On the exceptional series and its siblings Series of representations

Bruce Westbury

Institute of Mathematics and Informatics, Sofia

11 January 2024

Table of Contents

Introduction

Examples

Exceptional series Vogel plane Magic square Triple systems

New results

Plane

Space

Introduction

Finite groups, simple Lie algebras and reductive algebraic groups are all *rigid*; so we can't construct families depending on a continuous parameter.

Let V be an (irreducible) representation. The category of *invariant* tensors has objects 0,1,2,... and the morphisms are

$$\mathsf{Hom}(\otimes^n V, \otimes^m V)$$

These categories have additional structure e.g. tensor product, symmetry,... We can construct families of categories with these structures depending on one, or more, continuous parameters.

This is well-known for \ensuremath{V} the defining representation of a classical series

$$\mathrm{SL}(n), \mathrm{GL}(n), \mathrm{SO}(n), \mathrm{Sp}(2n), \mathfrak{S}_n$$

where n becomes a formal parameter.

- $ightharpoonup \operatorname{SL}(n),\operatorname{GL}(n)$ Schur-Weyl duality
- $ightharpoonup \mathrm{SO}(n), \mathrm{Sp}(2n)$ Brauer category
- \triangleright \mathfrak{S}_n Partition category

and the first two cases have quantum analogues. What about exceptional simple Lie algebras?

Exceptional series

The exceptional series is a finite sequence of Lie algebras parametrised by $m \in \mathbb{Q}$.

$$m \begin{vmatrix} -3/2 & -4/3 & -1 & -2/3 & 0 & 1 & 2 & 4 & 8 \\ \mathfrak{osp}(1|2) & A_1 & A_2 & G_2 & D_4 & F_4 & E_6 & E_7 & E_8 \end{vmatrix}$$

These are the simple Lie algebras with no primitive quartic Casimir. Equivalently, the simple Lie algebras for which 4 is not an exponent.

Decompositions

Let L be a Lie algebra on the exceptional series and consider L as a representation of the algebraic group $\operatorname{Aut}(L)$. Then, for $m\geqslant -1$, we have the decompositions

$$\wedge^2 L(\theta) \cong L(\theta) \oplus L(\mu) \qquad S^2 L(\theta) \cong L(0) \oplus L(2\theta) \oplus L(\nu)$$

where θ is the highest root.

Casimirs

The values of the Casimir are computed using

$$C(\lambda) = \langle \lambda, \lambda + 2\rho \rangle$$

The key observation is that the values of the Casimir can be interpolated by linear functions of m. The linear functions are

$$\frac{\theta}{6m+12} \quad \frac{\mu}{12m+24} \quad \frac{2\theta}{12m+28} \quad \frac{\nu}{10m+16}$$

Vogel plane

Let L be a simple Lie algebra considered as a representation of the algebraic group $\operatorname{Aut}(L)$.

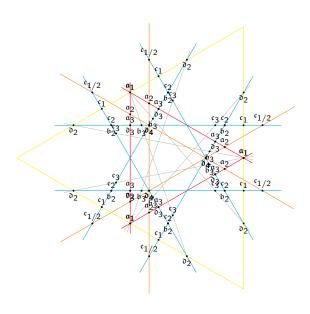
The decomposition of $L \otimes L$ is

The Casimirs are

where $t = \alpha + \beta + \gamma = \check{h}$.

$$\dim(L) = \frac{(\alpha - 2t)(\beta - 2t)(\gamma - 2t)}{\alpha\beta\gamma}$$

Vogel plane



Magic square

The Freudenthal magic square is the following square of Lie algebras.

	\mathbb{R}	\mathbb{C}	\mathbb{H}	\mathbb{O}
\mathbb{R}	B_1^3	A_{2}^{8}	C_3^{21}	F_4^{52}
\mathbb{C}	A_{2}^{8}	$2A_{2}^{16}$	A_{5}^{35}	E_{6}^{78}
\mathbb{H}	$C_3^{\bar{21}}$	A_5^{35}	D_{6}^{66}	E_7^{133}
\mathbb{O}	F_4^{52}	E_6^{78}	A_5^{35} D_6^{66} E_7^{133}	E_8^{248}

- ▶ The subscript is the *rank* of the Lie algebra.
- ▶ The superscript is the *dimension* of the Lie algebra

Dimensions

The following gives the dimension of the preferred representation and the dimension of the adjoint representation

	V	L
\mathbb{R}	(3m + 2)	$\frac{3m(3m+2)}{(m+4)}$
\mathbb{C}	(3m + 3)	$\frac{(m+4)}{4(m+1)(3m+2)}$ $\frac{(m+4)}{(m+4)}$
\mathbb{H}	(6m + 8)	$\frac{3(3m+4)(2m+3)}{(m+4)}$
\mathbb{O}	$\frac{2(5m+8)(3m+7)}{(m+4)}$	$\frac{2(5m+8)(3m+7)}{(m+4)}$

Quaternion row

This gives Freudenthal triple sytems.

