Permutation groups and permutation patterns

Erkko Lehtonen

Centro de Matemática e Aplicações Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia (online) 5 November 2021

This work is funded by national funds through the FCT – Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications).

Permutations

We consider permutations of $\{1, ..., n\}$, for some $n \in \mathbb{N}_+$.

A **permutation** of rank n is a bijective map on $\{1, \ldots, n\}$.

We may consider a permutation $\pi \in S_n$ as a word of length n:

$$\pi=\pi_1\pi_2\ldots\pi_n,$$

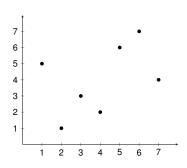
where $\pi_i = \pi(i)$.

$$\sigma = \sigma_1 \dots \sigma_\ell \in S_\ell$$
 $\tau = \tau_1 \dots \tau_\ell \in S_n$ $(\ell \le n)$

 σ is a **pattern** of τ (or τ **involves** σ), in symbols, $\sigma \leq \tau$, if there exists a scattered subword $\tau_{i_1} \dots \tau_{i_\ell}$ of τ ($i_1 < i_2 < \dots < i_\ell$) that is order-isomorphic to $\sigma_1 \dots \sigma_\ell$.

Example

5132674 5 26 4 3 14 2

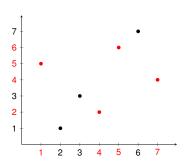


$$\sigma = \sigma_1 \dots \sigma_\ell \in S_\ell$$
 $\tau = \tau_1 \dots \tau_\ell \in S_n$ $(\ell \le n)$

 σ is a **pattern** of τ (or τ **involves** σ), in symbols, $\sigma \leq \tau$, if there exists a scattered subword $\tau_{i_1} \dots \tau_{i_\ell}$ of τ ($i_1 < i_2 < \dots < i_\ell$) that is order-isomorphic to $\sigma_1 \dots \sigma_\ell$.

Example

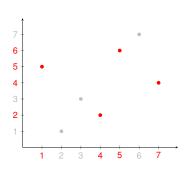
5132674 5 26 4 3 14 2 3142 ≤ 51326



$$\sigma = \sigma_1 \dots \sigma_\ell \in S_\ell$$
 $\tau = \tau_1 \dots \tau_\ell \in S_n$ $(\ell \le n)$

 σ is a **pattern** of τ (or τ **involves** σ), in symbols, $\sigma \leq \tau$, if there exists a scattered subword $\tau_{i_1} \dots \tau_{i_\ell}$ of τ ($i_1 < i_2 < \dots < i_\ell$) that is order-isomorphic to $\sigma_1 \dots \sigma_\ell$.

Example



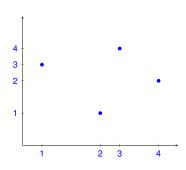
$$\sigma = \sigma_1 \dots \sigma_\ell \in S_\ell$$
 $\tau = \tau_1 \dots \tau_\ell \in S_n$ $(\ell \le n)$

 σ is a **pattern** of τ (or τ **involves** σ), in symbols, $\sigma \leq \tau$, if there exists a scattered subword $\tau_{i_1} \dots \tau_{i_\ell}$ of τ ($i_1 < i_2 < \dots < i_\ell$) that is order-isomorphic to $\sigma_1 \dots \sigma_\ell$.

Example

5132674 5 26 4 3 14 2

 $3142 \le 5132674$

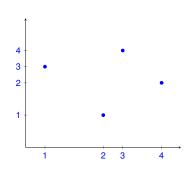


$$\sigma = \sigma_1 \dots \sigma_\ell \in S_\ell$$
 $\tau = \tau_1 \dots \tau_\ell \in S_n$ $(\ell \le n)$

 σ is a **pattern** of τ (or τ **involves** σ), in symbols, $\sigma \leq \tau$, if there exists a scattered subword $\tau_{i_1} \dots \tau_{i_\ell}$ of τ ($i_1 < i_2 < \dots < i_\ell$) that is order-isomorphic to $\sigma_1 \dots \sigma_\ell$.

