International Conference Trends in Combinatorial Ring Theory September 20-24, 2021 Sofia, Bulgaria Dedicated to the 70th anniversary of Vesselin Drensky

On the asymptotics for *-graded Capelli identities

Francesca Benanti

Dip. di Matematica e Informatica Università di Palermo francescasaviella.benanti@unipa.it

Ordinary case Graded case Involution case Graded Involution case

• F = field, char F = 0, A associative algebra over F.

- F = field, char F = 0, A associative algebra over F.
- $F\langle X \rangle = F\langle x_1, x_2, ... \rangle$ = the free associative algebra of non-commutative polynomials on X over F.

- F = field, char F = 0, A associative algebra over F.
- $F\langle X \rangle = F\langle x_1, x_2, ... \rangle$ = the free associative algebra of non-commutative polynomials on X over F.
- $f = f(x_1, ..., x_n) \in F(X)$ is a polynomial identity for A if $f(a_1, ..., a_n) = 0$, for all $a_1, ..., a_n \in A$.

- F = field, char F = 0, A associative algebra over F.
- $F\langle X \rangle = F\langle x_1, x_2, ... \rangle$ = the free associative algebra of non-commutative polynomials on X over F.
- $f = f(x_1, ..., x_n) \in F(X)$ is a polynomial identity for A if $f(a_1, ..., a_n) = 0$, for all $a_1, ..., a_n \in A$.
- Id(A) = the set of all identities of A.

- F = field, char F = 0, A associative algebra over F.
- $F\langle X \rangle = F\langle x_1, x_2, ... \rangle$ = the free associative algebra of non-commutative polynomials on X over F.
- $f = f(x_1, ..., x_n) \in F(X)$ is a polynomial identity for A if $f(a_1, ..., a_n) = 0$, for all $a_1, ..., a_n \in A$.
- Id(A) = the set of all identities of A.
- $var(\Gamma) = var(A)$ = the variety of algebras having the elements of $\Gamma = Id(A)$ as identities.

- F = field, char F = 0, A associative algebra over F.
- $F\langle X \rangle = F\langle x_1, x_2, ... \rangle$ = the free associative algebra of non-commutative polynomials on X over F.
- $f = f(x_1, ..., x_n) \in F(X)$ is a polynomial identity for A if $f(a_1, ..., a_n) = 0$, for all $a_1, ..., a_n \in A$.
- Id(A) = the set of all identities of A.
- $var(\Gamma) = var(A) =$ the variety of algebras having the elements of $\Gamma = Id(A)$ as identities.
- $\Gamma = Id(A)$ is verbally prime if for any T-ideals I_1 , I_2 such $I_1I_2 \subseteq \Gamma$ we must have $I_1 \subseteq \Gamma$ or $I_2 \subseteq \Gamma$.

- F = field, char F = 0, A associative algebra over F.
- $F\langle X \rangle = F\langle x_1, x_2, ... \rangle$ = the free associative algebra of non-commutative polynomials on X over F.
- $f = f(x_1, ..., x_n) \in F(X)$ is a polynomial identity for A if $f(a_1, ..., a_n) = 0$, for all $a_1, ..., a_n \in A$.
- Id(A) = the set of all identities of A.
- $var(\Gamma) = var(A)$ = the variety of algebras having the elements of $\Gamma = Id(A)$ as identities.
- $\Gamma = Id(A)$ is verbally prime if for any T-ideals I_1 , I_2 such $I_1I_2 \subseteq \Gamma$ we must have $I_1 \subseteq \Gamma$ or $I_2 \subseteq \Gamma$. Also A and var(A) are called verbally prime.

Graded case Involution case Graded Involution case

From Kemer's theory (1984) it turns out that:

From Kemer's theory (1984) it turns out that:

• var(A) is verbally prime $\Leftrightarrow A$ is one of the following

$$M_k(F)$$
, $M_k(G)$, $M_{k,l}(G)$

where $G = G_0 \oplus G_1$ is the Grassmann algebra and

$$M_{k,l}(G) = \begin{pmatrix} k & l \\ G_0 & G_1 \\ G_1 & G_0 \end{pmatrix}.$$

Problem. to describe the verbally prime T-ideals of $F\langle X\rangle$

$$Id(M_k(F)), Id(M_k(G)), Id(M_{k,l}(G))$$

Remark In case charF=0, it is well known that Id(A) is completely determined by its multilinear polynomials

Remark In case charF=0, it is well known that Id(A) is completely determined by its multilinear polynomials

•
$$c_n(A) = \dim_F \left(\frac{V_n}{V_n \cap Id(A)} \right)$$
 is called the *n*-th codimension of A .

Remark In case charF=0, it is well known that Id(A) is completely determined by its multilinear polynomials

•
$$c_n(A) = \dim_F \left(\frac{V_n}{V_n \cap Id(A)} \right)$$
 is called the *n*-th codimension of A .

 V_n = the space of multilinear polynomials of degree n in the variables x_1, \ldots, x_n .

Ordinary case Graded case Involution case Graded Involution case

• A is a PI-algebra $\Leftrightarrow c_n(A) < n!$, for some $n \ge 1$.

- A is a PI-algebra $\Leftrightarrow c_n(A) < n!$, for some $n \ge 1$.
- Regev (1972) if A is a PI-algebra, then $c_n(A) \leq \alpha \beta^n$ for some constants α , β and $n \geq 1$.

- A is a PI-algebra $\Leftrightarrow c_n(A) < n!$, for some $n \ge 1$.
- Regev (1972) if A is a PI-algebra, then $c_n(A) \leq \alpha \beta^n$ for some constants α , β and $n \geq 1$.
- In the early 1980's, Amitsur conjectured that the exponential growth of the codimension sequence should be an integer.

