Hilbert series and invariant theory of symplectic and orthogonal groups

Elitza Hristova

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

International Conference
"Trends in Combinatorial Ring Theory"
September 20-24, 2021

dedicated to the 70th anniversary of Vesselin Drensky

Joint work with Vesselin Drensky

The ground field is \mathbb{C} .

Topic of classical invariant theory: Let G be a group and let V be a finite dimensional representation of G. By $\mathbb{C}[V]$ we denote the algebra of polynomial functions on V. The goal of classical invariant theory is to describe the subalgebra of G-invariant polynomial functions

$$\mathbb{C}[V]^G = \{ f \in \mathbb{C}[V] : g \cdot f = f \text{ for all } g \in G \}$$

Joint work with Vesselin Drensky

The ground field is \mathbb{C} .

Topic of classical invariant theory: Let G be a group and let V be a finite dimensional representation of G. By $\mathbb{C}[V]$ we denote the algebra of polynomial functions on V. The goal of classical invariant theory is to describe the subalgebra of G-invariant polynomial functions

$$\mathbb{C}[V]^G = \{ f \in \mathbb{C}[V] : g \cdot f = f \text{ for all } g \in G \}$$

Questions:

- 1. Is $\mathbb{C}[V]^G$ a finitely generated algebra over \mathbb{C} ?
- 2. Is $\mathbb{C}[V]^G$ a polynomial algebra?
- 3. Can we describe $\mathbb{C}[V]^G$ in terms of generators and relations?
- 4. Can we give some upper bounds on the number of generators in a minimal generating set?

Definition

Let $A = \bigoplus_{i>0} A^i$ be a finitely generated graded algebra over $\mathbb C$ such that

 $A^0=\mathbb{C}$ or $A^0=0$. The Hilbert series of A is the formal power series

$$H(A, t) = \sum_{i>0} (\dim A^i)t^i.$$

The Hilbert series H(A, t) gives information about the lowest degree of the generators in a minimal generating set of A and the maximal number of generators in each degree.

• Let $\lambda = (\lambda_1 \ge \cdots \ge \lambda_n) \in (\mathbb{N}_0)^n$ be a non-negative integer partition. By V_{λ} we denote the irreducible $\mathrm{GL}(n)$ -module with highest weight λ .

- Let $\lambda = (\lambda_1 \ge \cdots \ge \lambda_n) \in (\mathbb{N}_0)^n$ be a non-negative integer partition. By V_{λ} we denote the irreducible $\mathrm{GL}(n)$ -module with highest weight λ .
- A finite dimensional GL(n)-module W is called **polynomial** if

$$W\cong \bigoplus_{\lambda} k(\lambda)V_{\lambda}.$$

- Let $\lambda = (\lambda_1 \ge \cdots \ge \lambda_n) \in (\mathbb{N}_0)^n$ be a non-negative integer partition. By V_λ we denote the irreducible $\mathrm{GL}(n)$ -module with highest weight λ .
- ullet A finite dimensional $\mathrm{GL}(n)$ -module W is called **polynomial** if

$$W\cong\bigoplus_{\lambda}k(\lambda)V_{\lambda}.$$

We consider the following class of algebras:

• Let $A = \bigoplus_{i \geq 0} A^i$ be a finitely generated graded algebra such that each

homogeneous component A^i is a polynomial GL(n)-module.

- Let $\lambda = (\lambda_1 \ge \cdots \ge \lambda_n) \in (\mathbb{N}_0)^n$ be a non-negative integer partition. By V_λ we denote the irreducible $\mathrm{GL}(n)$ -module with highest weight λ .
- A finite dimensional GL(n)-module W is called **polynomial** if

$$W\cong \bigoplus_{\lambda} k(\lambda)V_{\lambda}.$$

We consider the following class of algebras:

• Let $A = \bigoplus_{i \geq 0} A^i$ be a finitely generated graded algebra such that each homogeneous component A^i is a polynomial $\mathrm{GL}(n)$ -module.

Question

Determine $H(A^G, t)$, where G is O(n), SO(n), or Sp(2d) (for n = 2d).

First examples:

Let W be a polynomial GL(n)-module.