Example

5132674 $5 \quad 26 \quad 4$ $3 \quad 14 \quad 2$ $3142 \le 5132674$

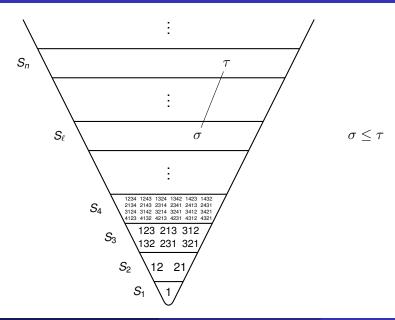


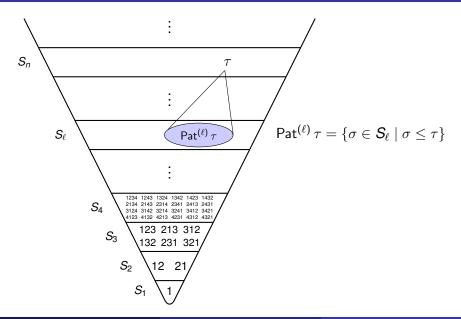
$$\sigma = \sigma_1 \dots \sigma_\ell \in S_\ell$$
 $\tau = \tau_1 \dots \tau_\ell \in S_n$ $(\ell \le n)$

 σ is a **pattern** of τ (or τ **involves** σ), in symbols, $\sigma \leq \tau$, if there exists a scattered subword $\tau_{i_1} \dots \tau_{i_\ell}$ of τ ($i_1 < i_2 < \dots < i_\ell$) that is order-isomorphic to $\sigma_1 \dots \sigma_\ell$.

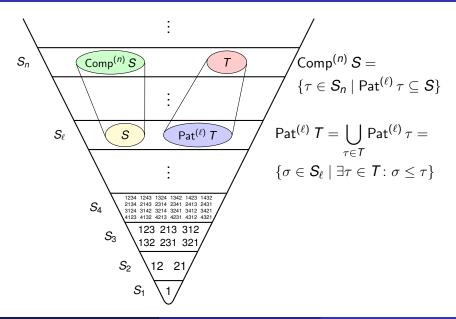
 τ avoids σ if $\sigma \nleq \tau$.

The pattern involvement relation \leq is a partial order on the set $\mathbb{P} := \bigcup_{n \geq 1} S_n$ of all finite permutations. Downward closed subsets of \mathbb{P} under \leq are called **permutation classes**.









Galois connection

The operators $\mathsf{Pat}^{(\ell)}$ and $\mathsf{Comp}^{(n)}$ constitute a monotone Galois connection between $\mathcal{P}(S_\ell)$ and $\mathcal{P}(S_n)$.

This is in fact the monotone Galois connection induced by the pattern avoidance relation $\not\leq$ between S_{ℓ} and S_n .

$$S \subseteq S_{\ell}, \ T \subseteq S_{n} \ (\ell \le n)$$

$$\mathsf{Comp}^{(n)} \ S := \{ \tau \in S_{n} \mid \mathsf{Pat}^{(\ell)} \ \tau \subseteq S \} = \{ \tau \in S_{n} \mid \forall \sigma \in S_{\ell} \setminus S \colon \sigma \nleq \tau \},$$

$$\mathsf{Pat}^{(\ell)} \ T := \bigcup_{\tau \in T} \mathsf{Pat}^{(\ell)} \ \tau \qquad = S_{\ell} \setminus \{ \sigma \in S_{\ell} \mid \forall \tau \in T \colon \sigma \nleq \tau \}.$$

Closures and kernels:

$$\begin{split} \mathsf{Pat}^{(\ell)}\,\mathsf{Comp}^{(n)}\,S \subseteq \mathcal{S}, \\ \mathcal{T} \subseteq \mathsf{Comp}^{(n)}\,\mathsf{Pat}^{(\ell)}\,\mathcal{T}, \\ \mathsf{Comp}^{(n)}\,S = \mathsf{Comp}^{(n)}\,\mathsf{Pat}^{(\ell)}\,\mathsf{Comp}^{(n)}\,\mathcal{S}, \\ \mathsf{Pat}^{(\ell)}\,\mathcal{T} = \mathsf{Pat}^{(\ell)}\,\mathsf{Comp}^{(n)}\,\mathsf{Pat}^{(\ell)}\,\mathcal{T}. \end{split}$$

Galois connection

The operators $Comp^{(n)}$, $Pat^{(\ell)}$ have a "transitive" property.

For
$$\ell \leq m \leq n$$
, $S \subseteq S_{\ell}$, $T \subseteq S_n$:

$$\mathsf{Comp}^{(n)}\,\mathsf{Comp}^{(m)}\,S = \mathsf{Comp}^{(n)}\,S$$
 $\mathsf{Pat}^{(\ell)}\,\mathsf{Pat}^{(m)}\,T = \mathsf{Pat}^{(\ell)}\,T$

Formalism

For any $I \in \mathcal{P}_{\ell}(n)$, let $h_I : [\ell] \to I$ be the unique order-isomorphism from $([\ell], \leq)$ to (I, \leq) .

For $\tau \in S_n$, define $\tau_I : [\ell] \to [\ell]$ as

$$\tau_I := h_{\tau(I)}^{-1} \circ \tau \circ h_I.$$

The patterns of τ are precisely the permutations of the form τ_I for some $\emptyset \neq I \subseteq [n]$.