- A is a PI-algebra $\Leftrightarrow c_n(A) < n!$, for some $n \ge 1$.
- Regev (1972) if A is a PI-algebra, then $c_n(A) \leq \alpha \beta^n$ for some constants α , β and $n \geq 1$.
- In the early 1980's, Amitsur conjectured that the exponential growth of the codimension sequence should be an integer.
- Giambruno and Zaicev (1998, 1999) if A is a PI-algebra, then

$$exp(A) = \lim_{n \to \infty} \sqrt[n]{c_n(A)}$$

exists and it is a non negative integer called Pl-exponent of A.

 Regev (1984-1987), Berele-Regev (1995), Giambruno and Zaicev (1999)

$$\exp(M_k(F)) = k^2$$

$$\exp(M_k(G))=2k^2$$

$$\exp(M_{k,l}(G)) = (k+l)^2$$

• Regev (1984)

$$c_n(M_k(F)) \simeq \alpha k^{\frac{1}{2}(k^2+4)} n^{\frac{1-k^2}{2}} (k^2)^n$$

where
$$\alpha = \left(\frac{1}{\sqrt{2\pi}}\right)^{k-1} \left(\frac{1}{2}\right)^{\frac{1}{2}(k^2-1)} 1! 2! \cdots (k-1)!$$

• Berele-Regev (1995),(2020)

$$c_n(M_{k,l}(G)) \simeq \alpha n^{-\frac{1}{2}(k^2+l^2-1)} (k^2+l^2)^n$$

$$c_n(M_k(G)) \simeq \alpha n^{\frac{1-k^2}{2}} (2k^2)^n$$

with $\alpha = ?$

The polynomial (Razmyslov (1973))

$$Cap_{m}(x_{1},...,x_{m};y_{1},...,y_{m-1}) =$$

$$= \sum_{\sigma \in S_{m}} (\operatorname{sgn}\sigma)x_{\sigma(1)}y_{1}x_{\sigma(2)} \cdots x_{\sigma(m-1)}y_{m-1}x_{\sigma(m)}$$

is the *m*-th Capelli polynomial.

The polynomial (Razmyslov (1973))

$$Cap_{m}(x_{1},...,x_{m};y_{1},...,y_{m-1}) =$$

$$= \sum_{\sigma \in S_{m}} (\operatorname{sgn}\sigma)x_{\sigma(1)}y_{1}x_{\sigma(2)} \cdots x_{\sigma(m-1)}y_{m-1}x_{\sigma(m)}$$

is the *m*-th Capelli polynomial.

The polynomial (Amitsur-Regev (1982))

$$e_{d,l}^*(x_1,\ldots,x_n;y_1,\ldots,y_{n-1}) =$$

$$\sum_{\sigma \in S_n} \chi_{d,l}(\sigma) x_{\sigma(1)} y_1 x_{\sigma(2)} \cdots y_{n-1} x_{\sigma(n)},$$

is the Amitsur's Capelli-type polinomial, n = (d+1)(l+1) and $\chi_{d,l} = \chi_{\mu}$ with $\mu = ((l+1)^{(d+1)}) \vdash n$.

(ロ) (団) (重) (重) 重 め(()

• Regev (1984)

$$\exp(Cap_{k^2+1}) = \exp(E_{k^2,0}^*) = k^2 = \exp(M_k(F))$$

• Berele-Regev (2001)

$$\exp(E_{k^2,k^2}^*) = 2k^2 = \exp(M_k(G))$$

$$\exp(E_{k^2+l^2}^*_{2kl}) = (k+l)^2 = \exp(M_{k,l}(G))$$

• Giambruno-Zaicev (2003)

$$c_n(E_{k^2,0}^*) = c_n(Cap_{k^2+1}) \simeq c_n(M_k(F))$$

• Giambruno-Zaicev (2003)

$$c_n(E_{k^2,0}^*) = c_n(Cap_{k^2+1}) \simeq c_n(M_k(F))$$

• B.- Sviridova (2006)

$$c_n(E_{k^2,k^2}^*) \simeq c_n(M_k(G))$$

and

$$c_n(E_{k^2+l^2,2kl}^*) \simeq c_n(M_{k,l}(G))$$

Ordinary case
Graded case
Involution case
Graded Involution case

• $X = Y \cup Z$ disjoint union of two countable sets,

$$F\langle X \rangle = F\langle Y \cup Z \rangle = \mathcal{F}^{(0)} \oplus \mathcal{F}^{(1)}$$

the free superalgebra with grading $(\mathcal{F}^{(0)},\mathcal{F}^{(1)})$,

• $X = Y \cup Z$ disjoint union of two countable sets,

$$F\langle X\rangle = F\langle Y\cup Z\rangle = \mathcal{F}^{(0)}\oplus \mathcal{F}^{(1)}$$

the free superalgebra with grading $(\mathcal{F}^{(0)},\mathcal{F}^{(1)})$,

 $\mathcal{F}^{(0)}=$ the subspace generated by the monomials of even degree with respect to Z,

 $\mathcal{F}^{(1)}$ = the subspace generated by the monomials of odd degree with respect to Z.

• $X = Y \cup Z$ disjoint union of two countable sets,

$$F\langle X \rangle = F\langle Y \cup Z \rangle = \mathcal{F}^{(0)} \oplus \mathcal{F}^{(1)}$$

the free superalgebra with grading $(\mathcal{F}^{(0)},\mathcal{F}^{(1)})$,

 $\mathcal{F}^{(0)}=$ the subspace generated by the monomials of even degree with respect to Z,

 $\mathcal{F}^{(1)}$ = the subspace generated by the monomials of odd degree with respect to Z.

