Hilbert series and invariant theory of symplectic and orthogonal groups

Elitza Hristova ¹

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria e.hristova@math.bas.bg

Let $A = \bigoplus_{i>0} A^i$ be a finitely generated graded algebra over $\mathbb C$ such that each homoge-

neous component is a polynomial $GL(n,\mathbb{C})$ -module. Let G be one of the complex groups $O(n,\mathbb{C})$, $SO(n,\mathbb{C})$, and $Sp(2d,\mathbb{C})$ (the last in the case n=2d). In this talk, we present a method for computing the Hilbert series of the algebra of invariants A^G . Then, we take explicit choices of A and apply our method to compute a lot of examples. The main examples we consider for A are the symmetric algebra S(W) and the exterior algebra $\Lambda(W)$ of a polynomial $GL(n,\mathbb{C})$ -module W and certain relatively free algebras in varieties of associative algebras. In some of the examples, we use the computed Hilbert series to determine a set of generators for the respective algebra of invariants. As a further application, we consider the question of regularity of the algebra $S(W)^{O(n)}$. For n=2 and n=3 we give a complete list of modules W, so that if $S(W)^{O(n)}$ is regular then W is in this list. The talk is based on a joint work with Vesselin Drensky.

¹Partially supported by the Bulgarian National Science Fund, Grant KP-06 N32/1 of 07.12.2019.