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Recently, various generalizations and deformations of the elementary functions were
introduced. Since a lot of natural phenomena have both discrete and continual aspects, defor-
mations which are able to express both of them are of particular interest. In this paper, we
consider the trigonometry induced by one parameter deformation of the exponential function
of two variables eh(x, y) = (1 + hx)y/h (h ∈ R \ {0}, x ∈ C \ {−1/h}, y ∈ R). In this
manner, we define deformed sine and cosine functions and analyze their various properties.
We give series expansions of these functions, formulas which have their similar counterparts in
the classical trigonometry, and interesting difference and differential properties.
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1. Preliminaries

Among a lot of deformations of the exponential function proposed re-
cently by many authors, we can emphasize Tsallis’s q–exponential function ([6],
[7])

ex
q = (1 + (1− q)x)1/(1−q) (q 6= 1, x ∈ R, 1 + (1− q)x > 0),

which is the ground of his formalism of statistical mechanics. In [4], a new
deformation of the exponential function of two variables was introduced with
the purpose to join both suitable difference and differential properties. So, for
h ∈ R \ {0}, the function (x, y) 7→ eh(x, y) is defined by

eh(x, y) = (1 + hx)y/h (x ∈ C \ {−1/h}, y ∈ R). (1)
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Since limh→0 eh(x, y) = exy, this function can be viewed as a one–parameter
deformation of the exponential function of two variables. If h = 1 − q (q 6= 1)
and y = 1, the function (1) becomes the Tsallis q–exponential function, i.e.,
e1−q(x, 1) = ex

q .
Notice that function (1) can be written in the form

eh(x, y) = e{x}h y, (2)

where the deformation

{x}h =
1
h

ln(1 + hx) (x ∈ C \ {−1/h}) (3)

is used.

Proposition 1.1 [4] For the function (x, y) 7→ eh(x, y) the following
holds:

eh(x, y) > 0 (x < −1/h for h < 0 or x > −1/h for h > 0),
eh(0, y) = eh(x, 0) = 1,

e−h(x, y) = eh(−x,−y) (x 6= 1/h), (4)
eh(x, y1 + y2) = eh(x, y1)eh(x, y2), (5)

eh(x1 ⊕h x2, y) = eh(x1, y)eh(x2, y), (6)
eh(x1 ªh x2, y) = eh(x1, y)eh(x2,−y), (7)

where

x1 ⊕h x2 = x1 + x2 + hx1x2, x1 ªh x2 =
x1 − x2

1 + hx2
(x2 6= −1/h). (8)

Notice that

x⊕h (−x) = −hx2, eh(x⊕h (−x), y) = eh(−hx2, y).

For the function (x, y) 7→ eh(x, y) the following representations hold:

eh(x, y) =
∞∑

n=0

1
n!

xny(n,h) =
∞∑

n=0

1
n!
{x}n

h yn (|hx| < 1), (9)

where the backward generalized integer powers of a real number are given by

z(0,h) = 1, z(n,h) = z(z − h)(z − 2h) · · · (z − (n− 1)h).
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Let us recall the h–difference operator of the first order:

∆z,hf(z) =
f(z + h)− f(z)

h
=

1
h

(Eh − I)f(z), (10)

where I is identity and Eh is shift–operator, and more general, the h–difference
operator of the order α > 0:

∆α
z,hf(z) =

1
hα

+∞∑

k=0

(−1)k

(
α

k

)
f(z + (α− k)h).

The following equalities are valid:

∆α
y,heh(x, y) = xαeh(x, y),

∂

∂y
eh(x, y) = {x}h eh(x, y). (11)

2. Deformed trigonometric functions:
Definitions and basic properties

In [1] a deformation of the trigonometric and hyperbolic functions in the
framework of the Tsallis exponentials is presented. Attending the deformation of
q–exponential function (1), we can define other deformed trigonometric functions
of two variables.

Let h ∈ R \ {0}. For x ∈ C \ {−i/h, i/h} and y ∈ R, we define the
functions (x, y) 7→ cosh(x, y) and (x, y) 7→ sinh(x, y) by

cosh(x, y) =
eh(ix, y) + eh(−ix, y)

2
, (12)

sinh(x, y) =
eh(ix, y)− eh(−ix, y)

2i
. (13)

The following limit behavior is evident:

lim
h→0

cosh(x, y) = cos(xy), lim
h→0

sinh(x, y) = sin(xy).

Here we give two analogues of the basic trigonometry identity.

Proposition 2.1. For x ∈ C \ {−i/h, i/h} and y ∈ R the following
equalities hold:

sin2
h(x, y) + cos2h(x, y) = eh(hx2, y),

sinh(x, y) sin−h(x, y) + cosh(x, y) cos−h(x, y) = 1.
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P r o o f. The first identity follows immediately from the definition:

sin2
h(x, y) + cos2h(x, y) = eh(ix, y)eh(−ix, y) = eh(ix⊕h (−ix), y)

= eh(hx2, y).