Remark $A = A^{(0)} \oplus A^{(1)} =$ superalgebra with grading $(A^{(0)}, A^{(1)})$, if $A^{(0)}, A^{(1)}$ are subspaces of A satisfying:

$$A^{(0)}A^{(0)} + A^{(1)}A^{(1)} \subseteq A^{(0)} \ \ \mathrm{and} \ \ A^{(0)}A^{(1)} + A^{(1)}A^{(0)} \subseteq A^{(1)}.$$

• Let $A = A^{(0)} \oplus A^{(1)}$ be a superalgebra. Then a polynomial $f = f(y_1, \ldots, y_n, z_1, \ldots, z_m) \in F\langle Y \cup Z \rangle$ is a graded identity or superidentity for A if

$$f(a_1,\ldots,a_n,b_1,\ldots,b_m)=0,$$

for all $a_1, ..., a_n \in A^{(0)}$ and $b_1, ..., b_m \in A^{(1)}$.

• Let $A = A^{(0)} \oplus A^{(1)}$ be a superalgebra. Then a polynomial $f = f(y_1, \ldots, y_n, z_1, \ldots, z_m) \in F\langle Y \cup Z \rangle$ is a graded identity or superidentity for A if

$$f(a_1,\ldots,a_n,b_1,\ldots,b_m)=0,$$

for all $a_1, ..., a_n \in A^{(0)}$ and $b_1, ..., b_m \in A^{(1)}$.

• $Id^{sup}(A)$ = the set of all graded identities of A.

• Let $A = A^{(0)} \oplus A^{(1)}$ be a superalgebra. Then a polynomial $f = f(y_1, \ldots, y_n, z_1, \ldots, z_m) \in F\langle Y \cup Z \rangle$ is a graded identity or superidentity for A if

$$f(a_1,\ldots,a_n,b_1,\ldots,b_m)=0,$$

for all $a_1, ..., a_n \in A^{(0)}$ and $b_1, ..., b_m \in A^{(1)}$.

- $Id^{sup}(A)$ = the set of all graded identities of A.
- $\operatorname{supvar}(\Gamma) = \operatorname{supvar}(A) = \operatorname{the supervariety}$ of superalgebras having the elements of $\Gamma = \operatorname{Id}^{\sup}(A)$ as graded identities.

Ordinary case Graded case Involution case Graded Involution case

Ordinary case Graded case Involution case Graded Involution case

From Kemer's theory (1984) it turns out that:

Ordinary case Graded case Involution case Graded Involution case

From Kemer's theory (1984) it turns out that:

• any associative variety is generated by the Grassmann envelope of a suitable finite dimensional superalgebra.

From Kemer's theory (1984) it turns out that:

- any associative variety is generated by the Grassmann envelope of a suitable finite dimensional superalgebra.
- an associative variety is a prime variety if and only if it is generated by the Grassmann envelope of a finite dimensional simple superalgebra.

From Kemer's theory

If *F* is an algebraically closed field of characteristic zero, then a simple finite dimensional superalgebra is isomorphic to one of the following algebras:

• $M_k(F)$ with trivial grading $(M_k(F), 0)$;

•
$$M_{k,l}(F) = \begin{pmatrix} k & l \\ F_{11} & F_{12} \\ F_{21} & F_{22} \end{pmatrix}$$
 with grading $\begin{pmatrix} F_{11} & 0 \\ 0 & F_{22} \end{pmatrix}$

where F_{11} , F_{12} , F_{21} , F_{22} are $k \times k$, $k \times l$, $l \times k$ and $l \times l$ matrices respectively, $k \ge 1$ and $l \ge 1$;

• $M_k(F \oplus cF)$ with grading $(M_k(F), cM_k(F))$, where $c^2 = 1$.

Ordinary case Graded case Involution case Graded Involution cas **Problem.** to describe the T_2 -ideals of graded identities of the simple finite dimensional superalgebras,

$$Id^{sup}(M_k(F)), Id^{sup}(M_{k,l}(F)), Id^{sup}(M_k(F \oplus cF))$$

Ordinary case Graded case Involution case Graded Involution cas

Ordinary case Graded case Involution case Graded Involution case

Remark In case char F=0, it is well known that $Id^{sup}(A)$ is completely determined by its multilinear polynomials

Remark In case char F=0, it is well known that $Id^{sup}(A)$ is completely determined by its multilinear polynomials

•
$$c_n^{sup}(A) = \dim_F \left(\frac{V_n^{sup}}{V_n^{sup} \cap Id^{sup}(A)} \right)$$
 is called the *n*-th supercodimension of A .

Remark In case char F=0, it is well known that $Id^{sup}(A)$ is completely determined by its multilinear polynomials

•
$$c_n^{sup}(A) = \dim_F \left(\frac{V_n^{sup}}{V_n^{sup} \cap Id^{sup}(A)} \right)$$
 is called the *n*-th supercodimension of A .

 V_n^{sup} = the space of multilinear polynomials of degree n in the variables $y_1, z_1, \ldots, y_n, z_n$ (i.e., y_i or z_i appears in each monomial at degree 1).

Ordinary case Graded case Involution case Graded Involution cas

Ordinary case Graded case Involution case Graded Involution case

• Giambruno and Regev (1985) $c_n^{sup}(A)$ is exponentially bounded if and only if A satisfies an ordinary polynomial identity.

- Giambruno and Regev (1985) $c_n^{sup}(A)$ is exponentially bounded if and only if A satisfies an ordinary polynomial identity.
- B., Giambruno and Pipitone (2003) if A is a finitely generated superalgebra satisfying a polynomial identity, then

$$supexp(A) = \lim_{n \to \infty} \sqrt[n]{c_n^{sup}(A)}$$

exists and is a non negative integer called superexponent (or \mathbb{Z}_2 -exponent) of A.

