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We consider some families of 3-index generalizations of the classical Mittag-Leffler
functions and study the behaviour of these functions in domains of the complex plane. First,
some inequalities in the complex plane and on its compact subsets are obtained. We also
prove an asymptotic formula for the case of ”large” values of the indices of these functions.
Similar results have also been obtained by the author for the classical Bessel functions and their
Wright’s generalizations with 2, 3 and 4 parameters, as well as for the classical and multi-index
Mittag-Leffler functions.
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1. Introduction

The special functions, defined in the whole complex plane C by the power
series

Eα(z) =
∞∑

k=0

zk

Γ(αk + 1)
, Eα,β(z) =

∞∑

k=0

zk

Γ(αk + β)
, (1.1)

with α, β ∈ C, Re(α) > 0, are known as Mittag-Leffler (M-L) functions
([5], Section 18.1). The first was introduced by Mittag-Leffler (1902-1905) who
investigated some of its properties, while the latter appeared in a paper by
Wiman (1905). The main results in the classical theory of these functions are
presented in the handbook by Erdélyi et al. ([5], Section 18.1), further results
are given in the books by Dzherbashyan [3], [4]: asymptotic formulae in different
parts of the complex plane, distribution of the zeros, kernel functions of inverse
Borel type integral transforms, various relations and representations. Detailed
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accounts of the properties of these functions can be found in the contemporary
books of Kilbas et al. [7] and Podlubny [18], see also [8], [9], [10]. Recently
the interest to Mittag-Leffler functions and their generalizations has grown up
due to their applications in some evolution problems [2] and appearence in the
solutions of fractional order differential and integral equations.

Prabhakar [19] generalized (1.1) by introducing a 3-parameter function
Eγ

α, β of the form

Eγ
α, β(z) =

∞∑

k=0

(γ)k

Γ(αk + β)
zk

k!
, α, β, γ ∈ C, Re(α) > 0, (1.2)

where (γ)k is the Pochhammer symbol ([5], Section 2.1.1)

(γ)0 = 1, (γ)k = γ(γ + 1) . . . (γ + k − 1).

For γ = 1 this function coincides with Eα, β, while for γ = β = 1 with Eα:

E1
α, β(z) = Eα, β(z) E1

α, 1(z) = Eα(z).

In fact, Prabhakar introduced this function for positive γ, and in this
case it is an entire function of z of order ρ = 1/Re(α), as mentioned in [7] and
[11], and type σ = 1. Unfortunately, the author could not find a proof of this
fact in the literature.

Prabhakar studied some properties of the generalized 3-parametric Mittag-
Leffler function (1.2) and of an integral operator containing it as a kernel-
function, and applied the obtained results to prove the existence and uniqueness
of the solution of a corresponding integral equation. Further, some properties
of Eγ

α, β(z), including classical and fractional order differentiations and integra-
tions, are proved by Kilbas, Saigo and Saxena [6]. An integral operator with
such a kernel-function is also studied in the space L(a, b). The functions (1.2)
and series in them have been used recently to express solutions of the gener-
alized Langevin equation, by Sandev, Tomovski and Dubbeldam [21]. Another
type of 3-parameter Mittag-Leffler function (q-analogue of the M-L function) is
also considered, see for example in Rajkovic, Marinkovic and Stankovic [20].

In our previous papers ([16], [17]), we considered series in systems of
Mittag-Leffler functions and, resp. in [12] - [15], series in the multi-index (2m-
indices) analogues (in the sense of [8],[9],[10]) of the M-L functions and some of
their special cases, as representatives of the Special Functions of Fractional Cal-
culus ([10]). Properties of these functions are studied by many authors, among
them see for example, [1], [7], [8],[9], [18], [20], etc. We studied the convergence
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of such series in the complex plane C, and proved Cauchy-Hadamard, Abel and
Tauberian type theorems.

To be able to prove similar convergence theorems for series in the 3-
parametric Mittag-Leffler functions (1.2), we need first some inequalities in the
complex plane, on its compact subsets and asymptotic formulae for ”large”
values of indices of these functions, obtained as results of this paper.

