devoted to
the impulse differential equations and related issues, i.e. stability, control etc.

Fractional differential equations with impulses were first addressed in the
paper [9], where sufficient existence and uniqueness conditions for solutions of a
class of impulse differential equations involving the Caputo fractional derivative
were derived.

Here we investigate a problem of approaching terminal (target) set by a
system of impulse differential equations of fractional order in the sense of Ca-
puto. As the main tool for investigation serves the Method of Resolving Func-
tions based on the technique of inverse Minkowski functionals [10]. This method
provides full substantiation of the Method of Parallel Pursuit well-known from
practice. The Method of Resolving Functions is closely related to the Pontryagin
First Direct Method (see [11]).

2. Linear systems of fractional differential equations in the
sense of Caputo

Denote by Rn the n-dimensional Euclidean space. Let t0 ≥ 0 and f :
[t0,∞) → Rn be an absolutely continuous function. The Caputo fractional
derivative [2] of order α, 0 < α < 1, is defined as

D
(α)
t0

f(t) =
1

Γ(1− α)

∫ t

t0

f ′(τ)
(t− τ)α

dτ.

Consider a dynamic system of fractional order in the sense of Caputo
described by the equation:

D
(α)
t0

z = Az + g, 0 < α < 1, (1)

under initial conditions
z(t0) = z0. (2)

Here z ∈ Rn, A is a n×n-matrix, and g : [t0,∞) → Rn is a measurable function
bounded almost everywhere.

Lemma 1. The trajectory of the system (1), (2) has the form:

z(t) = Eα(A(t− t0)α)z0 +

t∫

t0

(t− τ)α−1Eα,α(A(t− τ)α)g(τ)dτ, (3)
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where

Eρ(B) =
∞∑

k=0

Bk

Γ(kρ + 1)
, Eρ,µ(B) =

∞∑

k=0

Bk

Γ(kρ + µ)

are the classical and generalized Mittag–Leffler matrix functions, respectively.
Let us note that for t0 = 0 the result formulated in Lemma 1 was first

obtained in [12]. In [13], it is extended to the case of arbitrary α using Laplace
transformation method.

3. Linear systems of impulse fractional differential equations

Let {τk}∞0 be a sequence such that τ0 = t0 and lim
k→∞

τk = ∞.

Now let us consider an impulsive system governed by

D(α)
τk

z = Az + g, t ∈ (τk, τk+1], k = 0, 1, 2, . . . (4)

Assume that the initial conditions (2) are fulfilled and at the time mo-
ments τk, k = 1, 2, 3, . . . the following equalities hold true:

∆z
∣∣
t=τk

= Bkz + ak, (5)

where Bk are square matrices of order n, ak ∈ Rn, and ∆z
∣∣
t=τk

= z(τ+
k )− z(τk).

Suppose t ∈ (τi, τi+1], let us introduce matrix function Zj(t):

Zj(t) =





Eα(A(t− τi)α), j = i,

Eα(A(t− τi)α)
j∏

k=i−1

(Bk+1 + I)Eα(A(τk+1 − τk)α), j < i.
(6)

We will also assume that B0 = 0.
It can be readily seen that Z0(t) is a solution to the following homoge-

neous matrix initial value problem:

D(α)
τk

Z =AZ, t ∈ (τk, τk+1],

∆Z
∣∣
t=τk

=BkZ,

Z(t0) =I.
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Theorem 1. The trajectory of the impulsive system governed by (4) on
the time intervals (τk, τk+1], and satisfying (5) at t = τk is given by the formula:

z(t) = Z0(t)z0 +
k∑

j=1

Zj(t)aj

+
k∑

j=1

∫ τj

τj−1

(τj − τ)α−1Zj(t)(Bj + I)Eα,α(A(τj − τ)α)g(τ)dτ

+
∫ t

τk

(t− τ)α−1Eα,α(A(t− τ)α)g(τ)dτ, t ∈ (τk, τk+1].

P r o o f. It can be readily seen that Zj(t) satisfies the following recurrence
relation:

Zj(t) =Eα(A(t− τi)α)(Bi + I)Zj(τi) if i > j,

Zj(t) =Eα(A(t− τi)α) if i = j,
(7)

where t ∈ (τi, τi+1]. Using this recurrence relation and the equation (3) one can
easily prove the theorem with the aid of the method of mathematical induction.

