Brill-Noether loci of the moduli space of curves

SEONJA KIM

CHUNGWOON UNIVERSITY, SOUTH KOREA

Projective morphisms on algebraic curves are basic tools in algebraic curve theory. One of the interesting problems is what or how many curves possess a specific kind of projective morphisms. In this point of view, it is natural to consider the sublocus $\mathcal{M}_{g,d}^r$ of the moduli space \mathcal{M}_g of genus g curves whose general point corresponds to a smooth curve possessing a degree d projective morphism to an r-dimensional projective space. $\mathcal{M}_{g,d}^r$ is called a Brill-Noether locus of \mathcal{M}_g . If the Brill-Noether number $\rho := g - (r+1)(g-d+r)$ is negative, then $\mathcal{M}_{g,d}^r$ has codimension at least one in the moduli space \mathcal{M}_g . In particular, if $\rho = -1$ then $\mathcal{M}_{g,d}^r$ is an irreducible divisor of \mathcal{M}_g which has been used to analyze the geometry of the moduli space \mathcal{M}_g . The aim of this talk is to introduce specific reducible curves which can be used to investigate Brill-Noether loci.

Families of double covers

Youngook Choi

YEUNGNAM UNIVERSITY, SOUTH KOREA

Let $\mathcal{I}'_{d,g,r}$ be the union of the components of the Hilbert scheme whose general points represent smooth irreducible complex curves of degree d and genus g in \mathbb{P}^r . Severi claimed that $\mathcal{I}'_{d,g,r}$ is irreducible if $d \geq g + r$. His conjecture is true for r = 3 and 4, while for $r \geq 6$ there have been found counter examples using families of m-sheeted covers of rational curves with $m \geq 3$. In this talk, we show the existence of an additional component of $\mathcal{I}'_{d,g,r}$ whose general elements are double covers of curves of positive genus.

This is a joint work with Prof. Seonja Kim (Chungwoon Univ.) and Hristo Iliev (Institute of Mathematics and Informatics, BAS).