2. Auxiliary statements

Consider now the generalized (3-parametric) Mittag-Leffler functions (1.2)
for indices of the kind β = n; n = 0, 1, 2, ... , namely:

Eγ
α, n(z) =

∞∑

k=0

(γ)k

Γ(αk + n)
zk

k!
, α, γ ∈ C, Re(α) > 0, n ∈ N0. (2.1)

Note 2.1. Given a number γ, suppose that some coefficients in (2.1)
equal zero, that is, there exists a number p ∈ N0, such that the representation
(2.1) can be written as follows:

Eγ
α, n(z) = zp

∞∑

k=p

(γ)k

Γ(αk + n)
zk−p

k!
. (2.2)

Note 2.2. In what follows, we will use the notations Z− (resp. N) for
the set of negative (resp. positive) integers and Z−0 = Z− ∪ {0}. Further, set

ak =
1

Γ(αk + n)
, bk = (γ)k , ck = akbk/k! , k = 0, 1, 2, . . . .

We consider three main cases.
Lemma 2.1. If γ ∈ C, but γ /∈ Z−0 , then

1. p = 0 for n ∈ N,
2. p = 1 for n = 0.

P r o o f. Obviously, in the first case, bk 6= 0 and αk + n are not non-
positive integers. Because of that ak 6= 0 and therefore ck 6= 0 for all the values
of k. In the second case, since only a0 equals zero, then c0 = 0 but ck 6= 0 for
all the natural values of k.

Note 2.3. Actually, in the other cases, the functions (2.1) reduce to
polynomials of power −γ, and denoting m = −γ, we can rewrite representation
(2.2) in the form:

Eγ
α, n(z) = zp

m∑

k=p

(γ)k

Γ(αk + n)
zk−p

k!
. (2.3)
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Lemma 2.2. If γ ∈ Z−, m = −γ, then (2.1) can be expressed by the
formula (2.3) with the following values of p:
1. p = 0 for n ∈ N,
2. p = 1 for n = 0.

P r o o f. The values of the numbers ak are the same as in the proof of
Lemma 1. Moreover,

bk = (−m)k = −m(−m + 1) . . . (−m + k − 1) = (−1)km(m− 1) . . . (m− k + 1),

then bk 6= 0 only for k ≤ m and because of that ck = 0 for all k > m and
therefore the values of p are the same as required.

Corollary. If γ ∈ Z−, m = −γ, then (2.3) can be written in the form:

E−m
α, n(z) = zp

m∑

k=p

(−1)k
(m

k

) zk−p

Γ(αk + n)
. (2.4)

with the corresponding values of p.
T h e p r o o f of (2.4) is evident according to Lemma 2.2 because

ck = akbk/k!.

Note 2.4. Let us mention that (−1)p
(

m
p

)
= (−m)p when p = 0 or

p = 1 and m ∈ N.
Lemma 2.3. If γ = 0, then:

1. E0
α, n(z) =

1
Γ(n)

for n ∈ N,

2. E0
α, n(z) = 0 for n = 0.

T h e p r o o f follows directly, taking in view that bk = 0 for all k ∈ N.

Note 2.5. Let us mention that if γ is non-positive integer, as it is seen
above, the functions (1.2) reduce to polynomials, but when γ /∈ Z−0 , they are
entire functions of z of order ρ = 1/Re(α) and type σ = 1 and this is not difficult
to verify.

The above lemmas and Note 2.4 show that the functions Eγ
α, n(z) can be

written in the following form
Eγ

α, n(z) =
(γ)p

Γ(αp + n)
zp

(
1 + θγ

α, n(z)
)

(2.5)

with

θγ
α, n(z) =

∞∑

k=p+1

(γ)k

(γ)p

Γ(αp + n)
Γ(αk + n)

zk−p

k!
for γ ∈ C \ Z−0 , (2.6)

and respectively, for γ = −m, m ∈ N,
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θ−m
α, n(z) =

m∑

k=p+1

(−m)k

(−m)p

Γ(αp + n)
Γ(αk + n)

zk−p

k!