Crucial lemma

Lemma

For any $\pi, \tau \in S_n$ and $\emptyset \neq I \subseteq [n]$, we have $(\pi \tau)_I = \pi_{\tau(I)} \circ \tau_I$.

Proof.

$$(\pi\tau)_I = h_{(\pi\circ\tau)(I)}^{-1} \circ \pi \circ \tau \circ h_I = h_{\pi(\tau(I))}^{-1} \circ \pi \circ h_{\tau(I)} \circ h_{\tau(I)}^{-1} \circ \tau \circ h_I = \pi_{\tau(I)} \circ \tau_I. \quad \Box$$

Groups and $Comp^{(n)} S$

Proposition

If S is a subgroup of S_{ℓ} , then $\mathsf{Comp}^{(n)} S$ is a subgroup of S_n .

Sketch of a proof.

Assume that $S \leq S_{\ell}$. Let $\pi, \tau \in \mathsf{Comp}^{(n)} S$. Thus $\mathsf{Pat}^{(\ell)} \pi, \mathsf{Pat}^{(\ell)} \tau \subseteq S$. It holds that

$$\begin{split} \operatorname{\mathsf{Pat}}^{(\ell)} \pi^{-1} &= (\operatorname{\mathsf{Pat}}^{(\ell)} \pi)^{-1} := \{ \sigma^{-1} \mid \sigma \in \operatorname{\mathsf{Pat}}^{(\ell)} \pi \}, \\ \operatorname{\mathsf{Pat}}^{(\ell)} \pi \tau &\subseteq (\operatorname{\mathsf{Pat}}^{(\ell)} \pi) (\operatorname{\mathsf{Pat}}^{(\ell)} \tau) = \{ \sigma \sigma' \mid \sigma \in \operatorname{\mathsf{Pat}}^{(\ell)} \pi, \, \sigma' \in \operatorname{\mathsf{Pat}}^{(\ell)} \tau \}. \end{split}$$

Since S is a group, it contains the inverses and products of its members. Consequently, π^{-1} and $\pi\tau$ also belong to $\mathsf{Comp}^{(n)} S$. Thus $\mathsf{Comp}^{(n)} S$ is a group.

The converse of the Proposition does not hold.

There even exist subgroups $H \leq S_n$ which are of the form $\mathsf{Comp}^{(n)} S$ for some $S \subseteq S_\ell$ but there is no subgroup $G \leq S_\ell$ such that $H = \mathsf{Comp}^{(n)} G$.

However, for $\ell \leq 3$ and $n \geq \ell$, it holds that for every $S \subseteq S_{\ell}$, $\mathsf{Comp}^{(n)} S$ is a subgroup of S_n if and only if S is a subgroup of S_{ℓ} .

Recall the Galois connection Inv–Aut between permutations of $\{1, ..., n\}$ and relations on $\{1, ..., n\}$:

Proposition

Let $H \leq S_n$ and assume that $H = \mathsf{Comp}^{(n)} S$ for some subset $S \subseteq S_\ell$. Then H is determined by its ℓ -ary invariant relations:

$$H = \text{Aut Inv } H = \text{Aut Inv}^{(\ell)} H.$$

In particular, the ℓ -orbits are enough to characterize the group:

$$H = \operatorname{Aut}\{(h_I)^H \mid I \in \mathcal{P}_{\ell}(n)\}.$$

 $\mathbf{a}^H := \{ \sigma(\mathbf{a}) \mid \sigma \in H \} = \{ (\sigma(a_1), \dots, \sigma(a_\ell)) \mid \sigma \in H \}$ The order-isomorphism $h_I \colon [\ell] \to I$ is an ℓ -tuple: $h_I \in [n]_{\neq}^{\ell}$. $(h_I)^H$ is called an ℓ -orbit of H.

Theorem

Let $H \leq S_n$, and consider the ℓ -orbits $\rho_I := (h_I)^H$ for all $I \in \mathcal{P}_{\ell}(n)$. Then H is of the form $H = \mathsf{Comp}^{(n)} S$ for some $S \subseteq S_{\ell}$ if and only if

- ② the ρ_I satisfy the following property: for every $x \in [n]^n_{\neq}$ we have

$$(\forall I \in \mathcal{P}_{\ell}(n) \,\exists J \in \mathcal{P}_{\ell}(n) \colon \operatorname{red}(x[I]) \in \operatorname{red}(\rho_{J})) \\ \Longrightarrow \forall I \in \mathcal{P}_{\ell}(n) \colon x[I] \in \rho_{I}.$$