•
$$S(W) = \bigoplus_{i>0} S^i W$$
, the symmetric algebra of W . $S(W) \cong \mathbb{C}[W^*]$.

First examples:

Let W be a polynomial GL(n)-module.

- $S(W) = \bigoplus_{i \geq 0} S^i W$, the symmetric algebra of W. $S(W) \cong \mathbb{C}[W^*]$.
- $\Lambda(W) = \bigoplus_{i>0} \Lambda^i W$, the exterior algebra of W.

First examples:

Let W be a polynomial GL(n)-module.

- $S(W) = \bigoplus_{i \geq 0} S^i W$, the symmetric algebra of W. $S(W) \cong \mathbb{C}[W^*]$.
- $\Lambda(W) = \bigoplus_{i \geq 0} \Lambda^i W$, the exterior algebra of W.

More generally:

• T(W)/I, where

$$T(W) = \bigoplus_{i \geq 0} W^{\otimes i} = \mathbb{C} \oplus W \oplus (W \otimes W) \oplus (W \otimes W \otimes W) \oplus \cdots$$

is the tensor algebra of W and I is a $\mathrm{GL}(n)$ -invariant ideal in T(W).

First examples:

Let W be a polynomial GL(n)-module.

- $S(W) = \bigoplus_{i \geq 0} S^i W$, the symmetric algebra of W. $S(W) \cong \mathbb{C}[W^*]$.
- $\Lambda(W) = \bigoplus_{i \geq 0} \Lambda^i W$, the exterior algebra of W.

More generally:

• T(W)/I, where

$$T(W) = \bigoplus_{i \geq 0} W^{\otimes i} = \mathbb{C} \oplus W \oplus (W \otimes W) \oplus (W \otimes W \otimes W) \oplus \cdots$$

is the tensor algebra of W and I is a GL(n)-invariant ideal in T(W).

• Relatively free algebras of varieties of associative algebras.

Definition

Let $M=\bigoplus_{\mu\in\mathbb{N}_0^n}M(\mu)$ be a finitely generated algebra (or a vector space) with an \mathbb{N}_0^n -grading. The Hilbert series of M with respect to this grading is the formal power series $H(M,x_1,\ldots,x_n)\in\mathbb{Z}[[x_1,\ldots,x_n]]$ given by

$$H(M, x_1, \ldots, x_n) = \sum_{\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{N}_0^n} \dim M(\mu) x_1^{\mu_1} \ldots x_n^{\mu_n}.$$

Definition

Let $M=\bigoplus_{\mu\in\mathbb{N}_0^n}M(\mu)$ be a finitely generated algebra (or a vector space) with an \mathbb{N}_0^n -grading. The Hilbert series of M with respect to this grading is the formal power series $H(M,x_1,\ldots,x_n)\in\mathbb{Z}[[x_1,\ldots,x_n]]$ given by

$$H(M, x_1, \ldots, x_n) = \sum_{\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{N}_0^n} \dim M(\mu) x_1^{\mu_1} \ldots x_n^{\mu_n}.$$

• The module V_{λ} has an \mathbb{N}_0^n -grading

$$V_{\lambda} = \bigoplus_{\mu \in \mathbb{N}_0^n} V_{\lambda}(\mu),$$

where $V_{\lambda}(\mu)$ denotes the weight space corresponding to the weight μ .

Definition

Let $M=\bigoplus_{\mu\in\mathbb{N}_0^n}M(\mu)$ be a finitely generated algebra (or a vector space) with an \mathbb{N}_0^n -grading. The Hilbert series of M with respect to this grading is the formal power series $H(M,x_1,\ldots,x_n)\in\mathbb{Z}[[x_1,\ldots,x_n]]$ given by

$$H(M, x_1, \ldots, x_n) = \sum_{\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{N}_0^n} \dim M(\mu) x_1^{\mu_1} \ldots x_n^{\mu_n}.$$

• The module V_{λ} has an \mathbb{N}_{0}^{n} -grading

$$V_{\lambda} = \bigoplus_{\mu \in \mathbb{N}_0^n} V_{\lambda}(\mu),$$

where $V_{\lambda}(\mu)$ denotes the weight space corresponding to the weight μ .