=
m∑

k=p+1

(−1)k−p
(

m
k

)
(

m
p

) Γ(αp + n)
Γ(αk + n)

zk−p. (2.7)

Note 2.6. In the above representations (2.5)-(2.7), γ is different from
zero, and the parameter p is determined by the previous lemmas. More precisely,
p = 0 for all the natural values of n and p = 1 for n = 0.

3. Inequalities and asymptotic formulae

Our aim is to estimate the entire functions θγ
α, n(z). To this end we

transform the expressions in the equalities (2.6) and (2.7), to the following forms:

θγ
α, n(z) =

Γ(αp + n)
Γ(α(p + 1) + n)

∞∑

k=p+1

γn,k
(γ)k

(γ)p

zk−p

k!
, (3.1)

and respectively

θ−m
α, n(z) =

Γ(αp + n)
Γ(α(p + 1) + n)

m∑

k=p+1

(−1)k−p γn,k

(
m
k

)
(

m
p

) zk−p, (3.2)

with

γn,k =
Γ(α(p + 1) + n)

Γ(αk + n)
. (3.3)

Theorem 3.1. Let γ ∈ C \ Z−0 , then there exists an entire function τ
such that ∣∣θγ

α, n(z)
∣∣ ≤ |Γ(αp + n)|

|Γ(α(p + 1) + n)| τ(|z|; α, γ) (3.4)

for all the values of z ∈ C.
P r o o f. To find such a function τ and to prove the inequality (3.4), we

estimate the function (3.1) beginning with the values of (3.3). Since

γ0, k =
Γ(α(p + 1))

Γ(αk)
,

γn,k =
Γ(α(p + 1))

Γ(αk)
(α(p + 1))

(αk)
. . .

(α(p + 1) + n− 1)
(αk) + n− 1

for n ∈ N,

and due to the following inequality
|α(p + 1)|
|αk| · · · |α(p + 1) + n− 1|

|αk + n− 1| ≤ 1,
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we obtain that

|γn,k| ≤ |Γ(α(p + 1))|
|Γ(αk)| for all the possible n and k.

Finally, the proof of the theorem ends, by taking

τ(z; α, γ) =
∞∑

k=p+1

|Γ(α(p + 1))|
|Γ(αk)|

|(γ)k|
|(γ)p|

zk−p

k!
·

Theorem 3.2. Let γ ∈ Z− and m = −γ, then there exists an entire
function t such that for all z ∈ C:

∣∣θ−m
α, n(z)

∣∣ ≤ |Γ(αp + n)|
|Γ(α(p + 1) + n)| t(|z|;α, γ). (3.5)

P r o o f. Considering (3.2), following the evaluations in the proof of The-
orem 3.1 and denoting

t(z; α, γ) =
m∑

k=p+1

|Γ(α(p + 1))|
|Γ(αk)|

(
m
k

)
(

m
p

) zk−p,

we complete the proof.
Further, we prove an asymptotic formula for ”large” values of the indices

n.
Theorem 3.3. Let z, α, γ ∈ C, n ∈ N0, γ 6= 0, Re(α) > 0 and θγ

α, n be
given by the formulae (3.1)–(3.3). Then the generalized Mittag-Leffler functions
(2.1) satisfy the following asymptotic formulae

Eγ
α, n(z) =

(γ)p

Γ(αp + n)
zp

(
1 + θγ

α, n(z)
)

and θγ
α, n(z) → 0 as n →∞, (3.6)

with the corresponding p, depending on γ. Moreover, on the compact subsets of
the complex plane C, the convergence is uniform and

θγ
α, n(z) = O

(
1

nRe(α)

)
(n ∈ N). (3.7)

T h e p r o o f is evident, using formula (2.5), Theorems 3.1. and 3.2.
and Stirling’s formula.

Note 3.1. According to the asymptotic formula (3.6), it follows there
exists a natural number M such that the functions Eγ

α, n have not any zeros at
all for n > M , possibly except of zero.
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4. Conclusion

In conclusion, note that the case γ = 1 gives analogous results related
to the classical Mittag-Leffler functions (1.1). Additionally, if the parameters α
and β are positive, we obtain our previous results published in the papers [16]
and [17].
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