Clifford Semigroups with Injective Structure Homomorphisms

Jörg Koppitz

Bulgarian Academy of Sciences Institute of Algebra and Logic

20th of.December 2019

• Y semilattice (idempotent & commutative)

- Y semilattice (idempotent & commutative)
- G_{ξ} be group for all $\xi \in Y$ with $G_{\alpha} \cap G_{\beta} = \emptyset$ for $\alpha \neq \beta$

- Y semilattice (idempotent & commutative)
- G_{ξ} be group for all $\xi \in Y$ with $G_{\alpha} \cap G_{\beta} = \emptyset$ for $\alpha \neq \beta$
- $\alpha \geq \beta$, $\varphi_{\alpha,\beta}: \mathcal{G}_{\alpha} \to \mathcal{G}_{\beta}$ be a group homomorphism such that

- Y semilattice (idempotent & commutative)
- G_{ξ} be group for all $\xi \in Y$ with $G_{\alpha} \cap G_{\beta} = \emptyset$ for $\alpha \neq \beta$
- $\alpha \geq \beta$, $\varphi_{\alpha,\beta}: \mathcal{G}_{\alpha} \to \mathcal{G}_{\beta}$ be a group homomorphism such that
- ullet $\phi_{lpha,lpha}$ is identity mapping on G_lpha

- Y semilattice (idempotent & commutative)
- G_{ξ} be group for all $\xi \in Y$ with $G_{\alpha} \cap G_{\beta} = \emptyset$ for $\alpha \neq \beta$
- $\alpha \geq \beta$, $\varphi_{\alpha,\beta}: \mathcal{G}_{\alpha} \to \mathcal{G}_{\beta}$ be a group homomorphism such that
- ullet $\phi_{lpha,lpha}$ is identity mapping on G_lpha
- $\bullet \ \alpha > \gamma > \beta : \varphi_{\alpha,\gamma} \varphi_{\gamma,\beta} = \varphi_{\alpha,\beta}$

- Y semilattice (idempotent & commutative)
- G_{ξ} be group for all $\xi \in Y$ with $G_{\alpha} \cap G_{\beta} = \emptyset$ for $\alpha
 eq \beta$
- $\alpha \geq \beta$, $\varphi_{\alpha,\beta}: G_{\alpha} \to G_{\beta}$ be a group homomorphism such that
- ullet $\phi_{lpha,lpha}$ is identity mapping on G_lpha
- $\bullet \ \alpha > \gamma > \beta : \varphi_{\alpha,\gamma} \varphi_{\gamma,\beta} = \varphi_{\alpha,\beta}$
- $S = \bigcup_{\alpha \in Y} G_{\alpha}$

- Y semilattice (idempotent & commutative)
- G_{ξ} be group for all $\xi \in Y$ with $G_{\alpha} \cap G_{\beta} = \emptyset$ for $\alpha
 eq \beta$
- $\alpha \geq \beta$, $\varphi_{\alpha,\beta}: \mathcal{G}_{\alpha} \to \mathcal{G}_{\beta}$ be a group homomorphism such that
- ullet $\phi_{lpha,lpha}$ is identity mapping on G_lpha
- $\bullet \ \alpha > \gamma > \beta : \varphi_{\alpha,\gamma} \varphi_{\gamma,\beta} = \varphi_{\alpha,\beta}$
- $S = \bigcup_{\alpha \in Y} G_{\alpha}$
- ullet $a\in G_lpha$, $b\in G_eta$: $a*b=(a)arphi_{lpha,lphaeta}(b)arphi_{eta,lphaeta}$

- Y semilattice (idempotent & commutative)
- G_{ξ} be group for all $\xi \in Y$ with $G_{\alpha} \cap G_{\beta} = \emptyset$ for $\alpha
 eq \beta$
- $lpha \geq eta$, $arphi_{lpha,eta}: extstyle G_lpha
 ightarrow extstyle G_eta$ be a group homomorphism such that
- ullet $\phi_{lpha,lpha}$ is identity mapping on G_lpha
- $\bullet \ \alpha > \gamma > \beta : \varphi_{\alpha,\gamma} \varphi_{\gamma,\beta} = \varphi_{\alpha,\beta}$
- $S = \bigcup_{\alpha \in Y} G_{\alpha}$
- ullet $a\in G_lpha$, $b\in G_eta$: $a*b=(a)arphi_{lpha,lphaeta}(b)arphi_{eta,lphaeta}$
- Clifford semigroup (strong semilattice of groups)