4. Method of resolving functions

Consider the following dynamic game. Let a dynamic system be de-
scribed by the equations

D(α)
τk

z =Az + u− v, t ∈ (τk, τk+1], k = 0, 1, 2, . . . ,

∆z
∣∣
t=τk

=Bkz + ak,
(8)

where the controls of the players u(τ), u : R+ → U , and v(τ), v : R+ → V , are
measurable functions of time taking their values from the nonempty compact
sets U and V , respectively.

In addition to the system (8), consider a terminal cylindrical set M∗ of
the form

M∗ = M0 + M, (9)

where M0 is a linear subspace in Rn and M is a nonempty compact set from
the orthogonal complement L of M0 in Rn.

The goals of the first (u) and second (v) players are opposite. The first
player tries to bring the trajectory of the system (8) to the terminal set in the
shortest time, whereas the second player tries to maximally delay the instant
when the trajectory reaches the set M∗, or even avoid this meeting at all.
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Let us take the side of the first player and assume that the opponent
chooses an arbitrary V -valued measurable function as a control. We also assume
that the first player decides on its control at time t depending on the information
about the initial position z0 and v(t):

u(t) = u(z0, v(t)), u(t) ∈ U. (10)

Let us note that if some admissible controls u(τ), v(τ), are chosen by the
players, then the solution to the latter initial value problem is given by

z(t) = Z0(t)z0 +
k∑

j=1

Zj(t)aj +
∫ t

t0

Φ(t, τ)[u(τ)− v(τ)]dτ, t ∈ (τk, τk+1], (11)

where

Φ(t, τ) =

{
(τj − τ)α−1Zj(t)Eα,α(A(τj − τ)α)(Bj + I), if τ ∈ [τj−1, τj), j ≤ k,

(t− τ)α−1Eα,α(A(t− τ)α), if τ ∈ [τk, t).

Denote by π the orthogonal projection from Rn to L. Let t ∈ (τk, τk+1],
τ ∈ [τj−1, τj), consider the multivalued mappings

W (t, τ, v) = πΦ(t, τ)(U − v),

W (t, τ) =
⋂

v∈V

W (t, τ, v) = πΦ(t, τ)U
∗− πΦ(t, τ)V.

Pontryagin’s Condition. The multivalued mapping W (t, τ) takes on
nonempty values for all t0 ≤ τ < t.

Taking into account the properties of the Mittag-Leffler and Zj(t) matrix
functions, we can conclude that for any fixed t > t0 the mapping W (t, τ, v) is
measurable in τ on the interval [t0, t] and closed in v, v ∈ V . Then [14] the
mapping W (t, τ) is a closed-valued mapping measurable in τ ∈ [t0, t]. The
Pontryagin condition and the measurable selection theorem [14] imply that for
any t ≥ 0 there exists at least one selection γ(t, τ) measurable in τ such that
γ(t, τ) ∈ W (t, τ), t0 ≤ τ < t. By the assumptions, γ(t, τ) is integrable in τ ,
τ ∈ [t0, t], for any t > t0. Let us fix some selection γ(t, τ) and introduce a
function

ξ(t) = πZ0(t)z0 +
k∑

j=1

πZj(t)aj +
∫ t

t0

γ(t, τ)dτ. (12)

Consider the multivalued mapping

R(t, τ, v) =
{

ρ ≥ 0 : [W (t, τ, v)− γ (t, τ)]
⋂

ρ [M − ξ(t)] 6= ∅
}

,
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and its support function in the direction +1: ρ(t, τ, v) = sup{ρ : ρ ∈ R(t, τ, v)},
t0 ≤ τ ≤ t, v ∈ V . This function is called a resolving function [10]. Due
to Pontryagin’s condition, the multivalued mapping R(t, τ, v) has a nonempty
closed image in its domain. Note also that if ξ(t) ∈ M , then R(t, τ, v) = [0,∞)
and, hence, ρ(t, τ, v) = ∞ for all t0 ≤ τ < t and v ∈ V .