According to (4), we get the second one by varying the sign of the parameter h.

The deformed trigonometric functions satisfy some similar equalities as
the usual trigonometric functions.

Theorem 2.1. For x ∈ C \ {−i/h, i/h} and y1, y2 ∈ R the following
equalities hold:

• cosh(x, y1 ± y2) = cosh(x, y1) cosh(x, y2)∓ sinh(x, y1) sinh(x, y2)

• sinh(x, y1 ± y2) = sinh(x, y1) cosh(x, y2)± cosh(x, y1) sinh(x, y2)

• 2 sinh(x, y1) cosh(x, y2) = sinh(x, y1 + y2) + sinh(x, y1 − y2)

• 2 cosh(x, y1) cosh(x, y2) = cosh(x, y1 + y2) + cosh(x, y1 − y2)

• 2 sinh(x, y1) sinh(x, y2) = cosh(x, y1 + y2)− cosh(x, y1 − y2)

• sinh(x, y1)± sinh(x, y2) = 2 sinh(x, y1±y2

2 ) cosh(x, y1∓y2

2 )

• cosh(x, y1) + cosh(x, y2) = 2 cosh(x, y1+y2

2 ) cosh(x, y1−y2

2 )

• cosh(x, y1)− cosh(x, y2) = 2 sinh(x, y1+y2

2 ) sinh(x, y1−y2

2 ).

P r o o f. Here, we are giving proof of the first identity only. Other iden-
tities can be proved in similar manner. From the definition of the deformed
trigonometric functions we have

eh(ix, y) = cosh(x, y) + i sinh(x, y), eh(−ix, y) = cosh(x, y)− i sinh(x, y).

Using the previous two identities and equality (5), we obtain

cosh(x, y1 + y2) =
1
2
(eh(ix, y1)eh(ix, y2) + eh(−ix, y1)eh(−ix, y2))

=
1
2

(
(cosh(x, y1) + i sinh(x, y1))(cosh(x, y2) + i sinh(x, y2))

+(cosh(x, y1)− i sinh(x, y1))(cosh(x, y2)− i sinh(x, y2))
)

= cosh(x, y1) cosh(x, y2)− sinh(x, y1) sinh(x, y2).
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3. Difference and differential properties

In this section we consider the results of some operators on the deformed
trigonometric functions. First, we look for the difference operators.

Theorem 3.1. For α > 0 the following holds:

∆α
y,h cosh(x, y) = xα

(
cos

απ

2
cosh(x, y)− sin

απ

2
sinh(x, y)

)
,

∆α
y,h sinh(x, y) = xα

(
cos

απ

2
sinh(x, y) + sin

απ

2
cosh(x, y)

)
.

P r o o f. In view of the linearity of the operator ∆α
y,h and equality (11),

we have

∆α
y,h cosh(x, y) =

1
2
(∆α

y,heh(ix, y) + ∆α
y,heh(−ix, y))

=
1
2
((ix)αeh(ix, y) + (−ix)αeh(−ix, y))

=
xα

2
(ei απ

2 eh(ix, y) + e−i απ
2 eh(−ix, y)).

Using the fact that e±i απ
2 = cos(απ/2) ± i sin(απ/2), and transforming the

previous term, we get the first equality:

∆α
y,h cosh(x, y)

=
xα

2

(
cos

απ

2
(eh(ix, y) + eh(−ix, y)) + i sin

απ

2
(eh(ix, y)− eh(−ix, y))

)

= xα
(
cos

απ

2
cosh(x, y)− sin

απ

2
sinh(x, y)

)
.

The second equality can be proven in the same manner.

Taking α = 1 and α = 2 in the previous theorem, we get the difference
equations likewise the corresponding ones in the classical trigonometry.

Corollary 3.1. For the functions y 7→ cosh(x, y) and y 7→ sinh(x, y)
the following is valid:

∆y,h cosh(x, y) = −x sinh(x, y), ∆y,h sinh(x, y) = x cosh(x, y).

Moreover, both functions satisfy the following difference equation:

∆2
y,hf(y) + x2f(y) = 0.
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Remark 1. When h → 0, previous difference equation becomes

∂2

∂y2
f(y) + x2f(y) = 0,

whose particular solutions are functions y 7→ cosxy and y 7→ sinxy.

Let us consider how the differential operators act on the deformed trigono-
metric functions.