Theorem

Let $H \leq S_n$. Then H is of the form $H = \mathsf{Comp}^{(n)} G$ for some $G \leq S_\ell$ if and only if $H = \mathsf{Aut} \ \rho$ for some k-ary $(k \leq \ell)$ irreflexive relation ρ satisfying $\rho = \rho^{\vee \wedge}$.

$$\rho^{\vee} := \{ h_{I}^{-1}(\mathbf{r}) \mid \mathbf{r} \in \rho, \operatorname{Im} \mathbf{r} \subseteq I \in \mathcal{P}_{\ell}(\mathbf{n}) \},$$

$$\sigma^{\wedge} := \{ h_{J}(\mathbf{s}) \mid \mathbf{s} \in \sigma, J \in \mathcal{P}_{\ell}(\mathbf{n}) \}.$$

Groups and Comp⁽ⁿ⁾ S, continued

Further details on the Galois connection $\mathsf{Comp}^{(n)}-\mathsf{Pat}^{(\ell)}$ and the related Galois connection between the subgroup lattices of S_ℓ and S_n in

E. LEHTONEN, R. PÖSCHEL, Permutation groups, pattern involvement, and Galois connections, *Acta Sci. Math. (Szeged)* **83** (2017) 355–375.

M. D. ATKINSON, R. BEALS,

Permuting mechanisms and closed classes of permutations, in: C. S. Calude, M. J. Dinneen (eds.), *Combinatorics, Computation & Logic,* Proc. DMTCS '99 and CATS '99 (Auckland), Aust. Comput. Sci. Commun., 21, No. 3, Springer, Singapore, 1999, pp. 117–127.

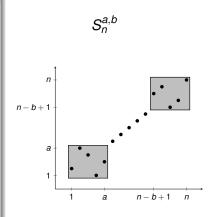
M. D. ATKINSON, R. BEALS, Permutation involvement and groups, Q. J. Math. **52** (2001) 415–421.

Theorem (Atkinson, Beals)

- lacktriangledown the groups $S_n^{a,b}$ for some fixed $a,b\in\mathbb{N}_+$,
- the natural cyclic groups Z_n,
- \odot the full symmetric groups S_n ,
- the groups $\langle G_n, \delta_n \rangle$, where $(G_n)_{n \in \mathbb{N}}$ is one of the above families (with a = b in (1)).

Theorem (Atkinson, Beals)

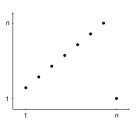
- the groups $S_n^{a,b}$ for some fixed $a, b \in \mathbb{N}_+$,
- the natural cyclic groups Z_n,
- the full symmetric groups S_n,
- the groups $\langle G_n, \delta_n \rangle$, where $(G_n)_{n \in \mathbb{N}}$ is one of the above families (with a = b in (1)).



Theorem (Atkinson, Beals)

- the groups $S_n^{a,b}$ for some fixed $a, b \in \mathbb{N}_+$,
- the natural cyclic groups Z_n,
- the full symmetric groups S_n,
- the groups $\langle G_n, \delta_n \rangle$, where $(G_n)_{n \in \mathbb{N}}$ is one of the above families (with a = b in (1)).

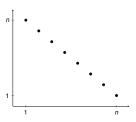
$$\zeta_n = (1 \ 2 \ \cdots n)$$



Theorem (Atkinson, Beals)

- lacktriangledown the groups $S_n^{a,b}$ for some fixed $a,b\in\mathbb{N}_+$,
- the natural cyclic groups Z_n,
- \odot the full symmetric groups S_n ,
- the groups $\langle G_n, \delta_n \rangle$, where $(G_n)_{n \in \mathbb{N}}$ is one of the above families (with a = b in (1)).

$$\delta_n = n(n-1)\dots 1$$

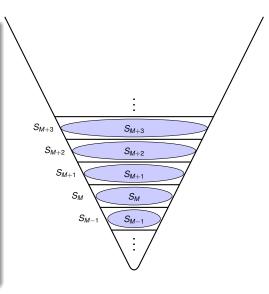


Theorem (Atkinson, Beals)

Let C be a permutation class in which every level $C^{(n)}$ is a transitive group. Then, with the exception of at most two levels, one of the following holds.

- For some $M \in \mathbb{N}$, $C^{(n)} = S_n$ for $1 \le n \le M$, and $C^{(n)} = D_n$ for n > M.
- § For some $M, N \in \mathbb{N}$ with $M \le N, C^{(n)} = S_n$ for $1 \le n \le M, C^{(n)} = D_n$ for $M + 1 \le n \le N$, and $C^{(n)} = Z_n$ for n > N.

