Proof Complexity of Resolution over linear inequalities

Stefan Dantchev

Computer Science, Durham University

- Propositional Proof Complexity
 - Within Computational Complexity
 - Proof Systems and Contradictions
- Resolution over linear inequalities with integral coefficients
 - Resolution as computational procedure
 - Stabbing Planes
 - Lower bounds for SP
- 3 Conclusion and open problems

- Propositional Proof Complexity
 - Within Computational Complexity
 - Proof Systems and Contradictions
- Resolution over linear inequalities with integral coefficients
 - Resolution as computational procedure
 - Stabbing Planes
 - Lower bounds for SP
- 3 Conclusion and open problems

- \mathcal{P} is the class of decision problems that are efficiently solvable (i.e. in polynomial time).
- \bullet \mathcal{NP} is the class of decision problems whose yes-instances are efficiently verifiable.

\mathcal{P} vs $\mathcal{N}\mathcal{P}$ and Circuit Complexity

- P is the class of decision problems that are efficiently solvable (i.e. in polynomial time).
- \bullet \mathcal{NP} is the class of decision problems whose yes-instances are efficiently verifiable.
- Generic example of an \mathcal{NP} -complete problem is SAT(isfiability): given a boolean formula in cnf, is there a satisfying assignment? (Cook, 1971)

\mathcal{P} vs $\mathcal{N}\mathcal{P}$ and Circuit Complexity

- \mathcal{P} is the class of decision problems that are efficiently solvable (i.e. in polynomial time).
- \bullet \mathcal{NP} is the class of decision problems whose yes-instances are efficiently verifiable.
- Generic example of an \mathcal{NP} -complete problem is SAT(isfiability): given a boolean formula in cnf, is there a satisfying assignment? (Cook, 1971)
- $m{\cdot}$ \mathcal{P} vs $\mathcal{N}\mathcal{P}$ question asks if a solution that has an efficiently checkable proof of existence can be easily found.

\mathcal{P} vs \mathcal{NP} and Circuit Complexity

- P is the class of decision problems that are efficiently solvable (i.e. in polynomial time).
- \bullet \mathcal{NP} is the class of decision problems whose yes-instances are efficiently verifiable.
- Generic example of an \mathcal{NP} -complete problem is SAT(isfiability): given a boolean formula in cnf, is there a satisfying assignment? (Cook, 1971)
- $m{\mathcal{P}}$ vs \mathcal{NP} question asks if a solution that has an efficiently checkable proof of existence can be easily found.
- To separate \mathcal{P} and \mathcal{NP} , one only needs to prove a super-polynomial lower bound for a (unrestricted) boolean circuit that solves SAT (or any other \mathcal{NP} -problem).

\mathcal{P} vs $\mathcal{N}\mathcal{P}$ and Circuit Complexity

- P is the class of decision problems that are efficiently solvable (i.e. in polynomial time).
- \bullet \mathcal{NP} is the class of decision problems whose yes-instances are efficiently verifiable.
- Generic example of an \mathcal{NP} -complete problem is SAT(isfiability): given a boolean formula in cnf, is there a satisfying assignment? (Cook, 1971)
- $m{\cdot}$ \mathcal{P} vs $\mathcal{N}\mathcal{P}$ question asks if a solution that has an efficiently checkable proof of existence can be easily found.
- To separate \mathcal{P} and \mathcal{NP} , one only needs to prove a super-polynomial lower bound for a (unrestricted) boolean circuit that solves SAT (or any other \mathcal{NP} -problem).
- What about UNSAT, i.e. $co-\mathcal{NP}$?

within Computational Complexity

Proof Complexity and \mathcal{NP} vs co $-\mathcal{NP}$

UNSAT: Given a boolean formula in cnf, is it a contradiction?

- UNSAT: Given a boolean formula in cnf, is it a contradiction?
- If all yes-instances of UNSAT have efficiently checkable proofs, $\mathcal{NP} = \text{co-}\mathcal{NP}$.

- UNSAT: Given a boolean formula in cnf, is it a contradiction?
- If all yes-instances of UNSAT have efficiently checkable proofs, $\mathcal{NP} = \text{co} - \mathcal{NP}$.
- ullet On the other hand, $\mathcal{NP} \neq co \mathcal{NP}$ trivially implies $\mathcal{P} \neq \mathcal{NP}$.

