Jose Brox

Prime rings

identities

Herstein's theory

1 Olymornianzing

Evample

Generalizations

Identities in prime rings

Jose Brox

Centre for Mathematics University of Coimbra

INSTITUTE OF MATHEMATICS AND INFORMATICS

BULGARIAN ACADEMY OF SCIENCES

19/02/21

Jose Bro

Prime ring

theory

FOIYHOIHIAHZIIIg

Example

Generalizations

Structure of the talk

- First part: I will introduce prime rings and show how some identities are usually simplified with a method which requires some ingenuity
- ► **Second part**: I will explain a new method for simplifying identities, based on polynomials, which is systematic

Jose Brox

. .

Identities

Herstein's theory

Polynomializing

Evample

Example

Generalizations

Prime rings: generalizing domains

▶ Commutative case: R integral domain if, for $a, b \in R$,

$$ab = 0$$
 implies $a = 0$ or $b = 0$

E.g.: \mathbb{Z} , \mathbb{Q} , any field F, $F[X_1, \ldots, X_n]$

▶ Noncommutative case: *R* **prime** if, for *I*, *J* ideals of *R*,

$$IJ = 0$$
 implies $I = 0$ or $J = 0$

E.g.: $\mathbb{M}_n(F)$, any simple ring, $F\langle X_1, \ldots, X_n \rangle$

► The **center** of a prime unital ring is an integral domain

Jose Brox

Identitie

Herstein's theory

Polynomializinį

E.

Ceneralization

Prime rings: generalizing domains

- ► Prime rings *R* are a good generalization of integral domains *D*
- D has a field of fractions

$$Q_D:=D(D^*)^{-1} \ (e.g.Q_{\mathbb{Z}}=\mathbb{Q})$$

R has a (Martindale) ring of quotients Q(R) with a "similar" construction

- ▶ The center of Q(R) is a field C, the extended centroid
- $ightharpoonup \operatorname{char}(Q_D), \operatorname{char}(R) = \operatorname{char}(\mathcal{C})$

Jose Brox

ime rings

Identitie

Herstein's theory

Polynomializing

Evample

Generalizations

Prime ring tools: extended centroid

- ▶ Informally we see the elements of $\mathcal C$ as **scalars** for R
- ▶ Formally we consider $\hat{R} := CR + C$ inside Q(R)
- ▶ We have $\lambda x = x\lambda$ for all $\lambda \in \mathcal{C}, x \in R$
- ightharpoonup R is not in general an algebra over \mathcal{C} , but \hat{R} is
- $ightharpoonup \hat{R}$ is a prime ring with extended centroid ${\mathcal C}$
- ▶ We consider $R = \hat{R}$ without loss of generality
- ▶ Hence we have $Z(R) = \mathcal{C}$, a **field**

Jose Brox

Identities

Herstein's theory

Polynomializing

Generalizations

Prime ring tools: multiplication algebra

▶ For $a \in R$, define the multiplication maps L_a , R_a

$$L_a(x) := ax, R_a(x) := xa, x \in R$$

- ▶ L_a , $R_a \in \text{End}_{\mathcal{C}}(R)$ are linear endomorphisms of R
- ▶ The multiplication algebra M(R) is the unital algebra inside End_C(R) generated by L_a , R_a for all $a \in R$

$$M(R) := \langle L_a, R_a \mid a \in R \rangle \leq \operatorname{End}_{\mathbb{C}}(R)$$

▶ $M(R) \cong R \otimes_{\mathcal{C}} R^{op}$ as \mathcal{C} -algebras via

$$L_aR_b\mapsto a\otimes b$$

Jose Brox

rime ringe

Identities

Herstein's theory

Polynomializing

Evample

Lample

Generalizations

Prime rings: identities

▶ Commutative case: R integral domain if, for $a, b \in R$,

$$ab = 0$$
 implies $a = 0$ or $b = 0$

► Characterization by elements: *R* is prime iff

$$aRb = 0$$
 implies $a = 0$ or $b = 0$

Proof: aRb = 0 implies Id(a)Id(b) = 0IJ = 0 implies aRb = 0 for all $a \in I$, $b \in J$