- (i) $C^{(M+1)} = A_{M+1}$ and $C^{(M+2)}$ is an anomalous group that is neither D_{M+2} nor Z_{M+2} , or
- (ii) $C^{(M+1)}$ is a proper overgroup of Z_{M+1} but is not D_{M+1} .

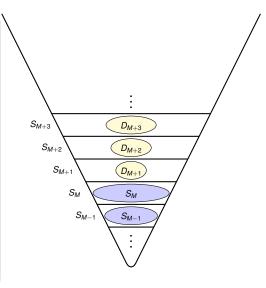


Theorem (Atkinson, Beals)

Let C be a permutation class in which every level $C^{(n)}$ is a transitive group. Then, with the exception of at most two levels, one of the following holds.

- For some $M \in \mathbb{N}$, $C^{(n)} = S_n$ for $1 \le n \le M$, and $C^{(n)} = D_n$ for n > M.
- (8) For some $M, N \in \mathbb{N}$ with $M \le N, C^{(n)} = S_n$ for $1 \le n \le M, C^{(n)} = D_n$ for M + 1 < n < N, and $C^{(n)} = Z_n$ for n > N.

- (i) $C^{(M+1)} = A_{M+1}$ and $C^{(M+2)}$ is an anomalous group that is neither D_{M+2} nor Z_{M+2} , or
- (ii) $C^{(M+1)}$ is a proper overgroup of Z_{M+1} but is not D_{M+1} .

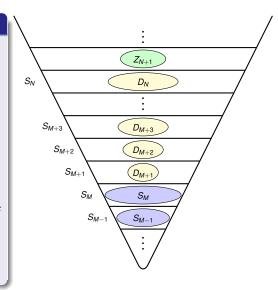


Theorem (Atkinson, Beals)

Let C be a permutation class in which every level $C^{(n)}$ is a transitive group. Then, with the exception of at most two levels, one of the following holds.

- For some $M \in \mathbb{N}$, $C^{(n)} = S_n$ for $1 \le n \le M$, and $C^{(n)} = D_n$ for n > M.
- [3] For some $M, N \in \mathbb{N}$ with $M \le N, C^{(n)} = S_n$ for $1 \le n \le M, C^{(n)} = D_n$ for M + 1 < n < N, and $C^{(n)} = Z_n$ for n > N.

- (i) $C^{(M+1)} = A_{M+1}$ and $C^{(M+2)}$ is an anomalous group that is neither D_{M+2} nor Z_{M+2} , or
- (ii) $C^{(M+1)}$ is a proper overgroup of Z_{M+1} but is not D_{M+1} .

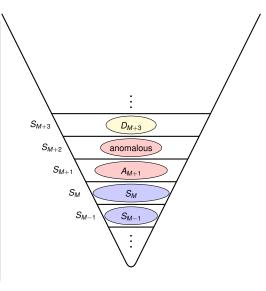


Theorem (Atkinson, Beals)

Let C be a permutation class in which every level $C^{(n)}$ is a transitive group. Then, with the exception of at most two levels, one of the following holds.

- For some $M \in \mathbb{N}$, $C^{(n)} = S_n$ for $1 \le n \le M$, and $C^{(n)} = D_n$ for n > M.
- (8) For some $M, N \in \mathbb{N}$ with $M \le N, C^{(n)} = S_n$ for $1 \le n \le M, C^{(n)} = D_n$ for M + 1 < n < N, and $C^{(n)} = Z_n$ for n > N.

- (i) $C^{(M+1)} = A_{M+1}$ and $C^{(M+2)}$ is an anomalous group that is neither D_{M+2} nor Z_{M+2} , or
- (ii) $C^{(M+1)}$ is a proper overgroup of Z_{M+1} but is not D_{M+1} .

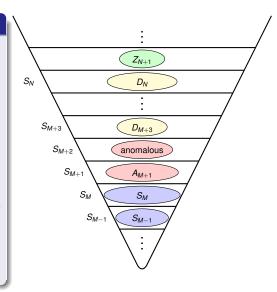


Theorem (Atkinson, Beals)

Let C be a permutation class in which every level $C^{(n)}$ is a transitive group. Then, with the exception of at most two levels, one of the following holds.

- For some $M \in \mathbb{N}$, $C^{(n)} = S_n$ for $1 \le n \le M$, and $C^{(n)} = D_n$ for n > M.
- (8) For some $M, N \in \mathbb{N}$ with $M \le N, C^{(n)} = S_n$ for $1 \le n \le M, C^{(n)} = D_n$ for M + 1 < n < N, and $C^{(n)} = Z_n$ for n > N.

- (i) $C^{(M+1)} = A_{M+1}$ and $C^{(M+2)}$ is an anomalous group that is neither D_{M+2} nor Z_{M+2} , or
- (ii) $C^{(M+1)}$ is a proper overgroup of Z_{M+1} but is not D_{M+1} .