ullet The Hilbert series of V_λ with respect to this grading has the form

$$H(V_{\lambda}, x_1, \ldots, x_n) = \chi_{V_{\lambda}}(x_1, \ldots, x_n) = S_{\lambda}(x_1, \ldots, x_n),$$

where $S_{\lambda}(x_1,\ldots,x_n)$ is the Schur polynomial corresponding to λ

• Any polynomial GL(n)-module $W \cong \bigoplus_{\lambda} k(\lambda) V_{\lambda}$ has an \mathbb{N}_0^n -grading. For the Hilbert series of W we get

$$H(W, x_1, \ldots, x_n) = \sum_{\lambda} k(\lambda) S_{\lambda}(x_1, \ldots, x_n) = \chi_W(x_1, \ldots, x_n).$$

• Any polynomial GL(n)-module $W \cong \bigoplus_{\lambda} k(\lambda) V_{\lambda}$ has an \mathbb{N}_0^n -grading. For the Hilbert series of W we get

$$H(W, x_1, \ldots, x_n) = \sum_{\lambda} k(\lambda) S_{\lambda}(x_1, \ldots, x_n) = \chi_W(x_1, \ldots, x_n).$$

• The algebra $A = \bigoplus A^i = \bigoplus m_i(\lambda)V_\lambda$ has two gradings – an \mathbb{N}_0 -grading and an \mathbb{N}_0^n -grading. Following a work of Benanti, Boumova, Drensky, Genov, and Koev for S(W), we introduce a Hilbert series of A which takes into account both gradings:

$$H(A, x_1, \dots, x_n, t) = \sum_{i \ge 0} H(A^i, x_1, \dots, x_n) t^i =$$

$$\sum_{i \ge 0} \chi_{A^i}(x_1, \dots, x_n) t^i = \sum_{i \ge 0} \left(\sum_{\lambda} m_i(\lambda) S_{\lambda}(x_1, \dots, x_n) \right) t^i$$

Hilbert series and multiplicity series

$$H(A, x_1, \dots, x_n, t) = \sum_{i \geq 0} \left(\sum_{\lambda} m_i(\lambda) S_{\lambda}(x_1, \dots, x_n) \right) t^i$$
$$\in \mathbb{Z}[[x_1, \dots, x_n]]^{S_n}[[t]],$$

where S_n denotes the symmetric group in n variables. Following BBDGK, we introduce the **multiplicity series** of A by

$$M(A, x_1, \ldots, x_n, t) = \sum_{i>0} \left(\sum_{\lambda} m_i(\lambda) x_1^{\lambda_1} \cdots x_n^{\lambda_n} \right) t^i.$$

By a change of variables $v_1 = x_1$, $v_2 = x_1x_2$, ..., $v_n = x_1 \cdots x_n$ one can rewrite the above series as

$$M'(A, v_1, \ldots, v_n, t) = \sum_{i \geq 0} \left(\sum_{\lambda} m_i(\lambda) v_1^{\lambda_1 - \lambda_2} \cdots v_{n-1}^{\lambda_{n-1} - \lambda_n} v_n^{\lambda_n} \right) t^i.$$

M and M' carry the information about the GL(n)-structure of A.

Elitza Hristova Hilbert series and invariant theory TCRT 2021 8 / 31

The algebra A^G for G = SL(n), O(n), SO(n), or Sp(2d)

Theorem (BBDGK, 2012)

For the Hilbert series of $A^{\mathrm{SL}(n)}$ we obtain

$$H(A^{\mathrm{SL}(n)},t)=M'(A,0,\ldots,0,1,t).$$

Theorem

Let n = 2d. For the Hilbert series of $A^{\mathrm{Sp}(2d)}$ we obtain

$$H(A^{\text{Sp}(2d)}, t) = M'(A, 0, 1, 0, 1, \dots, 0, 1, t).$$

The algebra A^G for G = SL(n), O(n), SO(n), or Sp(2d)