As an identity:

$$axb = 0$$
 for all $x \in R$ implies $a = 0$ or $b = 0$

Jose Bro

ime rings

Identities

Herstein' theory

Polynomializing

Example

Generalizations

Prime rings: identities with more variables

▶ If *R* is prime then

$$aRbRc = 0$$
 implies $a = 0$ or $b = 0$ or $c = 0$

Proof:

- ▶ Either bRc = 0, implying b = 0 or c = 0,
- ▶ or is $d \in R$ with $bdc \neq 0$; then aR(bdc) = 0 implies a = 0
- As an identity:

$$igl(a_0oldsymbol{x_1}a_1oldsymbol{x_2}a_2\cdotsoldsymbol{x_n}a_n=0$$
 for all $x_i\in R$ implies some $a_i=0$

Jose Brox

Prime rings: identities with more monomials

Identities

Herstein's theory

Polynomializing

Example

Generalization

▶ What about an identity with two terms, like

$$axb + cxd = 0$$
 for all $x \in R$?

Answer: If $b \neq 0$ then $a = \lambda c$ for some $\lambda \in \mathcal{C}$

More in general:

Lemma (Martindale 1969)

Let R be a prime ring and $a_1, b_1, \ldots, a_n, b_n \in R$. If $b_1 \neq 0$ and

$$a_1xb_1 + a_2xb_2 + \cdots + a_nxb_n = 0$$
 for all $x \in R$

then
$$a_1 \in Ca_2 + Ca_3 + \cdots + Ca_n$$

Jose Bro

Identitie

Herstein's theory

Polynomializing

LAampie

Generalizations

Identities that interest us

▶ The identities that interest us today are of the form

$$\sum_{i,j=0}^{n} \lambda_{ij} a^{i} x a^{j} = 0$$

with fixed $a \in R$, $\lambda_{ij} \in \mathcal{C}$ and arbitrary $x \in R$

- Suppose $\lambda_{ij} \neq 0$. By Martindale's lemma, either $a^j = 0$ or $a^i \in \sum_k \mathbb{C} a^k$. Hence **a** is algebraic!
- ► Martindale's lemma can help in finding the possible minimal polynomials for a

Herstein's

Motivation: Herstein's theory

- Herstein's theory is the study of nonassociative structures and objects arising from associative rings
- ▶ In R define the product [x, y] := xy yx $(R, +, [\cdot, \cdot])$ is a Lie ring R^- Z(R) and [R, R] are Lie ideals of R^-
- In R define the product $x \circ y := xy + yx$ $(R, +, \circ)$ is a **Jordan ring** R^+

Theorem (Herstein 1955)

If R is a simple ring then R^+ is a simple Jordan ring and $R^-/([R,R] \cap Z(R))$ is a simple Lie ring $(\operatorname{char}(R) \neq 2)$

Jose Brox

rime ring

identitie

Herstein's theory

Polynomializing

Evample

Generalization

Motivation: Herstein's theory

- Herstein's theory is important in the classification of Lie and Jordan algebras
- ► A Lie algebra over a field is a Lie subalgebra of some R⁻ (universal enveloping algebra)
- ► The celebrated **Zelmanov's theorem classifies the strongly prime Jordan algebras**, and they are all subalgebras of some *R*⁺, except for a family of specific finite dimension

Jose Brox

Identities

Herstein's theory

Polynomializing

Algebraic

Example

. . .