- UNSAT: Given a boolean formula in cnf, is it a contradiction?
- If all yes-instances of UNSAT have efficiently checkable proofs, $\mathcal{NP} = \text{co-}\mathcal{NP}$.
- On the other hand, $\mathcal{NP} \neq \text{co-}\mathcal{NP}$ trivially implies $\mathcal{P} \neq \mathcal{NP}$.
- A proof system is an efficiently computable function that takes a proof and returns the tautology being proven. (Cook and Reckhow, 1979)

- UNSAT: Given a boolean formula in cnf, is it a contradiction?
- If all yes-instances of UNSAT have efficiently checkable proofs, $\mathcal{NP} = \text{co-}\mathcal{NP}$.
- On the other hand, $\mathcal{NP} \neq \text{co-}\mathcal{NP}$ trivially implies $\mathcal{P} \neq \mathcal{NP}$.
- A proof system is an efficiently computable function that takes a proof and returns the tautology being proven. (Cook and Reckhow, 1979)
- A polynomially-bounded proof system, i.e. one that allows for a polynomial-size proof of any tautology, exists iff $\mathcal{NP} = \mathbf{co} \mathcal{NP}$.

- UNSAT: Given a boolean formula in cnf, is it a contradiction?
- If all yes-instances of UNSAT have efficiently checkable proofs, $\mathcal{NP} = \text{co-}\mathcal{NP}$.
- On the other hand, $\mathcal{NP} \neq \text{co-}\mathcal{NP}$ trivially implies $\mathcal{P} \neq \mathcal{NP}$.
- A proof system is an efficiently computable function that takes a proof and returns the tautology being proven. (Cook and Reckhow, 1979)
- A polynomially-bounded proof system, i.e. one that allows for a polynomial-size proof of any tautology, exists iff $\mathcal{NP} = \text{co-}\mathcal{NP}$.
- Research programme: prove lower bounds for stronger and stronger proof systems.

- Propositional Proof Complexity
 - Within Computational Complexity
 - Proof Systems and Contradictions
- Resolution over linear inequalities with integral coefficients
 - Resolution as computational procedure
 - Stabbing Planes
 - Lower bounds for SP
- 3 Conclusion and open problems

"Natural" proof systems: Resolution and bd-Frege

- Resolution
 - operates on a formula in cnf, taken as a set of clauses;
 - has a single derivation rule: $\frac{A \lor v \quad \neg v \lor B}{A \lor B}$;
 - derives the empty clause iff the original cnf is a contradiction.
- Bounded-depth Frege
 - is a "text-book" Hilbert-style proof system;
 - normally over the basis ∨, ∧, ¬;
 - and where each proof line is a constant-depth formula;
 - e.g. derivation rules $\frac{\varphi \lor \psi \quad \neg \psi \lor \pi}{\varphi \lor \pi}$, $\frac{\varphi \lor \psi \quad \pi \lor \xi}{\varphi \lor \pi \lor (\psi \land \xi)}$ and axioms $\frac{\varphi \lor \neg \varphi}{\varphi \lor \pi \lor (\psi \land \xi)}$ for any bd-formulae φ , π , ψ , ξ .
- Many others.

Proof Systems and Contradictions

"Natural" contradictions: Pigeon-Hole Principle and Ordering Principle

Pigeon-Hole Principle PHP_n^m with m pigeons and n holes, m>n, has

- variables p_{ij} , which stand for pigeon i going into hole j, and
- clauses

$$\forall_{j=1}^{n} p_{ij}$$
 $1 \le i \le m$
 $\neg p_{ij} \lor \neg p_{i'j}$ $1 \le i < i' \le m, \ 1 \le j \le n$

Ordering Principle OP_n says there is transitive, anti-reflexive relation on n items with no least point.