• B., Giambruno and Pipitone (2003)

$$supexp(M_k(F)) = k^2$$

$$supexp(M_{k,l}(F)) = (k+l)^2$$

$$supexp(M_k(F \oplus cF)) = 2k^2$$

Ordinary case
Graded case
Involution case
Graded Involution cas

In general it was shown

In general it was shown

 Aljadeff and Giambruno (2011) If A is an algebra graded by a finite group G (non-necessarily abelian) satisfying an ordinary polynomial identity, then the G-exponent of A exists and is a non negative integer.

In general it was shown

 Aljadeff and Giambruno (2011) If A is an algebra graded by a finite group G (non-necessarily abelian) satisfying an ordinary polynomial identity, then the G-exponent of A exists and is a non negative integer.

Partial results were obtained by

- Di Vincenzo and Nardozza (2012) If G is a group of prime order.
- Giambruno and La Mattina (2010) If G is a finite abelian group.
- Aljadeff, Giambruno and La Mattina (2011) If A is a finitely generated algebra and G a finite abelian group.

 Karasik and Shpigelman (2016) If G is a finite group, then the G-graded codimension sequence of a finite dimensional G-simple F-algebra A is

$$c_n^G(A) \simeq \alpha n^{\frac{1-\dim_F A_\epsilon}{2}} (\dim_F A)^n$$

where α is some positive real number and A_{ϵ} denotes the identity component of A.

In the special case where A is the algebra of matrices with an arbitrary elementary G-grading the constant α was explicitly calculated.

Ordinary case Graded case Involution case Graded Involution case

Graded case Involution case Graded Involution case

The polynomial

$$Cap_{m}[T,X] = Cap_{m}[t_{1},...,t_{m};x_{1},...,x_{m-1}] =$$

$$= \sum_{\sigma \in S_{m}} (\operatorname{sgn}\sigma)t_{\sigma(1)}x_{1}t_{\sigma(2)}\cdots t_{\sigma(m-1)}x_{m-1}t_{\sigma(m)}$$

is the *m*-th graded Capelli polynomial in the homogeneous variables t_1, \ldots, t_m (x_1, \ldots, x_{m-1} are arbitrary variables).

The polynomial

$$Cap_m[T,X] = Cap_m[t_1,\ldots,t_m;x_1,\ldots,x_{m-1}] =$$

$$= \sum_{\sigma \in S_m} (\operatorname{sgn}\sigma) t_{\sigma(1)} x_1 t_{\sigma(2)} \cdots t_{\sigma(m-1)} x_{m-1} t_{\sigma(m)}$$

is the *m*-th graded Capelli polynomial in the homogeneous variables t_1, \ldots, t_m (x_1, \ldots, x_{m-1} are arbitrary variables).

Remark In particular, $Cap_m[Y, X]$ and $Cap_m[Z, X]$ denote the m-th graded Capelli polynomials in the alternanting variables of homogeneous degree zero y_1, \ldots, y_m and of homogeneous degree one z_1, \ldots, z_m , respectively.

Ordinary case Graded case Involution case Graded Involution cas

Graded Involution case

• B. (2013)

$$\operatorname{supexp}(\Gamma^{\sup}_{k^2+1,1})=k^2=\operatorname{supexp}(M_k(F))$$

$$\operatorname{supexp}(\Gamma^{\sup}_{k^2+l^2+1,2kl+1})=(k+l)^2=\operatorname{supexp}(M_{k,l}(F))$$

$$\operatorname{supexp}(\Gamma^{\sup}_{k^2+1,k^2+1}) = 2k^2 = \operatorname{supexp}(M_k(F \oplus cF)).$$

 $\Gamma^{\sup}_{M+1,L+1} =$ the T_2 -ideal generated by the polynomials Cap^0_{M+1} , Cap^1_{L+1} .

Ordinary case Graded case Involution case Graded Involution cas • Giambruno and Zaicev (2003)

$$c_n^{sup}(\Gamma_{k^2+1.1}^{\sup}) \simeq c_n^{sup}(M_k(F)).$$

• B. (2015)

$$c_n^{sup}(\Gamma_{k^2+l^2+1,2kl+1}^{\sup}) \simeq c_n^{sup}(M_{k,l}(F))$$

and

$$c_n^{sup}(\Gamma_{k^2+1,k^2+1}^{\sup}) \simeq c_n^{sup}(M_k(F \oplus cF)).$$

We consider

$$F\langle X, * \rangle = F\langle Y \cup Z \rangle$$

the free associative algebra over F with involution *

 $Y = \text{ set of symmetric variables, } y_i = x_i + x_i^*,$

Z= set of skew variables, $z_i = x_i - x_i^*$.

We consider

$$F\langle X, * \rangle = F\langle Y \cup Z \rangle$$

the free associative algebra over F with involution *

 $Y = \text{ set of symmetric variables, } y_i = x_i + x_i^*,$

Z= set of skew variables, $z_i = x_i - x_i^*$.

Let (A, *) be an algebra with involution.

- $Id^*(A)$ = the set of all *-identities of A.
- $\operatorname{var}^*(\Gamma) = \operatorname{var}^*(A) = \text{the variety of } *-\text{algebras having the elements of } \Gamma = Id^*(A) \text{ as } *-\text{identities.}$

From Rowen (1988), Giambruno and M. Zaicev (2005)

If F is an algebraically closed field of characteristic zero, then, up to isomorphisms, all *-simple finite dimensional algebras are the following ones:

- $(M_k(F), t)$ the algebra of $k \times k$ matrices with the transpose involution:
- $(M_{2m}(F), s)$ the algebra of $2m \times 2m$ matrices with the symplectic involution;
- $(M_h(F) \oplus M_h(F)^{op}, exc)$ the direct sum of the algebra of $h \times h$ matrices and the opposite algebra with the exchange involution.