Generalizations

Example: adnilpotent elements

- ▶ Define $\operatorname{ad}_a(x) := [a, x]$. Then $\operatorname{ad}_a^2(x) = [a, [a, x]]$
- ▶ An element *a* is **adnilpotent of index at most** *n* if

$$\operatorname{ad}_a^n(R)=0$$

- ▶ $\operatorname{ad}_{a}^{1}(R) = [a, R] = 0$ iff ax = xa for all $x \in R$ $(a \in Z(R))$
- $\operatorname{ad}_{a}^{2}(R) = [a, [a, R]] = 0$ iff

$$a^2x - 2axa + xa^2 = 0$$
 for all $x \in R$

If R is prime, Martindale's lemma guarantees a is algebraic over $\mathcal C$

Jose Brox

Identities

Herstein's theory

Polynomializing

200

Generalizations

Example: using Martindale's lemma

$$ad_a^2(x) = [a, [a, x]] = a^2x - 2axa + xa^2 = 0,$$

$$a^2x\mathbf{1} - ax2a + \mathbf{1}xa^2 = 0$$

▶ Martindale: since $1 \neq 0$ there are $\lambda, \mu \in \mathcal{C}$ such that

$$a^2 = \lambda a + \mu$$

- \blacktriangleright We want to determine the possible values for λ, μ
- ▶ We substitute and use Martindale's lemma repeatedly

Jose Brox

Prime rin

Identitie

Herstein's theory

Polynomializing

Evample

Example: using Martindale's lemma

•
$$a^2x - 2axa + xa^2 = 0, a^2 = \lambda a + \mu$$

$$(\lambda a + \mu)x - 2axa + x(\lambda a + \mu) =$$

 $ax(\lambda - 2a) + x(2\mu + \lambda a) = 0$

- Martindale: different possibilities from different terms
- ▶ Martindale 1: $\lambda 2a = 0$ or $a = \alpha \in \mathcal{C}$
- If $\lambda = 2a$:
 - If char(\mathcal{C}) = 2 then $\lambda = 0$, $a^2 = \mu \in \mathcal{C}$
 - ▶ If char(\mathcal{C}) \neq 2 then $a = \lambda/2 \in \mathcal{C}$

$$a \in \mathcal{C}$$
, or $a^2 \in \mathcal{C}$ and $\operatorname{char}(\mathcal{C}) = 2$

Jose Brox

rime rin

Identities

Herstein's theory

Polynomializinį

Evample

Generalization

Structure of adnilpotent elements

$$\operatorname{ad}_a^2(R) = 0 \Rightarrow a \in \mathcal{C} \text{ or } a^2 \in \mathcal{C} \text{ and } \operatorname{char}(\mathcal{C}) = 2$$

- ▶ Minimal polynomials: $X \lambda, X^2 \lambda$ (char(\mathcal{C}) = 2)
- As *n* increases, the application of Martindale's lemma to $ad_a^n(R) = 0$ gets more cumbersome (more possibilities)

Theorem (Martindale, Miers 1983)

Let R be a prime ring with $\operatorname{char}(R) > n$ and let $a \in R$ be adnilpotent of order exactly n. Then the minimal polynomial of a over ${\mathfrak C}$ is

$$(X-\lambda)^{\lfloor (n+1)/2\rfloor}$$

for some $\lambda \in \mathcal{C}$

Jose Bro

. .

Identitie

Herstein's theory

Polynomializing

2

Generalizations

A new strategy

▶ The identities that interest us today are of the form

$$\sum_{i,j=0}^{n} \lambda_{ij} a^{i} x a^{j} = 0$$

- ► Goal: Given such an identity, find all the possible minimal polynomials for a, not by Martindale's lemma, but in a systematic way
- ▶ **Method:** Transform to a **problem of polynomials** in 2 variables, **through the multiplication algebra**. Apply elementary algebraic geometry

Jose Brox

Identities

Herstein's theory

Polynomializing

5 ,

Generalizations

Prime ring tools: multiplication algebra

▶ For $a \in R$, define the multiplication maps L_a , R_a

$$L_a(x) := ax, R_a(x) := xa, x \in R$$

- ▶ $L_a, R_a \in \text{End}_{\mathcal{C}}(R)$ are linear endomorphisms of R
- ▶ The multiplication algebra M(R) is the unital algebra inside End_C(R) generated by L_a , R_a for all $a \in R$

$$M(R) := \langle L_a, R_a \mid a \in R \rangle \leq \operatorname{End}_{\mathbb{C}}(R)$$

▶ $M(R) \cong R \otimes_{\mathcal{C}} R^{op}$ as \mathcal{C} -algebras via

$$L_aR_b \mapsto a \otimes b$$

Jose Brox

Identities

Herstein' theory

Polynomializing

Evample

Example.

