Some Properties and Applications of Kloosterman Sums on Finite Fields

Lyubomir Borissov

This project for Ph.D. thesis is devoted to some properties and applications of onedimensional classical (or ordinary) Kloosterman sums on finite fields.

More specifically, let $\mathcal{K}_q(u) = \sum_{x \in \mathbb{F}_q^*} exp(2\pi i Tr(x + u/x)/p)$ be the ordinary Kloosterman sum on finite field \mathbb{F}_q of order $q = p^m$, where Tr(.) is the absolute trace function from \mathbb{F}_q into \mathbb{F}_p . $\mathcal{K}_q(u)$ is a real number of absolute value at most $2\sqrt{q}$ by the Weil bound. The angle of $\mathcal{K}_q(u)$ is the unique real number θ_u with

$$\cos \theta_u = \frac{\mathcal{K}_q(u)}{2\sqrt{q}}, \ 0 \le \theta_u \le \pi.$$

The main contributions of thesis are:

- It is proved that the angles of Kloosterman sums on arbitrary finite field are incommensurable with the constant π , i.e., θ_u is never a rational multiple of π . In particular, this implies that the Weil bound for Kloosterman sums on finite fields is never attained.
- It is shown that, for any m > 1, the so-called lifted Kloosterman sums $\mathcal{K}_{p^m}(u)$ with $u \in \mathbb{F}_p$, $p \geq 3$ are distinct. This result extends the corresponding Fischer's result for the simplest Kloosterman sums when m equals 1.
- Motivated by S.M. Dodunekov and H. Niederreiter's investigations concerning the binary finite field elements with related trace and co-trace, we address the problem of efficient enumeration of the elements of the field \mathbb{F}_q with prescribed absolute trace and co-trace for arbitrary characteristic p. It is shown that the problem can be converted to solving a system of p-1 linear equations with matrix of coefficients the left-circulant matrix constituted (up to some additive constants) by the simplest Kloosterman sums, and free-coefficient vector consisted of the corresponding lifted sums. The proposed approach is illustrated for characteristic p=2,3 and 5. Also, making use of the Weil bound, we study the asymptotic behavior of the quantities of interest and prove that it resembles q/p^2 .