Ordinary case Graded case Involution case Graded Involution case **Problem.** to describe the T-*-ideals of *-polynomial identities of *-simple finite dimensional algebras,

$$Id^*((M_k(F),t)), Id^*((M_{2m}(F),s)), Id^*((M_h(F) \oplus M_h(F)^{op}, exc))$$

Ordinary case Graded case Involution case Graded Involution case

Remark In case char F=0, it is well known that $Id^*(A)$ is completely determined by its multilinear *-polynomials

Remark In case char F=0, it is well known that $Id^*(A)$ is completely determined by its multilinear *-polynomials

•
$$c_n^*(A) = \dim\left(\frac{V_n^*}{V_n^* \cap Id^*(A)}\right)$$
 is called the *n*-th *-codimension of $(A,*)$.

Remark In case char F=0, it is well known that $Id^*(A)$ is completely determined by its multilinear *-polynomials

•
$$c_n^*(A) = \dim\left(\frac{V_n^*}{V_n^* \cap Id^*(A)}\right)$$
 is called the *n*-th *-codimension of $(A,*)$.

 V_n^* = the space of multilinear polynomials of degree n in the variables $y_1, z_1, \dots, y_n, z_n$.

Ordinary case Graded case Involution case Graded Involution ca

Ordinary case Graded case Involution case Graded Involution case

• Giambruno and Regev (1985) if A satisfies a non trivial *-polynomial identity then $c_n^*(A) \le ab^n$, for some constants a and b and for all n > 1.

- Giambruno and Regev (1985) if A satisfies a non trivial *-polynomial identity then $c_n^*(A) \le ab^n$, for some constants a and b and for all n > 1.
- Bahturin, Giambruno and Zaicev (1999) an explicit exponential bound for $c_n^*(A)$ was exhibited.

Ordinary case Graded case Involution case Graded Involution case

• Berele, Giambruno and Regev (1996)

$$c_n^*((M_k(F),t)) \simeq$$

$$\left[\sqrt{k}^{\frac{k(k-1)}{2}} \frac{1}{k!} \Gamma\left(\frac{3}{2}\right)^{-k} \prod_{j=1}^{k} \Gamma\left(1 + \frac{1}{2}j\right) \left(\frac{1}{2}\right)^{k-1} \right] \left(\frac{1}{\sqrt{2n}}\right)^{\frac{k(k-1)}{2}} k^{2n},$$

$$c_n^*((M_{2m}(F),s)) \simeq$$

$$\left[\left(\frac{1}{\sqrt{2\pi}}\right)^{m} 2^{\frac{m^{2}+m+2}{4}} m^{\frac{m(7m-1)}{4}} \frac{1}{n!} \prod_{j=1}^{m} \Gamma(2j+1) \left(\frac{1}{2n}\right)^{\frac{m(2m+1)}{2}} (2m)^{2n},\right]$$

where $\Gamma(x)$ is the Euler's gamma function.

Ordinary case Graded case Involution case Graded Involution ca B. and Valenti (2021), Giambruno, La Mattina and Polcino Milies (2020)

$$c_n^*((M_h(F)\oplus M_h(F)^{op},exc))\simeq$$

$$\left(\frac{1}{\sqrt{2\pi}}\right)^{h-1} \left(\frac{1}{2}\right)^{\frac{1}{2}(h^2+1)} 1! 2! \cdots (h-1)! h^{\frac{1}{2}(h^2+4)} n^{\frac{1-h^2}{2}} (2h^2)^n.$$

Ordinary case Graded case Involution case Graded Involution case • Giambruno and Zaicev (1999) if A is a finite dimensional algebra with involution, then

$$\exp^*(A) = \lim_{n \to \infty} \sqrt[n]{c_n^*(A)}$$

exists and is a non negative integer called *-exponent of A.

• Giambruno and Zaicev (1999) if A is a finite dimensional algebra with involution, then

$$\exp^*(A) = \lim_{n \to \infty} \sqrt[n]{c_n^*(A)}$$

exists and is a non negative integer called *-exponent of A.

• Giambruno, Polcino Milies and Valenti (2017) for any algebra with involution A, it was showed that the *-exponent of A, $\exp^*(A)$, exists and is a non negative integer.

It follows that

$$\exp^*((M_k(F),t))=k^2,$$

$$\exp^*((M_{2m}(F), 2s)) = 4m^2,$$

$$\exp^*((M_h(F) \oplus M_h(F)^{op}, exc)) = 2h^2.$$

Ordinary case Graded case Involution case Graded Involution case We denote by

$$Cap_{m}^{*}[Y,X] = Cap_{m}(y_{1},...,y_{m};x_{1},...,x_{m-1})$$

and

$$Cap_{m}^{*}[Z,X] = Cap_{m}(z_{1},...,z_{m};x_{1},...,x_{m-1})$$

the *m*-th *-Capelli polynomial in the alternating symmetric variables y_1, \ldots, y_m and skew variables z_1, \ldots, z_m , (x_1, \ldots, x_{m-1}) are arbitrary variables.