Generalizations

From the identity to a polynomial

- ▶ We see the left side of identity as an element of the multiplication algebra applied to x
- ightharpoonup $ax = L_a(x), xa = R_a(x)$
- $a^2x = L_{a^2}(x) = L_a^2(x)$, $xa^2 = R_a^2(x)$
- $axa = L_a R_a(x)$, $a^2 xa = L_a^2 R_a(x)$, etc.

$$\left(\sum_{i,j=0}^{n} \lambda_{ij} a^{i} x a^{j} = \left(\sum_{i,j=0}^{n} \lambda_{ij} L_{a}^{i} R_{a}^{j}\right)(x)\right)$$

Jose Brox

. .

Identities

Herstein's theory

Polynomializin

Algebraio

Example

Generalizations

From the identity to a polynomial

$$\left(\sum_{i,j=0}^{n} \lambda_{ij} a^{i} x a^{j} = \left(\sum_{i,j=0}^{n} \lambda_{ij} L_{a}^{i} R_{a}^{j}\right)(x)\right)$$

$$ightharpoonup \sum_{i,j=0}^n \lambda_{ij} L_a^i R_a^j = f(L_a, R_a)$$
 with

$$f(X,Y) := \sum_{i,j=0}^{n} \lambda_{ij} X^{i} Y^{j} \in \mathfrak{C}[X,Y]$$

Jose Bro

Identities

Herstein's theory

Polynomializin

geometry

Example

Generalizations

From the identity to a polynomial

$$f(X,Y) := \sum_{i,j=0}^{n} \lambda_{ij} X^{i} Y^{j} \in \mathfrak{C}[X,Y]$$

- ► **E.g.:** $a^2x axa + 2xa^2 \Rightarrow f(X, Y) = X^2 XY + 2Y^2$
- ► The following claims are **equivalent**:

- ② $f(L_a, R_a)(R) = 0$
- **3** $f(L_a, R_a) = 0$ in M(R)

Identities

Herstein's theory

Polynomializing

E

Generalization

From the multiplication algebra to a polynomial ring

- ▶ Call M(a) to the **subalgebra** of M(R) generated by $\mathbb C$ and L_a, R_a for a fixed $a \in R$
- ► The following claims are **equivalent**:

- ② $f(L_a, R_a)(R) = 0$
- **4** $f(L_a, R_a) = 0$ in M(a)
- ▶ We have $M(R) \cong R \otimes_{\mathbb{C}} R^{op}$ as \mathbb{C} -algebras, $L_a R_b \mapsto a \otimes b$ We have $M(a) \cong \mathbb{C}[a] \otimes_{\mathbb{C}} \mathbb{C}[a]^{op}$, same isomorphism

Polynomializing

From the multiplication algebra to a polynomial ring

Theorem: If $a \in R$ is algebraic with minimal polynomial p then $M(a) \cong \mathbb{C}[X, Y]/\langle p(X), p(Y)\rangle$

Proof.

- a algebraic implies $\mathbb{C}[a] \cong \mathbb{C}[X]/\langle p(X)\rangle$
- $M(a) \cong \mathbb{C}[a] \otimes_{\mathbb{C}} \mathbb{C}[a]^{op} = \mathbb{C}[a] \otimes_{\mathbb{C}} \mathbb{C}[a]$
- $M(a) \cong \mathbb{C}[X]/\langle p(X)\rangle \otimes_{\mathcal{C}} \mathbb{C}[Y]/\langle p(Y)\rangle \cong$ $\mathbb{C}[X,Y]/\langle p(X),p(Y)\rangle$