Theorem

For the Hilbert series of $A^{O(n)}$ we obtain

$$H(A^{\mathrm{O}(n)},t)=M_n(t),$$

where

$$M_{1}(x_{2},...,x_{n},t) = \frac{1}{2}(M(A,-1,x_{2},...,x_{n},t) + M(A,1,x_{2},...,x_{n},t)),$$

$$M_{2}(x_{3},...,x_{n},t) = \frac{1}{2}(M_{1}(-1,x_{3},...,x_{n},t) + M_{1}(1,x_{3},...,x_{n},t)),$$
......
$$M_{n}(t) = \frac{1}{2}(M_{n-1}(-1,t) + M_{n-1}(1,t)).$$

The algebra A^G for $G = \mathrm{SL}(n)$, $\mathrm{O}(n)$, $\mathrm{SO}(n)$, or $\mathrm{Sp}(2d)$

Theorem

For the Hilbert series of $A^{SO(n)}$ we obtain

$$H(A^{SO(n)},t)=M'_n(t),$$

where

$$\begin{aligned} &M'_1(v_2,\ldots,v_n,t) = \\ &\frac{1}{2}(M'(A,-1,v_2,\ldots,v_n,t) + M'(A,1,v_2,\ldots,v_n,t)), \\ &M'_2(v_3,\ldots,v_n,t) = \frac{1}{2}(M'_1(-1,v_3,\ldots,v_n,t) + M'_1(1,v_3,\ldots,v_n,t)), \\ &\dots \\ &M'_{n-1}(v_n,t) = \frac{1}{2}(M'_{n-2}(-1,v_n,t) + M'_{n-2}(1,v_n,t)), \end{aligned}$$

Elitza Hristova

 $M'_{n}(t) = M'_{n-1}(1, t).$

Applications and examples

Recall that if $A=\bigoplus_{i\geq 0}\bigoplus_{\lambda}m_i(\lambda)V_{\lambda}$ then

$$M(A, x_1, \ldots, x_n, t) = \sum_{i \geq 0} \left(\sum_{\lambda} m_i(\lambda) x_1^{\lambda_1} \cdots x_n^{\lambda_n} \right) t^i.$$

$$M'(A, v_1, \ldots, v_n, t) = \sum_{i \geq 0} \left(\sum_{\lambda} m_i(\lambda) v_1^{\lambda_1 - \lambda_2} \cdots v_{n-1}^{\lambda_{n-1} - \lambda_n} v_n^{\lambda_n} \right) t^i.$$

I.) If we know the coefficients $m_i(\lambda)$ then we can determine M and M'.

Applications and examples

Recall that if $A=\bigoplus_{i\geq 0}\bigoplus_{\lambda}m_i(\lambda)V_{\lambda}$ then

$$M(A, x_1, \ldots, x_n, t) = \sum_{i \geq 0} \left(\sum_{\lambda} m_i(\lambda) x_1^{\lambda_1} \cdots x_n^{\lambda_n} \right) t^i.$$

$$M'(A, v_1, \ldots, v_n, t) = \sum_{i \geq 0} \left(\sum_{\lambda} m_i(\lambda) v_1^{\lambda_1 - \lambda_2} \cdots v_{n-1}^{\lambda_{n-1} - \lambda_n} v_n^{\lambda_n} \right) t^i.$$

1.) If we know the coefficients $m_i(\lambda)$ then we can determine M and M'.

Examples:

Let $V = \mathbb{C}^n$ denote the natural $\mathrm{GL}(n)$ -module. Then for A we can take:

- $S(S^2V)$, $S(\Lambda^2V)$, $S(V \oplus \Lambda^2V)$;
- $\Lambda(S^2V)$ and $\Lambda(\Lambda^2V)$.

• Let $V = \mathbb{C}^n$ be the natural representation of $\mathrm{GL}(n)$ and let

$$A = T(V) / \langle [[u, v], w] : \text{ for all } u, v, w \in T(V) \rangle.$$

A is called the relatively free algebra of rank n in the variety generated by the Grassmann algebra.

• Let $V = \mathbb{C}^n$ be the natural representation of $\mathrm{GL}(n)$ and let

$$A = T(V)/\langle [[u,v],w] : \text{ for all } u,v,w \in T(V) \rangle.$$

A is called the relatively free algebra of rank n in the variety generated by the Grassmann algebra.