"Natural" contradictions: Tseitin contradictions

Given an undirected graph G = (V, E) with constants in $a_u \in \mathbb{Z}_2$, $u \in V$, and such that $\bigoplus_{u \in V} a_u = 1$, introduce

- variables x_e for an edge $e \in E$, and
- clauses stating that the variables at each vertex sum up to the constant at the vertex:

$$\bigoplus_{v:\{u,v\}\in E} x_{\{u,v\}} = a_u \qquad u\in V.$$

0000000

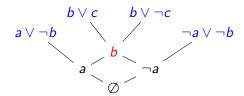
Some known lower bounds

- lower bound for Tseitin in regular Resolution. (Tseitin, 1968)
- exponential lower bound for PHP_nⁿ⁺¹ in Resolution. (Haken, 1985)
- sub-exponential for PHP_nⁿ⁺¹ in bd-Frege. (Ajtai, 1988, 1994), (Pitassi, Beame and Impagliazzo, 1993), (Krajicek, Pudlak and Woods, 1995)
- complexity gap for tree-like resolution: a propositional contradiction that is expressible as a first-order formula is hard if and only if the formula has an infinite model. (Riis, 2001)

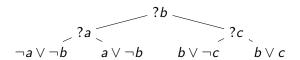
- - Within Computational Complexity
 - Proof Systems and Contradictions
- Resolution over linear inequalities with integral coefficients
 - Resolution as computational procedure
 - Stabbing Planes
 - Lower bounds for SP
- Conclusion and open problems

Resolution

Resolution refutation of the clause set $a \lor \neg b$ $b \lor c$ $b \lor \neg c$ $\neg a \lor \neg b$



Propositional Proof Complexity



- Queries values of a variable and backtracks (true to the left, false to the right).
- A branch is closed as soon as the current partial assignment violates a clause.

- Propositional Proof Complexity
 - Within Computational Complexity
 - Proof Systems and Contradictions
- Resolution over linear inequalities with integral coefficients
 - Resolution as computational procedure
 - Stabbing Planes
 - Lower bounds for SP
- Conclusion and open problems

D(P)LL on linear inequalities a.k.a. **Stabbing Planes**

D(P)LL on set of linear inequalities

$$a + (1 - b) \ge 1$$
 $b + c \ge 1$
 $b + (1 - c) \ge 1$
 $(1 - a) + (1 - b) \ge 1$

- Queries values of linear inequalities with integral coefficients and backtracks ($\alpha^T x < \beta$ to the left, $\alpha^T x > \beta + 1$ to the right).
- A branch is closed as soon as the current set of inequalities together with the original clause set is an inconsistent linear program.
- The slab, $\beta < \alpha^T x < \beta + 1$, kills fractional points.

- Propositional Proof Complexity
 - Within Computational Complexity
 - Proof Systems and Contradictions
- Resolution over linear inequalities with integral coefficients
 - Resolution as computational procedure
 - Stabbing Planes
 - Lower bounds for SP
- 3 Conclusion and open problems

General Method

- Create a "big" set of admissible fractional points, i.e. that are consistent with the given set of inequalities. Each such point must be killed by some slab.
- A query of "small" support can kill many fractional points. We erase such a query by setting all variables in the support to integral values.
- Only queries of "big" support are left, but they have "small" slabs (that can't kill many fractional points).

fraction of the admissible points.

Example

Simple PHP:

$$\sum_{j=1}^{n} x_j \ge 2$$

$$x_i + x_j \le 1, 1 \le i < j \le n.$$

An admissible point is a vector of zeros and halves that contains at least four halves.

In a query of support not greater than \sqrt{n} all variables could be set to zero. If there are more than $\sqrt[3]{n}$ such queries, we are done. A query of support greater that \sqrt{n} can't kill more than $\sqrt[c]{\sqrt[4]{n}}$

Therefore, there must be at least $\sqrt[5]{n}$ queries in any SP refutation of the simple PHP.

• The method applies to the (standard) PHP and gives an optimal, logarithmic, depth lower bound.

- The method applies to the (standard) PHP and gives an optimal, logarithmic, depth lower bound.
- It also applies to the OP, but the logarithmic depth lower bound is probably not optimal. More generally, we don't know how to go beyond logarithmic.

- The method applies to the (standard) PHP and gives an optimal, logarithmic, depth lower bound.
- It also applies to the OP, but the logarithmic depth lower bound is probably not optimal. More generally, we don't know how to go beyond logarithmic.
- Does it apply to any first-order principle that has an infinite model?

- The method applies to the (standard) PHP and gives an optimal, logarithmic, depth lower bound.
- It also applies to the OP, but the logarithmic depth lower bound is probably not optimal. More generally, we don't know how to go beyond logarithmic.
- Does it apply to any first-order principle that has an infinite model?
- How do we get more than logarithmic depth lower bound!?