Corollary: If a is algebraic with minimal polynomial p then a satisfies $f(L_a, R_a) = 0$ iff $f(X, Y) \in \langle p(X), p(Y) \rangle$

Identities in prime rings

Jose Bro

Identities

Herstein's theory

Algebraic

Example

Generalization

Elementary algebraic geometry

We want to solve an **inverse ideal membership problem**: Given $f \in \mathcal{C}[X, Y]$, which are the $p \in \mathcal{C}[X]$ such that $f \in \langle p(X), p(Y) \rangle$?

$$\Big(f=f_1p(X)+f_2p(Y) ext{ with } f_1,f_2\in {\mathbb C}[X,Y]\Big)$$

- ▶ If q|p and $f \in \langle p(X), p(Y) \rangle$ then $f \in \langle q(X), q(Y) \rangle$, so only the maximal p have to be determined
- ▶ $\{p(X), p(Y)\}$ is a **Gröbner basis** for $\langle p(X), p(Y) \rangle$. So $f \in \langle p(X), p(Y) \rangle$ iff the **division** of f by $\{p(X), p(Y)\}$ gives **0 remainder**

Jose Bro

. .

Identities

Herstein's theory

Polynomializing

Algebraic geometry

Root structure

$$f = f_1 p(X) + f_2 p(Y)$$
 with $f_1, f_2 \in \mathfrak{C}[X, Y]$

- ▶ If the roots of p are $\lambda_i \in \overline{\mathbb{C}}$ then $f(\lambda_i, \lambda_j) = 0$ for all i, j
- ▶ Since p(X)|f(X,X), the roots of p are among the roots of f(X,X)
- ► We lack the **multiplicities**: different *p* could be possible by changing multiplicities
- ► To find the multiplicities, we **generalize an idea from univariate theory:** λ is a root of f of multiplicity k iff $f^{(i)}(\lambda) = 0$ only for $0 \le i \le k$ (char(\mathfrak{C}) = 0)

Jose Brox

.....

Identities

Herstein's theory

Polynomializing

Algebraic geometry

C-------

Hasse derivatives

▶ We need the Taylor expansion of a polynomial in two variables around $(a, b) \in \mathbb{C}^2$:

$$f(X,Y) = \sum_{0 \le i+j \le \deg f} \frac{\partial_{X^i} \partial_{Y^j} f(a,b)}{i!j!} (X-a)^i (Y-b)^j$$

- ▶ But if $char(\mathcal{C}) > 0$ we cannot divide by an arbitrary i!
- We use **Hasse derivatives** $D_{X^iY^j}$ instead of the usual ones

$$D_{X^{i}}X^{n} = \binom{n}{i}X^{n-i}, \ D_{X^{i}}Y^{n} = 0, \ D_{X^{i}Y^{j}} = D_{X^{i}} \circ D_{Y^{j}}$$

▶ The **Taylor expansion** of f around $(a, b) \in \mathbb{C}^2$ is

$$f(X,Y) = \sum_{0 \le i+j \le \deg f} D_{X^iY^j} f(a,b) (X-a)^i (Y-b)^j$$

Jose Brox

. .

Identities

Herstein's theory

Polynomializing

Algebraic geometry

Lxample

Generalizations

Root structure

Main Theorem

If
$$p:=\prod_{i=1}^m (X-\lambda_i)^{e_i}$$
 then $f\in \langle p(X),p(Y)
angle$ iff

$$D_{X^rY^s}f(\lambda_i,\lambda_j)=0$$

for all λ_i, λ_j and all $0 \le r < e_i, 0 \le s < e_j$.

