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We consider a generalization of the classical Mellin transformation, called α-Mellin
transformation, with an arbitrary (fractional) parameter α > 0. Here we continue the presen-
tation from the paper [5], where we have introduced the definition of the α-Mellin transform
and some of its basic properties. Some examples of special cases are provided. Its operational
properties as Theorem 1, Theorem 2 (Convolution theorem) and Theorem 3 (α-Mellin trans-
form of fractional R-L derivatives) are presented, and the proofs can be found in [5]. Now we
prove some further properties of this integral transform, useful for its application to solving
some fractional order differential equations. An example of such application is proposed for
the fractional order Bessel differential equation of the form

tβ+1
0D

β+1
t y(t) + tβ

0D
β
t y(t) = f(t) , 0 < β < 1.
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1. Introduction

This paper deals with the theory and applications of the α-Mellin trans-
form. We derive the α-Mellin transform and its inverse from the complex Fourier
transformation. This is followed by several examples and basic operational prop-
erties of the α-Mellin transform. We discuss an application of the α-Mellin
transform for solving a fractional differential equation. Historically, Riemann
(1876) first recognized the Mellin transform in his famous memoir on the prime
numbers. Its explicit formulation was given by Cahen (1894). Almost simulta-
neously Mellin (1896, 1902) gave an elaborate discussion of the Mellin transform
and its inversion formula.
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2. Definition of the α-Mellin transform

In [2] Luchko, Martinez and Trujillo introduced the fractional Fourier
transformation (FRFT). A substitution x = et in the FRFT leads to a general-
ization of the Mellin transform, called further α-Mellin transform. The reason
for this name is explained by the following definitions.

Definition 2.1. Let 0 < α ≤ 1 and the variable be a complex number,
such that

p =

{
Rep− i|ω|1/α, ω ≤ 0
Rep + i|ω|1/α, ω > 0

.

The integral transform of the form

Mα{f(t); p} = M(psignω) =
∞∫

0

tp signω−1f(t)dt (1)

is called α-Mellin transform of the function f(t).

Definition 2.2. Let Reα > 0 and f ∈ C. Then for a ∈ R and x > a the
integral operator

aD
−α
x f(x) =

1
Γ(α)

x∫

a

(x− t)α−1f(t)dt (2)

is called a Riemann-Liouville fractional integral operator of order α. The symbol
aD

β
x with β > 0 is interpreted as a corresponding differintegral operator, called

Riemann-Lioville fractional derivative. For details and definitions of these op-
erators of Fractional Calculus (FC), see for example [7], [6].

3. Basic operational properties of the α-Mellin transforms

Like for the FRFT in [8], [6], [3] our interest in the α-Mellin transform
is based on the possibilities of its applications for solving certain ordinary dif-
ferential equations of fractional order.

Using Definition 2.1, we can prove some basic properties of the α-Mellin
transforms. The following operational properties hold:

Theorem 3.1. ([5]) If we denote Mα{f(t); p} = M(p signω), then:

a) Mα{f(at); p} = a−p signωM(p signω), a > 0 (Scaling Property);
b) Mα{taf(t); p} = M(p signω + a) (Shifting Property).

Theorem 3.2. ([5]) (Convolution Theorem)
If Mα{f(t); p} = M(psignω) and Mα{g(t); p} = G(psignω), then

Mα{f(t) ∗ g(t); p} = M(p signω)G(1− p signω),
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where

f(t) ∗ g(t) =
∞∫

0

f(tτ)g(τ)dτ.

Corollary 3.1. ([5]) If n > 0 and f(t) is a function such that

lim
t→∞ tsignωRep−1|f(t)| = 0 , lim

t→0
tsignωRep−1|f(t)| = 0 ,

then

Mα{f (n)(t); p} =
Γ(1− psignω + n)

Γ(1− psignω)
M(psignω − n).

Corollary 3.2. ([5]) If 0 < β < 1 and f(t) is a function such that

lim
t→∞ tsignωRep−1|f(t)| = 0 , lim

t→0
tsignωRep−1|f(t)| = 0 ,

then

Mα{0D
β
t f(t); p} =

Γ(1− p signω + β)
Γ(1− p signω)

M(p signω − β) ,

where 0D
β
t is the Riemann-Liouville fractional derivative of order β.

Theorem 3.3. If 0 < β < 1 and Mα{f(t); p} = M(psignω), then

Mα

{
n∑

k=0
akt

β+k
0D

β+k
t f(t); p

}

= M(p signω) Γ(1−p signω)

Γ(1−p signω−β)

n∑
k=0

(−1)kak

k−1∏
j=0

(p signω + β + j) ,

where 0D
β
t is the Riemann-Liouville fractional derivative operator of order β.

P r o o f. Under (1) and Theorem 3.1 (b),

Mα

{
n∑

k=0

akt
β+k

0D
β+k
t f(t); p

}
=

n∑

k=0

akMα

{
0D

β+k
t f(t); psignω + β + k

}
.

On the other hand, under Corollary 3.2,

n∑

k=0

akMα

{
0D

β+k
t f(t); psignω + β + k

}

=
n∑

k=0

ak
Γ(1− p signω)

Γ(1− p signω − β − k)
M(p signω)
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= M(p signω)Γ(1− psignω)
n∑

k=0

ak

Γ(1− p signω − β − k)
.

Applying the property of the Γ−function, we obtain

n∑

k=0

ak

Γ(1− p signω − β − k)
=

n∑

k=0

(−1)kak

k−1∏
j=0

(p signω + β + j)

Γ(1− p signω − β)

and this proves the theorem.

Corollary 3.3. If 0 < β < 1 and Mα{f(t); p} = M(psignω), then

Mα{tβ+1
0D

β+1
t f(t)+tβ0D

β
t f(t); p}=

(1−p signω−β)Γ(1−p signω)
Γ(1−p signω−β)

M(p signω) .

4. Generalized Bessel fractional equation

The fractional order differential equation of the form

tβ+1
0D

β+1
t y(t) + tβ0D

β
t y(t) = f(t) , 0 < β < 1, (3)

we call generalized Bessel fractional equation.

Theorem 4.1. The solution of the boundary value problem for the
Bessel fractional equation (3) with the conditions

y(0) = y′(0) = 0 , y(∞) = y′(∞) = 0, (4)

has the form

y(t) =
∞∫

0

f(tτ)g(τ)dτ, (5)

where
g(t) = M−1

α {G(psignω); t}.

P r o o f. Applying of the α-Mellin transform (1) to both sides of (3) and
condition (4), by Corollary 3.1 and Corollary 3.3, we obtain

(1− psignω − β)Γ(1− psignω)
Γ(1− psignω − β)

Y (psignω) = M(psignω) ,

where
Mα{y(t); p} = Y (psignω) , Mα{f(t); p} = M(psignω) .
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Rewriting the above equality in the following form:

Y (psignω) = M(psignω)G(1− psignω) ,

this leads to

G(psignω) =
Γ(psignω − β)

(psignω − β)Γ(psignω)
.

If the inverse α-Mellin ransform for G(psignω) is

M−1
α {G(psignω); t} = g(t) ,

then, according to Theorem 3.2, we get the solution in the form

y(t) =
∞∫

0

f(tτ)g(τ)dτ .

This proves the theorem.

The solution is of the form y(t) =
1∫
0

f(tτ)g(τ)dτ , if g(t) is zero for t > 1.
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