• $f: S \to S$: (xy)f = (x)f(y)f endomorphism on S

- $f: S \to S$: (xy)f = (x)f(y)f endomorphism on S
- \bullet End(S)

- $f: S \to S$: (xy)f = (x)f(y)f endomorphism on S
- End(S)
- $\bullet \ f_\alpha = f|_{G_\alpha}$

- $f: S \to S$: (xy)f = (x)f(y)f endomorphism on S
- End(S)
- $f_{\alpha} = f|_{G_{\alpha}}$
- $f \in End(S)$ is regular if $\exists g \in End(S)$ with fgf = f

- $f: S \to S$: (xy)f = (x)f(y)f endomorphism on S
- End(S)
- $f_{\alpha} = f|_{G_{\alpha}}$
- $f \in End(S)$ is regular if $\exists g \in End(S)$ with fgf = f
- g is called an inverse of f

- $f: S \to S$: (xy)f = (x)f(y)f endomorphism on S
- End(S)
- $f_{\alpha} = f|_{G_{\alpha}}$
- $f \in End(S)$ is regular if $\exists g \in End(S)$ with fgf = f
- g is called an inverse of f
- End(S) is regular if each $f \in End(S)$ has an inverse

- $f: S \to S$: (xy)f = (x)f(y)f endomorphism on S
- End(S)
- $f_{\alpha} = f|_{G_{\alpha}}$
- $f \in End(S)$ is regular if $\exists g \in End(S)$ with fgf = f
- g is called an **inverse** of f
- End(S) is regular if each $f \in End(S)$ has an inverse
- End(S) is **completely regular** if regular and for each $f \in End(S)$ there is an inverse g with fg = gf.

Clifford Semigroups with Injective Structure Homomorphisms

 We study Clifford semigroups with injective structure homomorphisms and semilattice Y having a unique least element

Clifford Semigroups with Injective Structure Homomorphisms

 We study Clifford semigroups with injective structure homomorphisms and semilattice Y having a unique least element

Theorem (Samman & Meldrum, 2002, AC)

Let the semilattice Y have a unique least element δ and let all the structure homomorphisms be injective. Then every group homomorphism f_{α} associated with a homomorphism f is determined by f_{δ} and is given by $f_{\alpha} = \varphi_{\alpha,\delta} f_{\delta} \varphi_{\alpha,\delta}^{-1}$.

Lemma

• $S = \bigcup_{\alpha \in Y} G_{\alpha}$ with injective structure homomorphismd and $\bigwedge Y = \delta$

Lemma

• $S = \bigcup_{\alpha \in Y} G_{\alpha}$ with injective structure homomorphismd and $\bigwedge Y = \delta$ exists.

Lemma (Worawiset & K, 2019)

If End(S) is regular then $End(G_{\delta})$ is regular.

• e_{α} identity in G_{α}

- e_{α} identity in G_{α}
- $E_S = \{e_\alpha : \alpha \in Y\}$

- e_{α} identity in G_{α}
- $E_S = \{e_\alpha : \alpha \in Y\}$
- $\bullet \ f \in End(S)$

- e_{α} identity in G_{α}
- $E_S = \{e_\alpha : \alpha \in Y\}$
- $f \in End(S)$
- The restriction \underline{f} of f to E_S induces an endomorphism on Y

- e_{α} identity in G_{α}
- $E_S = \{e_\alpha : \alpha \in Y\}$
- $f \in End(S)$
- The restriction \underline{f} of f to E_S induces an endomorphism on Y
- $(\alpha)\underline{f} = \beta$, whenever $(e_{\alpha})f = e_{\beta}$ (induced index mapping)

- e_{α} identity in G_{α}
- $E_S = \{e_\alpha : \alpha \in Y\}$
- $f \in End(S)$
- The restriction \underline{f} of f to E_S induces an endomorphism on Y
- $(\alpha)\underline{f} = \beta$, whenever $(e_{\alpha})f = e_{\beta}$ (induced index mapping)
- $End(Y) = \{\underline{f} : f \in End(S)\}$ is the monoid of all endomorphisms on Y.