- ▶ Each ordered pair of roots must annihilate all $D_{X^rY^s}f(X,Y)$ for r,s up to the corresponding multiplicities of said roots
- ▶ The **proof** uses the Taylor expansion, the fact that $\{p(X), p(Y)\}$ is a Gröbner basis, and a result similar to the Chinese remainder theorem available in this particular case

Jose Brox

JOSC DIC

Identitie

Herstein's theory

Polynomializing

Algebraic geometry

Generalizations

Determining the minimal polynomials

- ▶ The **possible roots** of p are the roots of f(X, X)
- ▶ $S := \{\lambda_1, \dots, \lambda_n\}$ are roots of p iff f annihilates at the **finite rectangular grid** $S \times S$
- We compute the multiplicities of the roots through the zeros of the derivatives

	(0,0)	(0,1)	(1, 0)	(1, 1)
X	f			
X ²	f, D_X, D_Y, D_{XY}			
X(X-1)	f	f	f	f
$X^2(X-1)$	f, D_X, D_Y, D_{XY}	f, D_X	f, D_Y	f
$X^2(X-1)^2$	f, D_X, D_Y, D_{XY}			

Row: maximal minimal polynomial. Column: point. Entry: derivatives annihilated.

Jose Brox

. .

Identities

Herstein's theory

Polynomializing

Examples

Generalizations

Adnilpotent elements

$$\operatorname{ad}_a^n(R) = 0 \Rightarrow f(X, Y) = (X - Y)^n$$

- ▶ f(X,X) = 0, so any $\lambda \in \mathbb{C}$ can be a root. But if λ_1, λ_2 are roots, then $f(\lambda_1, \lambda_2) = (\lambda_1 \lambda_2)^n = 0$ forces $\lambda_1 = \lambda_2$
- ▶ The minimal polynomials are of the form $(X \lambda)^k$

$$f_{ij}(X,Y) := D_{X^iY^j}(X-Y)^n = (-1)^j \binom{n}{i} \binom{n-i}{j} (X-Y)^{n-i-j}$$

- ▶ If n-i-j>0 or n-i-j<0 then $f_{ii}(\lambda,\lambda)=0$
- ▶ If i + j = n then $f_{ij}(\lambda, \lambda) = (-1)^{j} \binom{n}{i}$
- Some of those binomial coefficients can be zero, depending on char(€)

Polynomializin

Examples

Generalizations

Adnilpotent elements

Theorem

Let R be a prime ring and $a \in R$ be an adnilpotent element of index at most n. Put $t := \lfloor (n+1)/2 \rfloor$ and let m := k+1 where $k \in \mathbb{N}$ is the maximum such that $\operatorname{char}(R)$ divides

$$\gcd\left(\binom{n}{t}, \binom{n}{t+1}, \dots, \binom{n}{t+k}\right)$$

or k=-1 if the gcd is empty. Then there exists $\lambda \in \overline{\mathbb{C}}$ such that the maximal possible minimal polynomial of a is

$$(X-\lambda)^{t+m}$$

Jose Brox

Jose Dro

Identitie

Herstein's theory

Polynomializin

Examples

Generalizations

Example: 2D plot

In this example $\mathcal{C} = \mathbb{R}$.

▶ Consider the identity (fixed a, for all $x \in R$)

$$a^5x - a^4x + a^3x - a^2x + 2a^3xa - 2a^2xa - axa^3 + axa^4 + xa^5 - xa^6 = 0$$

▶ The associated polynomial *f* in two variables is

$$X^{5} - X^{4} + X^{3} - X^{2} + 2X^{3}Y - 2X^{2}Y - XY^{3} + XY^{4} + Y^{5} - Y^{6} = f(X, Y)$$

▶ The possible roots for p arise from f(X,X) = 0:

$$-X^{6} + 3X^{5} - X^{3} - X^{2} = 0 = X^{2}(X - 1)(X - \alpha)(X - \beta)(X - \gamma)$$

with α, β complex conjugates and $\gamma \approx 2.83$

- We check numerically that $0 \notin \{f(0,\alpha), f(0,\beta), f(1,\alpha), f(1,\beta), f(\gamma,\alpha), f(\gamma,\beta), f(\alpha,\beta)\}$
- ► The rest we can check graphically with a real 2D plot

Jose Bro

rima rin

Identities

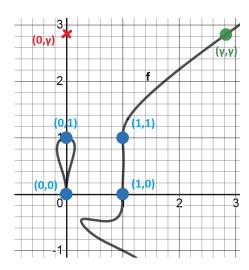
Herstein's theory

. 0.,...

