(2,3)-GENERATION OF THE GROUPS $PSL_6(q)$

K. Tabakov , K. Tchakerian

Serdica Math. J. 37 (2011), 365-370

- 1 Introduction
 - Common features
- Basic concept
 - Main theorem
 - Preliminaries
- 3 Case 1 • Case 1: q ≠ 2,4
- 4 Lemma 2
- Case 2Case 2: q = 2, 4
 - Case 2. q = 2
- 6 Conclusion
- Bibliography

- 1 Introduction
 - Common features
- 2 Basic concep
 - Main theorem
 - Preliminaries
- 4 Lemma 2
- 6 Conclusion
- Bibliography

Common features

• A group G is called (2,3)-generated if $G = \langle x, y \rangle$ for some elements x and y of orders 2 and 3, respectively.

Common features

- A group G is called (2,3)-generated if $G = \langle x, y \rangle$ for some elements x and y of orders 2 and 3, respectively.
- A group is (2,3)-generated if and only if it is a homomorphic image of the modular group PSL₂(Z).

Common features

- A group G is called (2,3)-generated if $G = \langle x, y \rangle$ for some elements x and y of orders 2 and 3, respectively.
- A group is (2,3)-generated if and only if it is a homomorphic image of the modular group PSL₂(Z).
- The theorem of Liebeck-Shalev and Lübeck-Malle states that all finite simple groups, except the symplectic groups PSp₄(2^m), PSp₄(3^m), the Suzuki groups Sz(2^m) (m odd), and finitely many other groups, are (2,3)-generated (see [11])

Considered problem

For the $PSL_n(q)$, (2,3)-generation has been proved in the cases $n=2, q\neq 9$ [8], $n=3, q\neq 4$ [4], [1], $n=4, q\neq 2$ [12], [13], [9], n=5, any q [14], $n\geq 5$, odd $q\neq 9$ [2],[3], and $n\geq 13$, any q [10].

- Introduction
 - Common features
- Basic concept
 - Main theorem
 - Preliminaries
- Case 1
 Case 1: $q \neq 2, 4$
- 4 Lemma 2
- 5 Case 2 ● Case 2: q = 2,4
- 6 Conclusion
- Bibliography

Basic concept

Main theorem

Theorem

The group $PSL_6(q)$ is (2,3)-generated for any q.

Basic concept

Preliminaries

- $G = SL_6(q)$, $\overline{G} = G/Z(G) = PSL_6(q)$, where $q = p^m$ and p is a prime. Set d = (6, q 1), also $Q = q^5 1$ if $q \neq 3, 7$ and $Q = (q^5 1)/2$ if q = 3 or 7.
- The group G acts naturally on a six-dimensional vector space V over the field F = GF(q) and G
 acts on the corresponding projective space P(V).

Basic concept

Lemma 1

Lemma

Let \overline{M} be a maximal subgroup of the group \overline{G} . Then either \overline{M} is reducible on the space P(V) or \overline{M} has no element of order Q/(d,Q).

The maximal subgroups of $PSL_6(q)$ are determined (up to conjugacy) in [5]. In particular, this implies that one of the following holds:

- (i) \overline{M} belongs to the family C_1 of reducible subgroups of \overline{G} ;
- (ii) \overline{M} is a member of one of the remaining families C_2, C_3, C_4, C_5, C_8 of (irreducible) geometric subgroups of \overline{G} ;
- (iii) $\overline{M} \cong PSL_3(q)$ if q is odd or $\overline{M} \cong PSL_2(11)$, A_7 , M_{12} , $PSL_3(4).\mathbb{Z}_2$, $PSU_4(3)$, or $PSU_4(3).\mathbb{Z}_2$ for specific values of p and q.