	-2/3	0		-	4	8
\mathfrak{g}	A_1	3 <i>A</i> ₁	<i>C</i> ₃	A_5	D_6	E_7
G	SL(2)	$\mathfrak{S}_3 \rtimes \mathrm{SL}(2)$	Sp(6)	$\mathfrak{S}_2 \rtimes \mathrm{SL}(6)/\mu_2$	Spin(12)	E_7
λ	$3\omega_1$	$\omega_1 + \omega_2 + \omega_3$	ω_3	$S_2 \rtimes SL(6)/\mu_2$ ω_3	ω_6	ω_7

Features

The features of a series are:

- members of the series are indexed by a point in a projective space
- shared Bratteli diagram (branching rules)
- shared Schur functors (e.g. symmetric and exterior powers)
- Casimirs are linear functions of homogeneous coordinates
- dimensions are rational functions

For a classical series the Bratteli diagram is known indefinitely and dimensions are polynomial functions.

Notation

 $L(\lambda)$ is a highest weight module with highest weight λ .

- ightharpoonup 0 is the zero weight so L(0) is the trivial representation
- \blacktriangleright θ is the highest root so $L(\theta)$ is the adjoint representation

Property

The decomposition of $L(\lambda) \otimes L(\lambda)$ is

$$\wedge^2 L(\lambda) \cong L(\theta) \oplus L(\mu)$$
$$S^2 L(\lambda) \cong L(0) \oplus L(2\lambda)$$

The representation $L(\lambda)$ has an anti-symmetric quartic form.

Strategy

We find the quantum dimensions first and then find the dimensions by taking $q \rightarrow 1$.

- ► Interpolate Casimirs/eigenvalues
- Construct representation of braid group, B₃.
- ▶ Determine structure constants of algebra A(2).
- ▶ (Optional) Take limit $q \rightarrow 1$.

Property

The decomposition of $L(\lambda) \otimes L(\lambda)$ is

This includes the first (\mathbb{R}) line of the magic square $(\lambda = \theta)$ and the fourth (\mathbb{O}) line $(\lambda = \nu)$. The representation $L(\lambda)$ for the first (\mathbb{R}) line has an invariant symmetric cubic form and ahe representation $L(\lambda)$ for the fourth (\mathbb{O}) line has an invariant anti-symmetric cubic form

Exceptional symmetric spaces

Associated to a symmetric space is a Lie algebra with an involution. The +1-eigenspace is a Lie algebra, L, and the -1-eigenspace is an L-module, V.

2/3	1	4/3	8/3	5	8	10	12
EVIII	EV	E1	A1		BD1	FII	EIV
E_8	E_7	E_6	A_2	OSp(1 2)	D_4	F_4	E_6
D_8	A_7^*	C_4	A_1	A_1	B_3	B_4	F_4
128	70	42	5		7	16	26

Property

The decomposition of $L(\lambda) \otimes L(\lambda)$ is

$$\wedge^2 L(\lambda) \cong L(\theta) \oplus L(\mu)$$

$$S^2 L(\lambda) \cong L(0) \oplus L(2\lambda) \oplus L(\nu_1) \oplus L(\nu_2)$$

This includes the Vogel plane, $\lambda = \theta$.

This includes the representations $L(2\omega_1)$ of SO(n) and the representations $L(\omega_2)$ of Sp(n). These are the infinite series of symmetric spaces AI and AII.

This includes the representations $L(\omega_1; \omega_1)$ of $(SO(n) \times SO(n)) \rtimes \mathfrak{S}_2$.

$$\wedge^2 L(\omega_1; \omega_1) \cong [L(\omega_2; 0) \oplus L(0; \omega_2)] \oplus [L(\omega_2; 2\omega_1) \oplus L(2\omega_1; \omega_2)]$$

$$S^2L(\omega_1;\omega_1)\cong L(0;0)\oplus L(2\omega_1;2\omega_1)\oplus L(\omega_2;\omega_2)\oplus [L(2\omega_1;0)\oplus L(0;2\omega_1)]$$