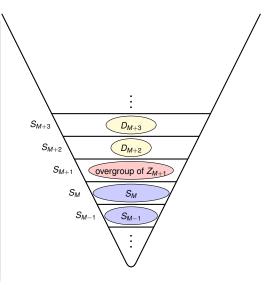


Theorem (Atkinson, Beals)

Let C be a permutation class in which every level $C^{(n)}$ is a transitive group. Then, with the exception of at most two levels, one of the following holds.

- \mathbb{O} $C^{(n)} = S_n \text{ for all } n \in \mathbb{N}_+.$
- Por some $M \in \mathbb{N}$, $C^{(n)} = S_n$ for $1 \le n \le M$, and $C^{(n)} = D_n$ for n > M.
- (8) For some $M, N \in \mathbb{N}$ with $M \le N, C^{(n)} = S_n$ for $1 \le n \le M, C^{(n)} = D_n$ for M + 1 < n < N, and $C^{(n)} = Z_n$ for n > N.

- (i) $C^{(M+1)} = A_{M+1}$ and $C^{(M+2)}$ is an anomalous group that is neither D_{M+2} nor Z_{M+2} , or
- (ii) $C^{(M+1)}$ is a proper overgroup of Z_{M+1} but is not D_{M+1} .



Theorem (Atkinson, Beals)

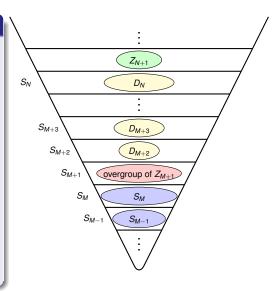
Let C be a permutation class in which every level $C^{(n)}$ is a transitive group. Then, with the exception of at most two levels, one of the following holds.

Por some
$$M \in \mathbb{N}$$
, $C^{(n)} = S_n$ for $1 \le n \le M$, and $C^{(n)} = D_n$ for $n > M$.

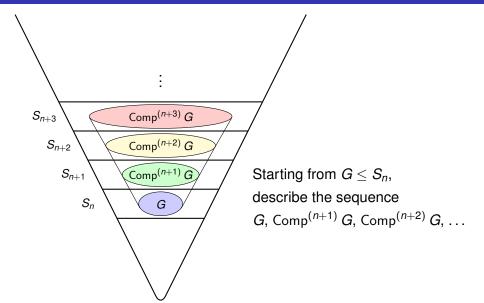
(a) For some
$$M, N \in \mathbb{N}$$
 with $M \le N, C^{(n)} = S_n$ for $1 \le n \le M, C^{(n)} = D_n$ for $M + 1 \le n \le N$, and $C^{(n)} = Z_n$ for $n > N$.

(i)
$$C^{(M+1)} = A_{M+1}$$
 and $C^{(M+2)}$ is an anomalous group that is neither D_{M+2} nor Z_{M+2} , or

(ii)
$$C^{(M+1)}$$
 is a proper overgroup of Z_{M+1} but is not D_{M+1} .



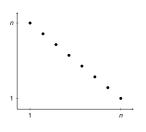
Permutation groups arising from pattern avoidance



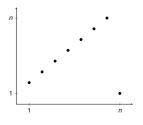
Roadmap

- S_n , $\langle \delta_n \rangle$, trivial
- A_n
- $\zeta_n \in G$ and $A_n \nleq G$
- $\zeta_n \notin G$:
 - intransitive
 - transitive:
 - imprimitive
 - primitive

$$\delta_n = n(n-1)\dots 1$$



$$\zeta_n = (1 \ 2 \ \cdots n)$$



Simple observations

Lemma

Let $n, m \in \mathbb{N}_+$ with $n \leq m$. Let $G \leq S_n$. Then $\delta_m \in \mathsf{Comp}^{(m)}$ G if and only if $\delta_n \in G$.

Lemma

Let $G \leq S_n$.

- The following statements are equivalent.
 - \bigcirc $Z_n \leq G$.

 - **(a)** Comp⁽ⁿ⁺¹⁾ *G* contains a permutation π ∈ $Z_{n+1} \setminus \{\iota_{n+1}\}$.
- The following statements are equivalent.
 - \bigcirc $D_n \leq G$.

 - Comp⁽ⁿ⁺¹⁾ G contains a permutation π ∈ $D_{n+1} \setminus (Z_{n+1} \cup \{\delta_{n+1}\})$.

Symmetric, trivial, ...

Theorem

The following statements hold for all $n \in \mathbb{N}_+$.