- Introduction
 Common features
- 2 Basic concept
 - Main theorem
 - Preliminaries
- 3 Case 1 • Case 1: q ≠ 2,4
- 4 Lemma 2
- 6 Conclusion
- Bibliography

Case 1: $q \neq 2, 4$

Let
$$\omega \in GF(q^5)^*$$
, $|\omega| = Q$

$$f(t) = \prod_{i=0}^{4} (t - \omega^{q^i}) = t^5 - \alpha t^4 + \beta t^3 - \gamma t^2 + \delta t - \varepsilon.$$

Then $f(t) \in F[t]$ and the polynomial f(t) is irreducible over F.

Generators

$$x = \begin{pmatrix} -1 & 0 & 0 & \gamma \varepsilon^{-1} & 0 & \gamma \\ 0 & -1 & 0 & \beta \varepsilon^{-1} & 0 & \beta \\ 0 & 0 & 0 & \alpha \varepsilon^{-1} & -1 & \delta \\ 0 & 0 & 0 & 0 & 0 & \varepsilon \\ 0 & 0 & -1 & \delta \varepsilon^{-1} & 0 & \alpha \\ 0 & 0 & 0 & \varepsilon^{-1} & 0 & 0 \end{pmatrix}, \ x \in G, |x| = 2,$$

$$y=\left(\begin{array}{cccccc} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{array}\right), \ y\in G, |y|=3.$$

$$z = xy = \begin{pmatrix} 0 & 0 & -1 & 0 & \gamma & \gamma \varepsilon^{-1} \\ -1 & 0 & 0 & 0 & \beta & \beta \varepsilon^{-1} \\ 0 & 0 & 0 & -1 & \delta & \alpha \varepsilon^{-1} \\ 0 & 0 & 0 & 0 & \varepsilon & 0 \\ 0 & -1 & 0 & 0 & \alpha & \delta \varepsilon^{-1} \\ 0 & 0 & 0 & 0 & 0 & \varepsilon^{-1} \end{pmatrix}.$$

The characteristic polynomial of z is $f_z(t)=(t-\varepsilon^{-1})f(t)$ and the characteristic roots ε^{-1} , ω , ω^q , ω^{q^2} , ω^{q^3} , ω^{q^4} of z are pairwise distinct. Then, in $GL_6(q^5)$, z is conjugate to diag(ε^{-1} , ω , ω^q , ω^{q^2} , ω^{q^3} , ω^{q^4}) and hence z is an element of G of order Q.

- Introduction
 - Common features
- Basic concer
 - Main theorem
 - Preliminaries
- Gase 1
 - Case 1: $q \neq 2, 4$
- 4 Lemma 2
- 5 Case 2
 - Case 2: q = 2, 4
- 6 Conclusion
- Bibliography

Lemma 2

Lemma

Let $H = \langle x, y \rangle$, $H \leq G$.

The group H acts irreducibly on the space V.

- Introduction
- Common features
- Basic concept
 - Main theorem
 - Preliminaries
- 3 Case 1 • Case 1: q ≠ 2,4
- 4 Lemma 2
- Case 2Case 2: q = 2, 4
- 6 Conclusion
- Bibliography

Case 2: q = 2, 4

Let now q=2 or 4 The element $y\in G$, |y|=3 is the same like in Case 1 and

$$x = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & \eta & 0 & \eta^2 \\ 0 & 0 & 0 & \eta & 1 & \eta^2 \\ 0 & 0 & 0 & 0 & 0 & \eta \\ 0 & 0 & 1 & \eta & 0 & \eta^2 \\ 0 & 0 & 0 & \eta^2 & 0 & 0 \end{pmatrix}, \ x \in G, |x| = 2.$$

Here $\langle \eta \rangle = F^*$.

$$z = xy = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & \eta^2 & \eta \\ 0 & 0 & 0 & 1 & \eta^2 & \eta \\ 0 & 0 & 0 & 0 & \eta & 0 \\ 0 & 1 & 0 & 0 & \eta^2 & \eta \\ 0 & 0 & 0 & 0 & 0 & \eta^2 \end{pmatrix}$$

The characteristic polynomial of z is $f_z(t)=(t+\eta^2)g(t)$, where $g(t)=t^5+\eta^2t^4+\eta^2t^3+\eta^2t^2+(\eta^2+\eta)t+\eta$. It follows that both for q=2 and q=4 the element z has order $q^5-1=Q$.