Lemma 3.1. For the functions x 7→ cosh(x, y) and x 7→ sinh(x, y) the
following equalities hold:

(
(1 + h2x2)

∂

∂x
− hxy

)
cosh(x, y) = −y sinh(x, y), (14)

(
(1 + h2x2)

∂

∂x
− hxy

)
sinh(x, y) = y cosh(x, y). (15)

P r o o f. Immediately from the definition of the function eh(x, y), we have

(1 + h2x2)
∂

∂x
eh(ix, y) = iy(1− ihx)eh(ix, y),

(1 + h2x2)
∂

∂x
eh(−ix, y) = −iy(1 + ihx)eh(−ix, y).

By summing the previous equalities we get

(1 + h2x2)
∂

∂x
cosh(x, y) =

iy

2
((1− ihx)eh(ix, y)− (1 + ihx)eh(−ix, y))

=
y

2

(
hx(eh(ix, y) + eh(−ix, y)) + i(eh(ix, y)− eh(−ix, y))

)

= y(hx cosh(x, y)− sinh(x, y)),

wherefrom follows equality (14). Equality (15) can be obtained by subtracting
the same equalities.

Theorem 3.2. The functions x 7→ cosh(x, y) and x 7→ sinh(x, y) satisfy
the following differential equation:

(
(1 + h2x2)

∂

∂x
− hxy

)2
f(x) + y2f(x) = 0. (16)

P r o o f. The statement follows when we apply Lemma 3.1 twice.
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Remark 2. Notice that the functions x 7→ cosh(x, y) and x 7→
sinh(x, y) have the same properties with respect to the generalized differen-
tial operator Dh =

(
(1 + h2x2) ∂

∂x − hxy
)

as the usual trigonometric functions
x 7→ cosxy and x 7→ sinxy with respect to ∂/∂x. When h → 0, the previous
equation becomes

∂2

∂x2
f(x) + y2f(x) = 0,

whose solutions are x 7→ cosxy and x 7→ sinxy.

At last, we give one more differential property of the introduced functions.

Theorem 3.3. For the functions (x, y) 7→ cosh(x, y) and (x, y) 7→
sinh(x, y) the following equalities hold:

∂

∂x
cosh(x, y) = −y sinh(x, y − h),

∂

∂x
sinh(x, y) = y cosh(x, y − h).

Moreover, both functions satisfy the equation

∂2

∂x2
f(x, y) + y(2,h)f(x, y − 2h) = 0.

P r o o f. From the definition of eh(x, y) we have

∂

∂x
eh(±ix, y) = ±iyeh(±ix, y − h).

By addition and subtraction these equalities we get the first partial derivatives
of the functions cosh(x, y) and sinh(x, y). The equation of the second order
follows by double applying the operator ∂/∂x on both functions.

Remark 3. When h → 0, the previous equation becomes

∂2

∂x2
f(x, y) + y2f(x, y) = 0.

.

4. Series expansions and graphics interpretations

Having in mind the expansions of the function eh(x, y) and various de-
formations of variables, we get several expansions of the deformed trigonometric
functions.
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Theorem 4.1. For x ∈ C (|hx| < 1) and y ∈ R, the following is valid:

cosh(x, y) =
∞∑

n=0

(−1)n

(2n)!
x2ny(2n,h), sinh(x, y) =

∞∑

n=0

(−1)n

(2n + 1)!
x2n+1y(2n+1,h).

P r o o f. The expansions follow immediately from the equalities (12) and
(13) and the first expansion in (9).

In the sequel we deal with real variables, i.e. with x, y ∈ R. At first, let
us propose a new deformation of the variable x ∈ R in the following way:

x 7→ 〈x〉h =
1
h

arctanhx. (17)

Using this deformation, the connection between the deformed and the classical
trigonometric functions can be established, as it was done for the exponential
functions in (2).

Lemma 4.1. For x, y ∈ R the following holds:

cosh(x, y) = eh(hx2, y/2) cos(〈x〉hy), (18)
sinh(x, y) = eh(hx2, y/2) sin(〈x〉hy). (19)

P r o o f. Because of 1± ihx =
√

1 + h2x2e±i arctan hx, and (3), we have

{±ix}h =
1
h

ln(1± ihx) =
1
2h

ln(1 + h2x2)± i
1
h

arctanhx

=
1
2
{hx2}h ± i〈x〉h.

Hence, according to (2), we have

eh(±ix, y) = e{±ix}hy = e
y
2
{hx2}h±i〈x〉hy

= eh(hx2, y/2)
(
cos(〈x〉hy)± i sin(〈x〉hy)

)
,

wherefrom we get the required equalities.