• B. and Valenti (2019)

$$\exp^*(\Gamma_{k(k+1)/2+1,k(k-1)/2+1}^*) = k^2 = \exp^*((M_k(F),t))$$

$$\exp^*(\Gamma^*_{m(2m-1)+1,m(2m+1)+1}) = 4m^2 = \exp^*((M_{2m}(F),2s))$$

$$\exp^*(\Gamma_{h^2+1,h^2+1}^*) = 2h^2 = \exp^*((M_h(F) \oplus M_h(F)^{op}, exc)).$$

 $\Gamma_{M+1,L+1}^*=$ the T-*-ideal generated by the polynomials Cap_{M+1}^+ , Cap_{L+1}^-

• B. and Valenti (2019)

$$c_n^*(\Gamma_{k(k+1)/2+1,k(k-1)/2+1}^*) \simeq c_n^*((M_k(F),t))$$

$$c_n^*(\Gamma_{m(2m-1)+1,m(2m+1)+1}^*) \simeq c_n^*((M_{2m}(F),2s))$$

$$c_n^*(\Gamma_{h^2+1,h^2+1}^*) \simeq c_n^*((M_h(F) \oplus M_h(F)^{op}, exc)).$$

- F = field, char F = 0.
- We consider the free *-superalgebra over F with graded involution *

$$F\langle Y \cup Z, * \rangle = F\langle y_1^+, y_1^-, z_1^+, z_1^-, \ldots \rangle$$

- F = field, char F = 0.
- We consider the free *-superalgebra over F with graded involution *

$$F\langle Y \cup Z, * \rangle = F\langle y_1^+, y_1^-, z_1^+, z_1^-, \ldots \rangle$$

 $y_i^+ = y_i + y_i^*$ symmetric variable of even degree, $y_i^- = y_i - y_i^*$ skew variable of even degree, $z_i^+ = z_i + z_i^*$ symmetric variable of odd degree $z_i^- = z_i - z_i^*$ skew variable of odd degree.

- F = field, char F = 0.
- We consider the free *-superalgebra over F with graded involution *

$$F\langle Y \cup Z, * \rangle = F\langle y_1^+, y_1^-, z_1^+, z_1^-, \ldots \rangle$$

 $y_i^+ = y_i + y_i^*$ symmetric variable of even degree, $y_i^- = y_i - y_i^*$ skew variable of even degree, $z_i^+ = z_i + z_i^*$ symmetric variable of odd degree $z_i^- = z_i - z_i^*$ skew variable of odd degree.

Remark Given a superalgebra $A = A_0 \oplus A_1$ endowed with an involution *, we say that * is a graded involution if it preserves the homogeneous components of A, i.e. if $A_i^* \subseteq A_i$, i = 0, 1. A superalgebra endowed with a graded involution is called *-superalgebra.

rdinary case raded case volution case

Graded Involution case

Let $A=A_0^+\oplus A_0^-\oplus A_1^+\oplus A_1^-$ be a *-superalgebra.

The polynomial

$$f = f(y_1^+, \dots, y_n^+, y_1^-, \dots, y_m^-, z_1^+, \dots, z_n^+, z_1^-, \dots, z_n^-)$$

is a *-graded polynomial identity for A if

$$f(a_{1,0}^+,\ldots,a_{n,0}^+,a_{1,0}^-,\ldots,a_{m,0}^-,a_{1,1}^+,\ldots,a_{p,1}^+,a_{1,1}^-,\ldots,a_{q,1}^-)=0$$

for all
$$a_{1,0}^+,\ldots,a_{n,0}^+\in A_0^+$$
, $a_{1,0}^-,\ldots,a_{m,0}^-\in A_0^-$, $a_{1,1}^+,\ldots,a_{p,1}^+\in A_1^+$, $a_{1,1}^-,\ldots,a_{q,1}^-\in A_1^-$.

Ordinary case Graded case Involution case Graded Involution case

• $Id_{\mathbb{Z}_2}^*(A)$ = the set of all *-graded polynomial identities of A.

• $Id_{\mathbb{Z}_2}^*(A)$ = the set of all *-graded polynomial identities of A.

• $Id_{\mathbb{Z}_2}^*(A)$ is a $T_{\mathbb{Z}_2}^*$ -ideal of $F\langle Y \cup Z, * \rangle$ i.e., a two-sided ideal invariant under all endomorphisms of the free *-superalgebra that preserve the superstructure and commute with the graded involution *.

• $Id_{\mathbb{Z}_2}^*(A)$ = the set of all *-graded polynomial identities of A.

• $Id_{\mathbb{Z}_2}^*(A)$ is a $T_{\mathbb{Z}_2}^*$ -ideal of $F\langle Y\cup Z,*\rangle$ i.e., a two-sided ideal invariant under all endomorphisms of the free *-superalgebra that preserve the superstructure and commute with the graded involution *.

• $\operatorname{var}_{\mathbb{Z}_2}^*(\Gamma) = \operatorname{var}_{\mathbb{Z}_2}^*(A) =$ the variety of *-superalgebras having the elements of $\Gamma = Id_{\mathbb{Z}_2}^*(A)$ as *-graded identities.

Ordinary case Graded case Involution case Graded Involution case

From Giambruno, dos Santos and Vieira (2016)

If F is an algebraically closed field of characteristic zero, then, up to isomorphisms, the only finite dimensional simple *-superalgebras are the following

- $(M_{h,l}(F),\diamond)$, with $h \ge l \ge 0$, $h \ne 0$;
- $(M_{h,l}(F) \oplus M_{h,l}^{op}(F), exc)$, with $h \ge l \ge 0$, $h \ne 0$, and induced grading;
- $(M_n(F+cF), \star)$, with involution given by $(a+cb)^{\star} = a^{\diamond} cb^{\diamond}$;
- $(M_n(F+cF),\dagger)$, with involution given by $(a+cb)^{\dagger}=a^{\diamond}+cb^{\diamond}$;
- $((M_n(F+cF)) \oplus (M_n(F+cF))^{op}, exc)$, with grading $(M_n \oplus M_n^{op}, c(M_n \oplus M_n^{op}))$;

where $\diamond = t, s$ denotes the transpose or symplectic involution and *exc* is the exchange involution.

rdinary case raded case volution case

Graded Involution case

Ordinary case Graded case Involution case Graded Involution case

Problem. to describe the $T_{\mathbb{Z}_2}^*$ -ideals of *-graded polynomial identities of finite dimensional simple *-superalgebras.