• Decomposition of A as a GL(n)-module: Let

$$\mathcal{P} = \{ \text{all partitions } \lambda \in \mathbb{N}_0^n : \lambda = (k, \underbrace{1, \dots, 1}_s, \underbrace{0, \dots, 0}_t), k, s, t \geq 0 \}.$$

Hence, $\mathcal P$ contains all partitions λ with Young diagram consisting of one long row and one long column. Then

$$A \cong \bigoplus_{i \geq 0} \bigoplus_{\substack{\lambda \in \mathcal{P} \\ |\lambda| = i}} V_{\lambda}.$$

• Let $V = \mathbb{C}^n$ be the natural representation of $\mathrm{GL}(n)$ and let

$$A = T(V) / \langle [[u, v], w] : \text{ for all } u, v, w \in T(V) \rangle.$$

A is called the relatively free algebra of rank n in the variety generated by the Grassmann algebra.

• Decomposition of A as a GL(n)-module: Let

$$\mathcal{P} = \{ \text{all partitions } \lambda \in \mathbb{N}_0^n : \lambda = (k, \underbrace{1, \dots, 1}_s, \underbrace{0, \dots, 0}_t), k, s, t \geq 0 \}.$$

Hence, ${\cal P}$ contains all partitions λ with Young diagram consisting of one long row and one long column. Then

$$A \cong \bigoplus_{i \geq 0} \bigoplus_{\substack{\lambda \in \mathcal{P} \\ |\lambda| = i}} V_{\lambda}.$$

• Hence, $M(A, x_1, \ldots, x_n, t) = \sum_{i \geq 0} (\sum_{\substack{\lambda \in \mathcal{P} \\ |\lambda| = i}} x_1^{\lambda_1} \cdots x_n^{\lambda_n}) t^i$.

• For the Hilbert series $H(A^{SL(n)}, t)$ and $H(A^{Sp(2d)}, t)$ we obtain:

$$H(A^{\mathrm{SL}(n)},t)=1+t^n;$$

$$H(A^{\text{Sp}(2d)}, t) = 1 + t^2 + t^4 + \dots + t^{2d}$$
, where $n = 2d$.

• For the Hilbert series $H(A^{SL(n)}, t)$ and $H(A^{Sp(2d)}, t)$ we obtain:

$$H(A^{\mathrm{SL}(n)},t)=1+t^n;$$

$$H(A^{\text{Sp}(2d)}, t) = 1 + t^2 + t^4 + \dots + t^{2d}$$
, where $n = 2d$.

• Let $\{x_1, \ldots, x_n\}$ be the standard basis for $V = \mathbb{C}^n$. The algebra $A^{\mathrm{SL}(n)}$ is generated by the standard polynomial of degree n

$$f = St_n(x_1, \ldots, x_n) = \sum_{\sigma \in S_n} sign(\sigma) x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(n)}.$$

• For the Hilbert series $H(A^{SL(n)}, t)$ and $H(A^{Sp(2d)}, t)$ we obtain:

$$H(A^{\mathrm{SL}(n)},t)=1+t^n;$$

$$H(A^{\text{Sp}(2d)}, t) = 1 + t^2 + t^4 + \dots + t^{2d}$$
, where $n = 2d$.

• Let $\{x_1, \ldots, x_n\}$ be the standard basis for $V = \mathbb{C}^n$. The algebra $A^{\mathrm{SL}(n)}$ is generated by the standard polynomial of degree n

$$f = St_n(x_1, \ldots, x_n) = \sum_{\sigma \in S_n} sign(\sigma) x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(n)}.$$