Theorem 4.2. For the functions (x, y) 7→ cosh(x, y) and (x, y) 7→
sinh(x, y) the following expansions are valid:

cosh(x, y) =
∞∑

n=0

Cn,h(x) yn, sinh(x, y) =
∞∑

n=1

Sn,h(x) yn,
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where

C2k,h(x) =
(−1)k

(2k)!

k∑

j=0

(−1)j

22j

(
2k

2j

)
{hx2}2j

h 〈x〉2k−2j
h ,

C2k+1,h(x) =
(−1)k

(2k + 1)!

k∑

j=0

(−1)j

22j+1

(
2k + 1
2j + 1

)
{hx2}2j+1

h 〈x〉2k−2j
h ,

S2k,h(x) =
(−1)k

(2k)!

k∑

j=1

(−1)j

22j−1

(
2k

2j − 1

)
{hx2}2j−1

h 〈x〉2k−2j+1
h ,

S2k+1,h(x) =
(−1)k

(2k + 1)!

k∑

j=0

(−1)j

22j

(
2k + 1

2j

)
{hx2}2j

h 〈x〉2k+1−2j
h .

P r o o f. Using the well–known expansions of the trigonometric functions,
equalities (18) and (19) become

cosh(x, y) = eh(hx2, y/2)
∞∑

n=0

(−1)n

(2n)!
〈x〉2n

h y2n,

sinh(x, y) = eh(hx2, y/2)
∞∑

n=0

(−1)n

(2n + 1)!
〈x〉2n+1

h y2n+1.

If we use the second expansion in (9) and arrange the sums, we get the required
expressions of the coefficients.

In the previous theorem, the coefficients in the expansions of the de-
formed trigonometric functions have a convolution form. However, if we take
the sums in the closed forms, we can recognize the deformed trigonometric func-
tions in coefficients again.

Theorem 4.3. The coefficients in the expansions

cosh(x, y) =
∞∑

n=0

Cn,h(x) yn, sinh(x, y) =
∞∑

n=1

Sn,h(x) yn,

can be expressed in the following form:

C2k,h(x) =
(−1)k

(2k)!
〈x〉2k

h cosh

(
{hx2}h

2h〈x〉h , 2kh

)
,

C2k+1,h(x) =
(−1)k

(2k + 1)!
〈x〉2k+1

h sinh

(
{hx2}h

2h〈x〉h , (2k + 1)h

)
,
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S2k,h(x) =
(−1)k

(2k)!
〈x〉2k

h sinh

(
{hx2}h

2h〈x〉h , 2kh

)
,

S2k+1,h(x) =
(−1)k

(2k + 1)!
〈x〉2k+1

h cosh

(
{hx2}h

2h〈x〉h , (2k + 1)h

)
.

P r o o f. For getting the closed forms of the coefficients we need the well–
known equalities [3]

[n/2]∑

j=0

(
n

2j

)
tj =

(1+
√

t)n + (1−√t)n

2
,

[(n−1)/2]∑

j=0

(
n

2j + 1

)
tj =

(1+
√

t)n − (1−√t)n

2
√

t
.

Taking t = −{hx2}2
h

4h〈x〉2h
in the first expression in Theorem 4.2, the sum becomes

2k∑

j=0

(
2k

2j

)
(−t2)j =

1
2

(
(1 + it)2k + (1− it)2k

)
= (1 + t2)k cos(2k arctan t)

Having in mind the deformation of variable (17), the definition of deformed
exponential function (1) and Lemma 4.1, we obtain the coefficient C2k. The
rest of coefficients can be obtained in similar way.

Finally, we will give a few graphics interpretations of the deformed trigono-
metric functions. We will consider the function cosh(x, y) only, because the
behavior of sinh(x, y) is similar.

The functions x 7→ cosh(x, 1) and y 7→ cosh(1, y) for several positive and
negative values of parameter h are shown in Figure 1 and Figure 2, respectively.
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Fig. 1: Deformed trigonometric functions with y = 1
for h = 0.01, h = 0.02, h = 0.05 and h = −0.01, h = −0.02, h = −0.05



The Deformed Trigonometric Functions . . . 157

-40 -20 20 40
y

-4

-2

2

4

coshH1,yL

-40 -20 20 40
y

-4

-2

2

4

coshH1,yL

Fig. 2: Deformed trigonometric functions with x = 1
for h = 0.01, h = 0.02, h = 0.05 and h = −0.01, h = −0.02, h = −0.05,

-2 -1 1 2
coshHx,1L

-1

1

2

sinhHx,1L

-1.0 -0.5 0.5 1.0
coshH1,yL

-1.0

-0.5

0.5

1.0

sinhH1,yL

Fig. 3: Parametric representation
{cosh(x, 1), sinh(x, 1)} and {cosh(1, y), sinh(1, y)}

for h = 0.01 (continuous curve) and h = −0.01 (dashed curve)

At last, the function (x, y) 7→ cosh(x, y) for positive and negative h is
shown in Figure 4.
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Fig. 4: Deformed trigonometric functions for h = 0.01 and h = −0.01
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