Remark In case charF=0, it is well known that $Id^*_{\mathbb{Z}_2}(A)$ is completely determined by its multilinear *-polynomials

Remark In case charF=0, it is well known that $Id^*_{\mathbb{Z}_2}(A)$ is completely determined by its multilinear *-polynomials

•
$$c_n^{(\mathbb{Z}_2,*)}(A) = \dim\left(\frac{V_n^{(\mathbb{Z}_2,*)}}{V_n^{(\mathbb{Z}_2,*)} \cap Id_{\mathbb{Z}_2}^*(A)}\right)$$
 is called the *n*-th *-graded codimension of the *-superalgebra A .

 $V_n^{(\mathbb{Z}_2,*)}$ = the space of multilinear polynomials of degree n in the variables y_1^+ , y_1^- , z_1^+ , z_1^- ,..., y_n^+ , y_n^- , z_n^+ , z_n^- .

Ordinary case Graded case Involution case Graded Involution case

Ordinary case Graded case Involution case Graded Involution case

• Giambruno, dos Santos and Vieira (2016) If A is a PI-algebra, i.e. satisfies an ordinary polynomial identity, then the sequence $\{c_n^{(\mathbb{Z}_2,*)}(A)\}_{n>1}$ is exponentially bounded.

- Giambruno, dos Santos and Vieira (2016) If A is a PI-algebra, i.e. satisfies an ordinary polynomial identity, then the sequence $\{c_n^{(\mathbb{Z}_2,*)}(A)\}_{n\geq 1}$ is exponentially bounded.
- Gordienko (2013) If A is a finite dimensional Pl-algebra, then

$$\exp_{\mathbb{Z}_2}^*(A) = \lim_{n \to \infty} \sqrt[n]{c_n^{(\mathbb{Z}_2,*)}(A)}$$

exists and is a non-negative integer which is called the *-graded exponent of the *-superalgebra A.

- Giambruno, dos Santos and Vieira (2016) If A is a PI-algebra, i.e. satisfies an ordinary polynomial identity, then the sequence $\{c_n^{(\mathbb{Z}_2,*)}(A)\}_{n\geq 1}$ is exponentially bounded.
- Gordienko (2013) If A is a finite dimensional Pl-algebra, then

$$\exp_{\mathbb{Z}_2}^*(A) = \lim_{n \to \infty} \sqrt[n]{c_n^{(\mathbb{Z}_2,*)}(A)}$$

exists and is a non-negative integer which is called the *-graded exponent of the *-superalgebra A.

• Giambruno, loppolo and La Mattina (2019) The existence of the *-graded exponent is extended to any finitely generated PI-*-superalgebra.

Graded Involution case

• Gordienko (2013) If A is a finite dimensional simple *-superalgebra, then

$$\exp_{\mathbb{Z}_2}^*(A) = \dim_{\mathsf{F}} A.$$

Ordinary case Graded case Involution case Graded Involution case

Ordinary case Graded case Involution case Graded Involution case

Problem. If A is a finite dimensional simple *-superalgebra, then

$$c_n^{(\mathbb{Z}_2,*)}(A) \simeq ?$$

Ordinary case
Graded case
Involution case
Graded Involution case

*-Graded Capelli Polynomials and their Asymptotics

Definition. We denote by

$$Cap_m^{(\mathbb{Z}_2,*)}[Y^+,X], \ Cap_m^{(\mathbb{Z}_2,*)}[Y^-,X],$$

$$Cap_m^{(\mathbb{Z}_2,*)}[Z^+,X]$$
 and $Cap_m^{(\mathbb{Z}_2,*)}[Z^-,X]$

the *m*-th *-graded Capelli polynomial alternating in the symmetric variables of degree zero y_1^+,\ldots,y_m^+ , in the skew variables of degree zero y_1^-,\ldots,y_m^- , in the symmetric variables of degree one z_1^+,\ldots,z_m^+ and in the skew variables of degree one z_1^-,\ldots,z_m^- , respectively (x_1,\ldots,x_{m-1}) are arbitrary variables).

• $\overline{Cap}_m^{(\mathbb{Z}_2,*)}[Y^+,X]=$ the set of 2^{m-1} polynomials obtained by deleting any subset of variables x_i from $Cap_m^{(\mathbb{Z}_2,*)}[Y^+,X]$.

- $\overline{Cap}_m^{(\mathbb{Z}_2,*)}[Y^+,X]=$ the set of 2^{m-1} polynomials obtained by deleting any subset of variables x_i from $Cap_m^{(\mathbb{Z}_2,*)}[Y^+,X]$.
- In a similar way

$$\overline{\mathit{Cap}}_m^{(\mathbb{Z}_2,*)}[Y^-,X], \ \overline{\mathit{Cap}}_m^{(\mathbb{Z}_2,*)}[Z^+,X] \ \text{ and } \overline{\mathit{Cap}}_m^{(\mathbb{Z}_2,*)}[Z^-,X].$$

- $\overline{Cap}_m^{(\mathbb{Z}_2,*)}[Y^+,X]=$ the set of 2^{m-1} polynomials obtained by deleting any subset of variables x_i from $Cap_m^{(\mathbb{Z}_2,*)}[Y^+,X]$.
- In a similar way

$$\overline{\mathit{Cap}}_m^{(\mathbb{Z}_2,*)}[Y^-,X], \ \overline{\mathit{Cap}}_m^{(\mathbb{Z}_2,*)}[Z^+,X] \ \text{ and } \overline{\mathit{Cap}}_m^{(\mathbb{Z}_2,*)}[Z^-,X].$$

• If M^+ , M^- , L^+ and L^- are natural numbers, then

$$\Gamma_{M^{\pm},L^{\pm}}^{(\mathbb{Z}_2,*)}$$

denotes the $T_{\mathbb{Z}_2}^*$ -ideal generated by $\overline{Cap}_{M^+}^{(\mathbb{Z}_2,*)}[Y^+,X]$, $\overline{Cap}_{M^-}^{(\mathbb{Z}_2,*)}[Y^-,X]$, $\overline{Cap}_{L^+}^{(\mathbb{Z}_2,*)}[Z^+,X]$ and $\overline{Cap}_{L^-}^{(\mathbb{Z}_2,*)}[Z^-,X]$.