• $End_{\delta}(S) = \{ f \in End(S) : (\delta)\underline{f} = \delta \}$ forms submonoid of End(S).

• $End_{\delta}(S) = \{ f \in End(S) : (\delta)\underline{f} = \delta \}$ forms submonoid of End(S).

Theorem (Worawiset & K, 2019)

 $End_{\delta}(S)$ is regular if and only if $End(G_{\delta})$ is regular.

• $End_{\delta}(S) = \{ f \in End(S) : (\delta)\underline{f} = \delta \}$ forms submonoid of End(S).

Theorem (Worawiset & K, 2019)

 $End_{\delta}(S)$ is regular if and only if $End(G_{\delta})$ is regular.

In general

• $End_{\delta}(S) = \{ f \in End(S) : (\delta)\underline{f} = \delta \}$ forms submonoid of End(S).

Theorem (Worawiset & K, 2019)

 $End_{\delta}(S)$ is regular if and only if $End(G_{\delta})$ is regular.

In general

Theorem (Worawiset & K, 2019)

 $End(S) \ \, \text{is regular iff} \ \, \text{for aech} \, \, f \in End(S) \, \, \text{with} \, \, s = \underline{f} \, \, \text{there is} \\ t \in End(Y) \, \, \text{with} \, \, \text{sts} = s \, \, \text{and there is} \, \, g \in End(G_\delta) \, \, \text{with} \\ \operatorname{Im}(\varphi_{a,\delta}g) \subseteq \operatorname{Im}(\varphi_{(\alpha)t,\delta}) \, \, \text{for all} \, \, \alpha \in Y \, \, \text{such that} \, \, f_\delta \varphi_{a,\delta} g f_\delta = f_\delta.$

Bijective Structure Homomorphisms

 All groups are pairwise isomorph (all structure homomorphisms are bijective)

Bijective Structure Homomorphisms

 All groups are pairwise isomorph (all structure homomorphisms are bijective)

Corollary (Worawiset & K, 2019)

Let Y be a semilattice which has a unique least element $v=\bigwedge Y$ and let $S=\bigcup_{\xi\in Y}G_{\xi}$ be a Clifford semigroup with bijective structure

homomorphisms. Then End(S) is regular if and only if both End(Y) and $End(G_{\nu})$ are regular.

• $f \in End(S)$ is called **idempotent** if ff = f

- $f \in End(S)$ is called **idempotent** if ff = f
- \bullet End(S) is called **band** if all endomophisms are idempotent

- $f \in End(S)$ is called **idempotent** if ff = f
- \bullet End(S) is called **band** if all endomophisms are idempotent
- If End(S) is idempotent then $|Y| \le 2$ (Worawiset 2018)

- $f \in End(S)$ is called **idempotent** if ff = f
- \bullet End(S) is called **band** if all endomophisms are idempotent
- If End(S) is idempotent then $|Y| \leq 2$ (Worawiset 2018)

Theorem (Worawiset & K, 2019)

Let $Y=\{\alpha\geq\beta\}$ be a two-element chain and let $S=G_\alpha\cup G_\beta$ be a Clifford semigroup with an injective structure homomorphism. End(S) is a band iff End (G_β) is a band.

Completely Regular

• CL^* : all Clifford semigroups $S = G_\alpha \cup G_\beta$ ($\alpha \ge \beta$) with injective structure homomorphism, where G_α is a prime group

Completely Regular

• CL^* : all Clifford semigroups $S = G_{\alpha} \cup G_{\beta}$ ($\alpha \geq \beta$) with injective structure homomorphism, where G_{α} is a prime group

Lemma

Let $S = G_{\alpha} \cup G_{\beta} \in CL^*$. Then End(S) is completely regular if $End(G_{\beta})$ completely regular.

Merci