• The algebra $A^{\text{Sp}(2d)}$ is generated by

$$f = [x_1, x_{d+1}] + [x_2, x_{d+2}] + \dots + [x_d, x_{2d}].$$

• For the Hilbert series $H(A^{O(n)}, t)$ and $H(A^{SO(n)}, t)$ we obtain:

$$H(A^{O(n)},t)=\frac{1}{1-t^2};$$

$$H(A^{SO(n)},t)=\frac{1+t^n}{1-t^2}.$$

• For the Hilbert series $H(A^{O(n)}, t)$ and $H(A^{SO(n)}, t)$ we obtain:

$$H(A^{O(n)},t)=\frac{1}{1-t^2};$$

$$H(A^{SO(n)},t)=\frac{1+t^n}{1-t^2}.$$

- The algebra $A^{\mathrm{O}(n)}$ is generated by $f = x_1 \otimes x_1 + \cdots + x_n \otimes x_n$.
- The algebra $A^{SO(n)}$ is generated by the elements f_1 and f_2 , where

$$f_1 = x_1 \otimes x_1 + \dots + x_n \otimes x_n,$$

 $f_2 = St_n(x_1, \dots, x_n).$

Hilbert series for some relatively free algebras

Let $V \cong \mathbb{C}^n$ and let I be an ideal in T(V). I is called a **T-ideal** of T(V) if I is closed under all endomorphisms of T(V) as an algebra over \mathbb{C} .

Theorem (Domokos-Drensky, 1998)

Let $G \subset \operatorname{GL}(n)$ be a reductive group and let I be a T-ideal of T(V). If the algebra T(V)/I satisfies the polynomial identity $[x_1, \ldots, x_n] = 0$ for some n, then the algebra of invariants $(T(V)/I)^G$ is finitely generated.

• Let $V = \mathbb{C}^n$ with basis $\{x_1, \dots, x_n\}$ and let

$$A = T(V)/\left\langle [u_1,u_2]\otimes [u_3,u_4]: \text{ for all } u_1,\ldots,u_4\in T(V)
ight
angle$$
 .

A is called the relatively free algebra of rank n in the variety generated by the algebra of 2×2 upper triangular matrices.

• Let $V = \mathbb{C}^n$ with basis $\{x_1, \dots, x_n\}$ and let

$$A = T(V)/\langle [u_1,u_2]\otimes [u_3,u_4]: \text{ for all } u_1,\ldots,u_4\in T(V)
angle.$$

A is called the relatively free algebra of rank n in the variety generated by the algebra of 2×2 upper triangular matrices.

ullet The Hilbert series of $A^{\mathrm{Sp}(2d)}$ is

$$H(A^{\mathrm{Sp}(2d)},t)=rac{1}{1-t^2}.$$

• Let $V = \mathbb{C}^n$ with basis $\{x_1, \dots, x_n\}$ and let

$$A = T(V)/\langle [u_1,u_2]\otimes [u_3,u_4]: \text{ for all } u_1,\ldots,u_4\in T(V)
angle.$$

A is called the relatively free algebra of rank n in the variety generated by the algebra of 2×2 upper triangular matrices.

• The Hilbert series of $A^{\text{Sp}(2d)}$ is

$$H(A^{\mathrm{Sp}(2d)},t)=rac{1}{1-t^2}.$$

• $A^{\mathrm{Sp}(2d)}$ is not finitely generated. A set of generators can be defined inductively by

$$f_1 = [x_1, x_{d+1}] + [x_2, x_{d+2}] + \dots + [x_d, x_{2d}] = \sum_{i=1}^d [x_i, x_{d+i}],$$

$$f_{m+1} = \sum_{i=1}^{d} x_i \otimes f_m \otimes x_{d+i} - x_{d+i} \otimes f_m \otimes x_i, \quad m = 1, 2, \dots$$

• The Hilbert series of $A^{O(n)}$ is

$$H(A^{O(n)},t) = \frac{1-2t^2+2t^4}{(1-t^2)^3}.$$

- For the Hilbert series of $A^{SO(n)}$ we obtain
 - (i) If n = 2, then

$$H(A^{\mathrm{SO}(2)},t)=rac{1-t^2+2t^4}{(1-t^2)^3}.$$

(ii) If n = 3, then

$$H(A^{SO(3)},t) = \frac{1-2t^2+t^3+2t^4}{(1-t^2)^3}.$$

(iii) If n > 3, then

$$H(A^{SO(n)}, t) = H(A^{O(n)}, t).$$

• The algebras $A^{O(n)}$ and $A^{SO(n)}$ are not finitely generated.

Applications: Computing $H(\Lambda(W)^G, t)$ and $H(S(W)^G, t)$

II.) If the coefficients $m_i(\lambda)$ are not known, we can try to determine first $H(A, x_1, \ldots, x_n, t)$ and then M and M'.