• B. and Valenti (2021) If $A = A_0^+ \oplus A_0^- \oplus A_1^+ \oplus A_1^-$ is a finite dimensional simple *-superalgebra with $M^{\pm} = \dim A_0^{\pm}$ and $L^{\pm} = \dim A_1^{\pm}$, then

$$\exp_{\mathbb{Z}_2}^*(\Gamma_{M^\pm+1,L^\pm+1}^{(\mathbb{Z}_2,*)}) = M^+ + M^- + L^+ + L^- = \dim A = \exp_{\mathbb{Z}_2}^*(A)$$

Theorem(B. and Valenti (2021))

For suitable natural numbers M^+ , M^- , L^+ , L^- there exists a finite dimensional simple *-superalgebra A such that

$$\operatorname{var}_{\mathbb{Z}_2}^*(\Gamma_{M^{\pm}+1,L^{\pm}+1}^{(\mathbb{Z}_2,*)}) = \operatorname{var}_{\mathbb{Z}_2}^*(A \oplus D),$$

where D is a finite dimensional *-superalgebra such that $\exp_{\mathbb{Z}_2}^*(D) < M+L$, with $M=M^++M^-$ and $L=L^++L^-$.

Theorem(B. and Valenti (2021))

In particular

- 1) $A = (M_{h,l}, t)$, if $M^{\pm} = \frac{h(h\pm 1)}{2} + \frac{l(l\pm 1)}{2}$ and $L^{\pm} = hl$, $h \ge l > 0$;
- 2) $A = (M_{h,h}, s)$, if $M^{\pm} = h^2$ and $L^{\pm} = h(h \mp 1)$, h > 0;
- 3) $A = (M_{h,l} \oplus M_{h,l}^{op}, exc)$, if $M^{\pm} = h^2 + l^2$ and $L^{\pm} = 2hl$, $h \ge l > 0$;
- 4) $A = (M_n + cM_n, *)$ where $(a + cb)^* = a^t \pm cb^t$, if $M^+ = L^{\pm} = \frac{n(n+1)}{2}$, $M^- = L^{\mp} = \frac{n(n-1)}{2}$, n > 0;
- 5) $A = (M_n + cM_n, *)$ where $(a + cb)^* = a^s \pm cb^s$, if $M^+ = L^{\pm} = \frac{n(n-1)}{2}$, $M^- = L^{\mp} = \frac{n(n+1)}{2}$, n > 0;
- 6) $A = ((M_n + cM_n) \oplus (M_n + cM_n)^{op}, exc)$, if $M^{\pm} = L^{\pm} = n^2$, n > 0.

Corollary (B. and Valenti (2021))

$$c_n^{(\mathbb{Z}_2,*)}(\Gamma_{(\frac{h(h\pm 1)}{2}+\frac{l(l\pm 1)}{2})+1,hl+1}^{(\mathbb{Z}_2,*)})\simeq c_n^{(\mathbb{Z}_2,*)}((M_{h,l}(F),t)); \ c_n^{(\mathbb{Z}_2,*)}(\Gamma_{h^2+1,h(h\pm 1)+1}^{(\mathbb{Z}_2,*)})\simeq c_n^{(\mathbb{Z}_2,*)}((M_{h,h}(F),s));$$

$$c_n^{(\mathbb{Z}_2,*)}(\Gamma_{(h^2+l^2)+1,2hl+1}^{(\mathbb{Z}_2,*)}) \simeq c_n^{(\mathbb{Z}_2,*)}((M_{h,l}(F) \oplus M_{h,l}(F)^{op}, exc));$$

$$c_n^{(\mathbb{Z}_2,*)}(\Gamma_{n^2+1,n^2+1}^{(\mathbb{Z}_2,*)}) \simeq c_n^{(\mathbb{Z}_2,*)}(M_n(F+cF) \oplus M_n(F+cF)^{op}, exc);$$

Corollary (B. and Valenti (2021))

If
$$M^+ = L^{\pm} = \frac{n(n+1)}{2}$$
, $M^- = L^{\mp} = \frac{n(n-1)}{2}$, with $n > 0$, then
$$c_n^{(\mathbb{Z}_2,*)}(\Gamma_{M\pm \pm 1}^{(\mathbb{Z}_2,*)}) \simeq c_n^{(\mathbb{Z}_2,*)}((M_n(F+cF),*))$$

where
$$(a + cb)^* = a^t \pm cb^t$$
;

If
$$M^+=L^\pm=rac{n(n-1)}{2}$$
, $M^-=L^\mp=rac{n(n+1)}{2}$, with $n>0$, then

$$c_n^{(\mathbb{Z}_2,*)}(\Gamma_{M^{\pm}+1,L^{\pm}+1}^{(\mathbb{Z}_2,*)}) \simeq c_n^{(\mathbb{Z}_2,*)}((M_n(F+cF),*)$$

where
$$(a+cb)^* = a^s \pm cb^s$$
.

Ordinary case Graded case Involution case Graded Involution case

Thank You!!