- (a) $Comp^{(n+1)} S_n = S_{n+1}$.
- **1** If $n \ge 2$, then $Comp^{(n+1)} \{ \iota_n \} = \{ \iota_{n+1} \}$.
- o If $n \geq 3$, then $\mathsf{Comp}^{(n+1)} \langle \delta_n \rangle = \langle \delta_{n+1} \rangle$.

Notation

Let Π be a partition of [n].

$$S_{\Pi} := \{ \pi \in S_n \mid \forall B \in \Pi \colon \pi(B) = B \}$$

Alternating groups

 \mathcal{C}_n – partition of [n] into odd and even numbers $S_{\mathcal{C}_n}$ – permutations preserving blocks of \mathcal{C}_n $W_{\mathcal{C}_n}$ – permutations interchanging blocks of \mathcal{C}_n A_n – even permutations O_n – odd permutations $\Xi_n := (S_{\mathcal{C}_n} \cap A_n) \cup (W_{\mathcal{C}_n} \cap O_n)$

Theorem

$$\mathsf{Comp}^{(n+1)} A_n = \Xi_{n+1}$$

$$\mathsf{Comp}^{(n+2)}\, A_n = \begin{cases} \langle \delta_{n+2} \rangle, & \textit{if } n \equiv 0 \pmod{4}, \\ D_{n+2}, & \textit{if } n \equiv 1 \pmod{4}, \\ \{\iota_{n+2}\}, & \textit{if } n \equiv 2 \pmod{4}, \\ Z_{n+2}, & \textit{if } n \equiv 3 \pmod{4}. \end{cases}$$

Groups containing the natural cycle

Theorem

Let $G \leq S_n$, and assume that G contains the natural cycle ζ_n .

- **1** If $D_n \leq G$ and $G \notin \{S_n, A_n\}$, then $Comp^{(n+1)} G = D_{n+1}$.
- If $D_n \nleq G$, then $Comp^{(n+1)} G = Z_{n+1}$.

Let $G \leq S_n$ be an intransitive group.

Let Orb G be the set of orbits of G.

Then $G \leq S_{\operatorname{Orb} G}$.

Moreover, Orb G is the finest partition Π such that $G \leq S_{\Pi}$.

Let Π be a partition of [n].

Define the partition Π' of [n+1] as follows.

Let I_{Π} be the coarsest interval partition that refines Π .

$$I_{\Pi}^{1} := \{B + 1 \mid B \in I_{\Pi}, 1 \notin B\} \cup \{((1/I_{\Pi}) + 1) \cup \{1\}\}$$

$$I_{\Pi}^{n+1} := \{B \mid B \in I_{\Pi}, n \notin B\} \cup \{n/I_{\Pi} \cup \{n+1\}\}$$

$$\Pi' := I_{\Pi}^{1} \wedge I_{\Pi}^{n+1}$$

Example

```
\Pi = \{\{1, 2, 3, 7, 8, 9, 10\},\
       {4, 5, 6, 12, 13, 14},
       {11}}
I_{\Pi} = \{\{1, 2, 3\},
       {4, 5, 6},
       \{7, 8, 9, 10\},\
       \{11\},\
       {12, 13, 14}}
\Pi' = \{\{1, 2, 3\},\
       {4}, {5, 6},
        {7}, {8, 9, 10},
        {11},
       {12}, {13, 14, 15}}
```

Theorem

Let Π be a partition of [n].

- ① If $\delta_n \notin S_{\Pi}$, then $Comp^{(n+1)} S_{\Pi} = S_{\Pi'}$.
- If $\delta_n \in S_{\Pi}$, then $\mathsf{Comp}^{(n+1)} S_{\Pi} = S_{\Pi'} \cup \delta_{n+1} S_{\Pi'} = \langle S_{\Pi'}, \delta_{n+1} \rangle$; moreover, $\Pi' = \delta_{n+1}(\Pi')$.

Theorem

Let Π be a partition of [n].

- \bullet Π' is an interval partition with no consecutive non-trivial blocks.
- If Π is an interval partition with no consecutive non-trivial blocks and $\Pi = \delta_n(\Pi)$, then $\mathsf{Comp}^{(n+1)} \langle S_\Pi, \delta_n \rangle = \langle S_{\Pi'}, \delta_{n+1} \rangle$; moreover, $\Pi' = \delta_{n+1}(\Pi')$.

