The commutator-degree of a polynomial and images of multilinear polynomials

Thiago Castilho de Mello

Universidade Federal de São Paulo, Instituto de Ciência e Tecnologia, São José dos Campos, SP, Brazil

tcmello@unifesp.br

Let K be a field, $X = \{x_1, x_2, \dots\}$ be an infinite set and $K\langle X \rangle$ be the free associative algebra freely generated by X.

We have a strictly descending chain of T-ideals of $K\langle X \rangle$,

$$K\langle X\rangle \supseteq \langle [x_1,x_2]\rangle^T \supseteq \langle [x_1,x_2][x_3,x_4]\rangle^T \supseteq \langle [x_1,x_2][x_3,x_4][x_5,x_6]\rangle^T \supseteq \cdots$$

We say that a polynomial $p \in K\langle X \rangle$ has commutator-degree r if $f \in \langle [x_1, x_2][x_3, x_4] \cdots [x_{2r-1}, x_{2r}] \rangle^T$ and $f \notin \langle [x_1, x_2][x_3, x_4] \cdots [x_{2r+1}, x_{2r+2}] \rangle^T$.

In this talk we show how multilinear polynomials of a given commutator-degree r can be characterized in terms of its coefficients.

We apply the above characterization to show that the image of a multilinear polynomial evaluated on the algebra of $n \times n$ upper triangular matrices is a vector space (a solution to the analogous of the Lvov-Kaplansky conjecture for the algebra of $n \times n$ upper triangular matrices).

This is a joint work with Ivan Gonzales Gargate.