Applications: Computing $H(\Lambda(W)^G, t)$ and $H(S(W)^G, t)$

II.) If the coefficients $m_i(\lambda)$ are not known, we can try to determine first $H(A, x_1, \ldots, x_n, t)$ and then M and M'.

Let W be a p-dimensional polynomial $\mathrm{GL}(n)$ -module. Let $\alpha_1=(\alpha_{11},\ldots,\alpha_{1n}),\ldots,\alpha_p=(\alpha_{p1},\ldots,\alpha_{pn})$ denote the weights of W (with possible repetitions). Then,

$$H(\Lambda(W), x_1, \ldots, x_n, t) = \sum_{i \geq 0} \chi_{\Lambda^i(W)}(x_1, \ldots, x_n) t^i =$$

$$\prod_{j=1}^{p} (1 + x_1^{\alpha_{j1}} \cdots x_n^{\alpha_{jn}} t).$$

$$H(S(W), x_1, \ldots, x_n, t) = \sum_{i \geq 0} \chi_{S^i(W)}(x_1, \ldots, x_n) t^i =$$

$$\prod_{j=1}^{p} \frac{1}{1 - x_1^{\alpha_{j1}} \cdots x_n^{\alpha_{jn}} t}$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Applications: Computing $H(\Lambda(W)^G, t)$ and $H(S(W)^G, t)$

A generalization of a lemma of Berele.

Lemma (Berele, 2006)

Let $X = \{x_1, \dots, x_n\}$ and let H(A, X, t) denote the Hilbert series of A. Let

$$g(X,t) = H(A,X,t) \prod_{i < j} (x_i - x_j) = \sum_{i \ge 0} (\sum_{r_{i_i} \ge 0} \alpha_i(r_{i_1}, \dots, r_{i_n}) x_1^{r_{i_1}} \cdots x_n^{r_{i_n}}) t^i,$$

for some $\alpha_i(r_{i_1},\ldots,r_{i_n})\in\mathbb{C}$. Then the multiplicity series of A is given by

$$M(A; x_1, \ldots, x_n, t) = \frac{1}{x_1^{n-1} x_2^{n-2} \cdots x_{n-2}^2 x_{n-1}} \sum_{i \geq 0} \left(\sum_{r_{i_i} > r_{i_{i+1}}} \alpha_i(r_{i_1}, \ldots, r_{i_n}) x_1^{r_{i_1}} \cdots x_n^{r_{i_n}} \right) t^i,$$

where the sum is over all $r_i = (r_{i_1}, \ldots, r_{i_n})$ such that $r_{i_1} > r_{i_2} > \cdots > r_{i_n}$.

10/10/12/12/12/

Applications: Computing $H(\Lambda(W)^G, t)$

Table: Hilbert series for n = 2

k	$H(\Lambda(S^kV)^{\mathrm{Sp}(2)=\mathrm{SL}(2)},t)$
3	$1+t^2+t^4$
4	$1 + t^5$
5	$1+t^2+t^4+t^6$
6	$1+t^3+t^4+t^7$
7	$1+t^2+t^4+t^6+t^8$
8	$1 + t^4 + t^5 + t^9$
9	$1 + t^2 + 2t^4 + 2t^6 + t^8 + t^{10}$
10	$1+t^3+t^4+t^7+t^8+t^{11}$
11	$1 + t^2 + 2t^4 + 3t^6 + 2t^8 + t^{10} + t^{12}$
12	$1 + 2t^4 + 2t^5 + 2t^8 + 2t^9 + t^{13}$
13	$1 + t^2 + 2t^4 + 4t^6 + 4t^8 + 2t^{10} + t^{12} + t^{14}$
14	$1 + t^3 + 2t^4 + 4t^7 + 4t^8 + 2t^{11} + t^{12} + t^{15}$