Taking into account the properties of the parameters of the conflict-
controlled process (8), (9) and applying the characterization and inverse image
theorems [14], we can show that the multivalued mapping R(t, τ, v) is jointly
L × B-measurable [15] with respect to the variables τ , v, τ ∈ [t0, t], v ∈ V ; the
resolving function ρ(t, τ, v) is jointly L × B-measurable in the variables τ , v by
the theorem on the support function ([14]) for ξ(t) /∈ M .

Denote

T =
{

t ≥ t0 :
∫ t

t0

inf
v∈V

ρ(t, τ, v)dτ ≥ 1
}

. (13)

If for some t > 0 ξ(t) /∈ M , we assume the function inf
v∈V

ρ(t, τ, v) to be measurable

with respect to τ , τ ∈ [t0, t]. If it is not the case, then let us define the set T as
follows

T =
{

t ≥ t0 : inf
v(·)∈ΩV

∫ t

t0

ρ(t, τ, v(τ))dτ ≥ 1
}

,

where ΩV is the set of all measurable functions taking values in V .
Since the function ρ(t, τ, v) is L × B-measurable with respect to τ , v,

it is superpositionally measurable [14]. If ξ(t) ∈ M , then ρ(t, τ, v) = +∞ for
τ ∈ [t0, t] and in this case it is natural to set the value of the integral in (13)
to be equal +∞. Then the inequality in (13) is fulfilled by default. In the case
when the inequality in braces in (13) fails for all t > t0, we set T = ∅. Let
T ∈ T 6= ∅.

Condition 1. The set R(T, τ, v) is convex-valued for all τ ∈ [t0, T ],
v ∈ V .

Theorem 1. Let for the game problem (8), (9) Pontryagin’s Condition
hold true and the set M be convex. If there exists a finite number T , T ∈ T 6= ∅,
such that Condition 1 is fulfilled, then the trajectory of the process (8) can be
brought to the set (9) from the initial position z0 at the time instant T using the
control of the form (10).

P r o o f. Let v(τ), v : [t0, T ] → V , be an arbitrary measurable function.
We first consider the case when ξ(T ) /∈ M . Denote K = max{k ∈ N : τk < T},
ρ(T ) =

∫ T
0 infv∈V ρ(T, τ, v)dτ , and set

ρ∗(T, τ) =
1

ρ(T )
inf
v∈V

ρ(T, τ, v) .
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Since ρ(T ) ≥ 1 due to (13) and Condition 1 is fulfilled, the function ρ∗(T, τ),
0 ≤ ρ∗(T, τ) ≤ ρ(T, τ, v), τ ∈ [t0, T ], v ∈ V , is a measurable selection for each of
the set-valued mappings R(T, τ, v), v ∈ V , i.e. ρ∗(T, τ) ∈ R(T, τ, v), τ ∈ [t0, T ],
v ∈ V .

Consider the multivalued mapping

U(τ, v) = {u ∈ U : πΦ(T, τ)(u− v)− γ(T, τ) ∈ ρ∗(T, τ)[M − ξ(T )]}. (14)

Since the function ρ∗(T, τ) is measurable due to the assumptions made, M ∈
K(Rn), and the vector ξ(T ) is bounded, it follows that the mapping ρ∗(T, τ)[M−
ξ(T )] is measurable with respect to τ . Moreover, the left-hand side of the
inclusion in (14) is L × B-measurable with respect to (τ, v) and continuous in
u. This implies that the mapping U(τ, v) is L×B-measurable. Thus, according
the theorem on measurable selection it contains an L × B-measurable selection
u(τ, v), which, in its turn, is a superpositionally measurable function. Let us set
the first player’s control to be u(τ) = u(τ, v(τ)), τ ∈ [t0, T ].

In the case when ξ(T ) ∈ M(T ) we construct the first player’s control as
follows. Let us set ρ∗(T, τ) ≡ 0 in (14) and denote by U0(τ, v) the set-valued
mapping thus obtained from U(τ, v). Let us choose the first player’s control in
the form u0(τ) = u0(τ, v(τ)), τ ∈ [0, T ], where u0(τ, v) is a measurable selection
of the mapping U0(τ, v).

