СЕМИНАР "АЛГЕБРА И ЛОГИКА"

Драги колеги,

Следващото заседание на семинара ще се проведе на 11 април 2014 г. (петък) от 11:00 часа в зала 578 на ИМИ – БАН.

Доклад на тема

Locally Nilpotent Linear Derivations of Free Metabelian Associative Algebras

ше изнесе

Dr Şehmus Fındık (Cukurova University, Adana, Turkey).

Поканват се всички желаещи.

От секция "Алгебра и логика" на ИМИ – БАН http://www.math.bas.bg/algebra/seminarAiL/

Abstract

This is a joint work with Rumen Dangovski and Vesselin Drensky.

A nonzero locally nilpotent linear derivation δ of the polynomial algebra $K[X_d]$ over a field K of characteristic 0 is called a Weitzenböck derivation. The classical theorem of Weitzenböck states that the algebra of constants $K[X_d]^{\delta}$ is finitely generated. Similarly one may consider the algebra of constants $F_d(\mathfrak{P})^{\delta}$ of a locally nilpotent linear derivation δ acting on a finitely generated algebra which is relatively free in a variety \mathfrak{V} of algebras over K. Now the algebra of constants is usually not finitely generated.

In the case of associative algebras there is a dichotomy. If the variety of algebras B satisfies a polynomial identity which does not hold for the algebra $U_2(K)$ of 2×2 upper triangular matrices, then $F_d(\mathfrak{V})^{\delta}$ is finitely generated (Drensky, 2004). Otherwise, if δ is not zero, then $F_d(\mathfrak{P})^{\delta}$ is not finitely generated (Drensky and Gupta, 2005). From this point of view the free associative metabelian algebra $F=F(\mathfrak{M})$ is crucial for the investigation. We show that the vector space of the constants $(F')^{\delta}$ in the commutator ideal F' is a finitely generated $K[X_{2d}]^{\delta}$ -module. For small d, we calculate the Hilbert series of $(F')^{\delta}$ and find the generators of the $K[X_{2d}]^{\delta}$ -module $(F')^{\delta}$. To calculate the Hilbert series we use a version of the Elliot-McMahon method.