Identities for a parametric Weyl algebra over a ring

Artem Lopatin

University of Campinas, Brazil

lopatin@unicamp.br

This is a joint work with Carlos Arturo Rodriguez Palma. In 2015 Benkart, Lopes and Ondrus introduced and studied in a series of papers the infinite-dimensional unital associative algebra A_h generated by elements x, y, which satisfy the relation yx - xy = h for some $0 \neq h \in \mathbb{F}[x]$. We generalize this construction to $A_h(B)$ by working over the fixed \mathbb{F} -algebra B instead of \mathbb{F} . Namely, for $h \in Z(B)[x]$, the parametric Weyl algebra $A_h(B)$ over the ring B is the unital associative algebra over \mathbb{F} generated by B and letters x, y commuting with B subject to the defining relation yx = xy + h (equivalently, [y, x] = h, where [y, x] = yx - xy), i.e.,

$$\mathsf{A}_h(\mathsf{B}) = \mathsf{B}\langle x, y \rangle / \mathrm{id}\{yx - xy - h\}.$$

We describe the polynomial identities for $A_h(B)$ over the infinite field \mathbb{F} in case $h \in B[x]$ satisfies certain restrictions.