Theorem

Let $G \leq S_n$ be an intransitive group, and let $\Pi := \text{Orb } G$. Let a and b be the largest numbers α and β , respectively, such that $S_n^{\alpha,\beta} \leq G$. Then for all $\ell \geq M_{a,b}(\Pi)$, it holds that $\mathsf{Comp}^{(n+\ell)} G = S_{n+\ell}^{a,b}$ or $\mathsf{Comp}^{(n+\ell)} G = \langle S_{n+\ell}^{a,b}, \delta_{n+\ell} \rangle$.

$$\langle -\eta + \ell \rangle$$

$$M(\Pi) := \max(\{|B| : B \in I_{\Pi}^-\} \cup \{1\})$$

 $M_{a,b}(\Pi) := \max(M(\Pi), |1/I_{\Pi}| - a + 1, |n/I_{\Pi}| - b + 1)$

Notation

Let Π be a partition of [n].

Aut
$$\Pi := \{ \pi \in S_n \mid \forall B \in \Pi \colon \pi(B) \in \Pi \}$$

Imprimitive groups

Theorem

Let Π be a partition of [n] with no trivial blocks. Then

$$\mathsf{Comp}^{(n+1)}\,\mathsf{Aut}\,\Pi = \begin{cases} \langle \mathcal{S}_{\Pi'}, \mathcal{E}_{\Pi} \rangle, & \text{if } \delta_n \notin \mathsf{Aut}\,\Pi, \\ \langle \mathcal{S}_{\Pi'}, \mathcal{E}_{\Pi}, \delta_{n+1} \rangle, & \text{if } \delta_n \in \mathsf{Aut}\,\Pi, \end{cases}$$

where E_{Π} is the set of permutations satisfying the following conditions:

- If $[1, \ell] \propto \Pi$ for some ℓ with $1 < \ell < n$, then $\nu_{\ell}^{(n+1)} \in E_{\Pi}$.
- If $[m, n] \propto \Pi$ for some m with 1 < m < n, then $\lambda_{n-m+1}^{(n+1)} \in E_{\Pi}$.
- If $[1, n] \propto \Pi$, then $\zeta_{n+1} \in E_{\Pi}$.
- E_{Π} does not contain any other elements than the ones implied by the previous conditions.

Primitive groups

Theorem

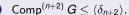
Assume that $G \leq S_n$ is a primitive group such that $\zeta_n \notin G$ and $A_n \nleq G$.

① ②
$$n = 6$$

G	$Comp^{(n+1)}G$		
⟨(1 2 3 4), (3 4 5 6)⟩	{1234567, 2154376, 6734512, 7654321}		
((1 2 3 4), (2 3 4 5 6))	{1234567, 1276543, 1543276, 1567234}		
⟨(1 2 3 4 5), (3 4 5 6)⟩	{1234567, 2165437, 4561237, 5432167}		
((1 2 3 4 5), (1 3 4)(2 5 6))	$\langle u_5^{(7)} angle$		
$\langle (2\ 3\ 4\ 5\ 6), (1\ 2\ 5)(3\ 4\ 6) \rangle$	$\langle \lambda_5^{(7)} angle$		

G	$Comp^{(n+1)} G$	G	$Comp^{(n+1)} \mathcal{G}$
$D_{[1,n-1]} \leq G$ $D_{[1,n-2]} \leq G$	$ \langle \nu_{n-1}^{(n+1)} \rangle \\ \langle \nu_{n-2}^{(n+1)} \rangle $	$D_{[2,n]} \leq G$ $D_{[3,n]} \leq G$	$\begin{array}{c} \langle \lambda_{n-1}^{(n+1)} \rangle \\ \langle \lambda_{n-2}^{(n+1)} \rangle \end{array}$

Otherwise $Comp^{(n+1)} G \leq \langle \delta_{n+1} \rangle$.



In a nutshell

Corollary

Let $G \leq S_n$ and let m be the smallest number i such that $Comp^{(n+i)}$ G belongs to one of the stable families of groups.

- If G is intransitive, then $m \le n 1$.
- ② If G is imprimitive and $\zeta_n \notin G$, then $m \le p$, where p is the largest proper divisor of n.
- **3** Otherwise $m \le 2$.

Literature

M. D. ATKINSON, R. BEALS,

Permuting mechanisms and closed classes of permutations,

in: C. S. Calude, M. J. Dinneen (eds.), *Combinatorics, Computation & Logic,* Proc. DMTCS '99 and CATS '99 (Auckland), Aust. Comput. Sci. Commun., 21, No. 3, Springer, Singapore, 1999, pp. 117–127.

M. D. ATKINSON, R. BEALS, Permutation involvement and groups, *Q. J. Math.* **52** (2001) 415–421.

E. LEHTONEN, R. PÖSCHEL, Permutation groups, pattern involvement, and Galois connections, *Acta Sci. Math. (Szeged)* **83** (2017) 355–375.

E. LEHTONEN,
Permutation groups arising from pattern involvement, *J. Algebraic Combin.* **52** (2020) 251–298.

The end

Thank you for your attention.