Algebraic

Example

Generalizations



Since f = 0 goes through the grid $\{(0,0),(0,1),(1,0),(1,1)\}$, X(X-1) is a possible minimal polynomial

Jose Brox

ruentitie:

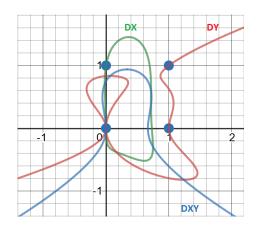
theory

FOIYHOIHIAHZIII

A1 1 1

Example

Generalization



- $\triangleright D_X, D_Y, D_{XY}$ go through (0,0)
- ▶ D_X goes through (0,1) but not through (1,0)
- ▶ D_Y goes through (1,0) but not through (0,1)
- $ightharpoonup X^2(X-1)$ is a possible minimal polynomial, $X^2(X-1)^2$ is not

Jose Brox

rime rings

Identitie

Herstein' theory

Polynomializing

Examples

Generalizations

Example: 2D plot

▶ In summary, the possible minimal polynomials are

$$X, X - 1, X - \alpha, X - \beta, X - \gamma, X^2, X(X - 1), X^2(X - 1)$$

► Then a can only satisfy

$$a^{5}x - a^{4}x + a^{3}x - a^{2}x + 2a^{3}xa - 2a^{2}xa - axa^{3} + axa^{4} + xa^{5} - xa^{6} = 0$$

if
$$a \in \{0, 1, \alpha, \beta, \gamma\}$$
, $a^2 = 0$, $a^2 = a$ or $a^3 = a^2$ $(a \in \{\alpha, \beta\})$ is actually not possible, since $\mathbb{C} = \mathbb{R}$)

• Without redundancies: either $a = \gamma$ or $a^3 = a^2$

Jose Bro

Identitie

Herstein' theory

Polynomializin

Evample

Generalizations

Generalization: semiprime rings

Possible generalizations of the results

- Can we use a similar method in semiprime rings?
- Semiprime rings: the noncommutative analogue of reduced rings
- ▶ We still have $M(R) \cong R \otimes_{\mathfrak{C}} R^{op}$
- ▶ But now C is not a field
- ► A semiprime ring is a subdirect product of prime rings

Jose Brox

. .

Identities

Herstein's theory

Polynomializing

0 ,

Generalizations

Generalization: several elements

▶ Can we use a similar method for identities of the form

$$\sum_{i=0}^n a_i x b_i = 0,$$

with some nontrivial relations between the elements a_i, b_i ?

▶ We have to use now (Bokut, Chen, Chen 2010)

$$\mathfrak{C}\langle X,Y\rangle/I\otimes_{\mathfrak{C}}\mathfrak{C}\langle Z,W\rangle/J\cong\mathfrak{C}\langle X,Y,Z,W\rangle/\langle I,J,K\rangle,$$

with K the ideal of [X, Z], [X, W], [Y, Z], [Y, W]

► Martindale's lemma is now an elementary consequence

Jose Brox

imo rino

Identitie:

Herstein's theory

Polynomializing

_ .

Generalization

Generalization: several variables

► Can we use a similar method for identities of the form

$$\sum_{i=0}^{n} a_i \mathbf{x} b_i \mathbf{y} c_i + d_i \mathbf{y} e_i \mathbf{x} f_i = 0?$$

- ▶ We can solve **iteratively**: first x is supposed constant
- ▶ Tecnically we would work with M(M(R))
- ▶ If R is prime then M(R) is prime with extended centroid C (Cabrera, Mohammed 1999)

Jose Brox

Identities

Herstein's theory

FOIYHOIHIAHZIIIg

- .

Generalizations

The Bittersweet End

Thank you for your attention!

Identities: so easy to think about, so hard to verbalize!