- 1 Introduction
 - Common features
- Basic concep
 - Main theorem
 - Preliminaries
- Gase 1
 - Case 1: q ≠ 2, 4
- 4 Lemma 2
- 5 Case 2
 - Case 2: q = 2, 4
- 6 Conclusion
- Bibliography

Conclusion

Now, in \overline{G} , the elements \overline{x} , \overline{y} , and \overline{z} have orders 2, 3, and Q/(d,Q) in Case 1 (Q/d - Case 2), respectively. So the group $\overline{H}=\langle \overline{x},\overline{y}\rangle$ has an element of order Q/(d,Q) (or Q/d) and \overline{H} is irreducible on P(V) as H is irreducible on V by Lemma 2. Lemma 1 implies that \overline{H} cannot be contained in any maximal subgroup of \overline{G} . Thus $\overline{H}=\overline{G}$ and $\overline{G}=\langle \overline{x},\overline{y}\rangle$ is a (2,3)-generated group.

- Introduction
 - Common features
- 2 Basic concep
 - Main theorem
 - Preliminaries
- 4 Lemma 2
- 5 Case 2 • Case 2: q = 2, 4
- 6 Conclusion
- Bibliography



Bibliography

- J. COHEN. On non-Hurwitz groups and noncongruence of the modular group. *Glasgow Math. J.* **22** (1981), 1-7
- L. DI MARTINO, N.A. VAVILOV. (2,3) generation of SL(n,q). I. Cases n=5,6,7. *Comm.Alg.* **22**, 4 (1994), 1321-1347.
- L. DI MARTINO, N.A. VAVILOV. (2,3) generation of SL(n,q). II. Cases $n \ge 8$. Comm.Alg. **24**, 2 (1996), 487-515.
- D. GARBE. Über eine Klasse von arithmetisch definierbaren Normalteilern der Modulgruppe. *Math.Ann.* **235**, 3 (1978), 195-215.
- P. KLEIDMAN. The low-dimensional finite simple classical groups and their subgroups. *Ph.D. Thesis. Cambridge* (1987).
- R. LIDL, H. NIEDERREITER. Finite Fields. Encyclopedia of Mathematics and its Applications. *Addison-Wesley* (1983).

M.W. LIEBECK, C.E. PRAEGER, J. SAXL. The maximal factorizations of the finite simple groups and their automorphism groups. *Mem. Amer. Math. Soc.* **86** (1990), 1-151.

A. M. MACBEATH. Generators of the linear fractional group. *Proc. Symp. Pure Math.* **12** (1969), 14-32.

P. MANOLOV, K. TCHAKERIAN. (2,3)-generation of the groups $PSL_4(2^m)$. Ann. Univ. Sofia, Fac. Math. Inf. **96** (2004), 101-104.

P. SANCHINI, M. C. TAMBURINI. Constructive (2,3)- generation: a permutational approach. *Rend. Sem. Mat. Fis. Milano* **64** (1994), 141-158.

A. SHALEV. Asymptotic group theory. *Notices Amer. Math. Soc.* 48, 4 (2001), 383-389.

M. C. TAMBURINI, S. VASSALLO. (2,3)-generazione di $SL_4(q)$ in caratteristica dispari e problemi collegati. *Boll. U.M.I.* (7), 8-B (1994), 121-134.

M. C. TAMBURINI, S. VASSALLO. (2,3)-generazione di gruppi lineari. Scritti in onore di Giovanni Melzi. *Sci. Mat.* 11 (1994), 391-399.

K. TCHAKERIAN. (2,3)-generation of the groups $PSL_5(q)$. Ann. Univ. Sofia, Fac. Math. Inf. **97** (2005), 105-108.