Let us show that in each case treated above the trajectory of the process
(8) hits the terminal set at the time instant T .

According to (11), we have

πz(T ) = πZ0(T )z0 +
K∑

j=1

πZj(T )aj +
∫ T

t0

πΦ(T, τ)[u(τ)− v(τ)]dτ. (15)

Consider the case ξ(T ) /∈ M . Let us add and subtract from the right-hand side
of (15) the vectors ∫ T

t0

γ(T, τ)dτ. (16)

Taking into account the control rule of the first player, we obtain from (15) the
following inclusion

πz(T ) ∈ ξ(T )
[
1−

∫ T

t0

ρ∗(T, τ)dτ

]
+

∫ T

t0

ρ∗(T, τ)Mdτ.

As M is a convex compact set, and ρ∗(T, τ) is a non-negative function and∫ T
t0

ρ∗(T, τ)dτ = 1, it follows that
∫ T
t0

ρ∗(T, τ)Mdτ = M ; hence πz(T ) ∈ M .
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Now assume ξ(T ) ∈ M . Adding and subtracting the vectors (16) from
the right-hand side of (15) and taking into account the first player’s control rule
we obtain πz(T ) = ξ(T ) ∈ M .

Example 1.
Consider a dynamic system whose evolution is described by the equations

D(α)
τk

z =u− v, t ∈ (τk, τk+1],

∆z
∣∣
t=τk

=ak,
(17)

where u ∈ aS, v ∈ S, S = {x ∈ Rn : ‖x‖ ≤ 1}, a > 1, t0 = 0, and τk = kh,
h > 0.

Suppose that the terminal set is M∗ = M = {0}.
Then π = I, Zj(t) ≡ I, and solution to (17) under initial condition (2)

is given by

z(t) = z0 +
k∑

j=1

aj +
∫ t

t0

Φ(t, τ)[u(τ)− v(τ)]dτ, t ∈ (τk, τk+1],

where

Φ(t, τ) = φ(t, τ)I =

{
1

(τj−τ)1−αΓ(α)
I, if τ ∈ [τj−1, τj), j ≤ k,

1
(t−τ)1−αΓ(α)

I, if τ ∈ [τk, t).

Hence, the multivalued mappings W (t, τ, v) and W (t, τ) are of the form

W (t, τ, v) = φ(t, τ)(aS − v),

W (t, τ) = φ(t, τ)aS
∗− φ(t, τ)S = φ(t, τ)(a− 1)S 6= ∅.

Thus, Pontryagin’s Condition holds true. Let us set γ(t, τ) ≡ 0. Then

ξ(t) = z0 +
k∑

j=1

aj ,

and the resolving function is given by

ρ(t, τ, v) = sup



ρ ≥ 0 : φ(t, τ)v − ρ


z0 +

k∑

j=1

aj


 ∈ φ(t, τ)aS



 .

Denote ξ = ξ(t) = z0 +
∑k

j=1 aj , then the resolving function can be found
analytically as the greatest positive root of the quadratic equation with respect
to ρ:

‖φ(t, τ)v − ρξ‖ = φ(t, τ)a.
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This yields that the resolving function is given by

ρ(t, τ, v) =
φ(t, τ)v · ξ +

√
(φ(t, τ)v · ξ)2 + ‖ξ‖2(φ(t, τ)2a2 − φ(t, τ)2‖v‖2)

‖ξ‖2
.

Then min‖v‖≤1 ρ(t, τ, v) = a−1
‖ξ‖ φ(t, τ) and the minimum is attained at v = − ξ

‖ξ‖ .
Since

∫ t

t0

min
‖v‖≤1

ρ(t, τ, v)dτ =
a− 1
‖ξ‖

(
khα

Γ(α + 1)
+

(t− kh)α

Γ(α + 1)

)
, t ∈ (τk, τk+1],

it follows that the time T of the game termination can be estimated as
⌊‖ξ‖Γ(α + 1)

(a− 1)hα

⌋
h ≤ T <

⌊‖ξ‖Γ(α + 1)
(a− 1)hα

⌋
h + h,

where b·c stands for the floor function.
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