Applications: Computing $H(\Lambda(W)^G, t)$

Table: Hilbert series for n = 2

k	$H(\Lambda(S^kV)^{O(2)},t)$	$H(\Lambda(S^kV)^{SO(2)},t)$
3	$1+t^4$	$1+2t^2+t^4$
4	$1+t+t^4+t^5$	$1 + t + 2t^2 + 2t^3 + t^4 + t^5$
5	$1+3t^4$	$1 + 3t^2 + 3t^4 + t^6$
6	$1 + t + t^3 + 4t^4 + 3t^5$	$1 + t + 3t^2 + 5t^3 + 5t^4 + 3t^5 + t^6 + t^7$
7	$1+7t^4+t^8$	$1 + 4t^2 + 8t^4 + 4t^6 + t^8$
8	$1 + t + 2t^3 + 9t^4 + 9t^5 +$	$1 + t + 4t^2 + 8t^3 + 12t^4 + 12t^5 +$
	$2t^6 + t^8 + t^9$	$8t^6 + 4t^7 + t^8 + t^9$
9	$1 + 14t^4 + 4t^6 + 5t^8$	$1 + 5t^2 + 18t^4 + 18t^6 + 5t^8 + t^{10}$
10	$1 + t + 4t^3 + 17t^4 + 21t^5 +$	$1 + t + 5t^2 + 13t^3 + 24t^4 + 32t^5 +$
	$11t^6 + 7t^7 + 9t^8 + 5t^9$	$32t^6 + 24t^7 + 13t^8 + 5t^9 + t^{10} + t^{11}$
11	$1 + 24t^4 + 19t^6 + 24t^8 + t^{12}$	$1 + 6t^2 + 33t^4 + 58t^6 + 33t^8 + 6t^{10} + t^{12}$

TCRT 2021

Applications: Computing $H(\Lambda(W)^G, t)$

Table: Hilbert series for n = 3

k	$H(\Lambda(S^kV)^{\mathrm{O}(3)},t)$	$H(\Lambda(S^kV)^{SO(3)},t)$
3	$1 + 2t^4 + 2t^6 + t^{10}$	$1 + 3t^3 + 2t^4 + 2t^6 + 3t^7 + t^{10}$
4	$1 + t + 3t^4 + 12t^5 + 15t^6 + 8t^7 +$	$1+t+3t^4+12t^5+15t^6+8t^7+$
	$8t^8 + 15t^9 + 12t^{10} + 3t^{11} +$	$8t^8 + 15t^9 + 12t^{10} + 3t^{11} + t^{14} + t^{15}$
	$t^{14} + t^{15}$	
5	$1 + 10t^4 + 60t^6 + 158t^8 + 294t^{10} +$	$1 + 7t^3 + 10t^4 + 15t^5 + 60t^6 +$
	$210t^{12} + 125t^{14} + 15t^{16} + 7t^{18}$	$125t^7 + 158t^8 + 210t^9 + 294t^{10} +$
		$294t^{11} + 210t^{12} + 158t^{13} + 125t^{14} +$
		$60t^{15} + 15t^{16} + 10t^{17} + 7t^{18} + t^{21}$

Similarly, we computed $H(\Lambda(S^3V)^{O(n)},t)$, $H(\Lambda(S^3V)^{SO(n)},t)$, and $H(\Lambda(S^3V)^{\text{Sp}(2k)}, t)$ for n = 4 and n = 5.

We use an algorithm of Benanti, Boumova, Drensky, Genov, and Koev for computing M and M'. This algorithm is based on Berele's lemma.

Table: Hilbert series for n = 2

W	$H(S(W)^{O(2)},t)$	$H(S(W)^{SO(2)},t)$
$V=\mathbb{C}^2$	$\frac{1}{1-t^2}$	$\frac{1}{1-t^2}$
S^2V	$\frac{1}{(1-t)(1-t^2)}$	$\frac{1}{(1-t)(1-t^2)}$
S^3V	$\frac{1}{(1-t^2)^2(1-t^4)}$	$\frac{1+t^4}{(1-t^2)^2(1-t^4)}$
S ⁴ V	$\frac{1}{(1-t)(1-t^2)^2(1-t^3)}$	$rac{1+t^3}{(1-t)(1-t^2)^2(1-t^3)}$
S^5V	$\frac{1+t^2+3t^4+4t^6+5t^8+4t^{10}+3t^{12}+t^{14}+t^{16}}{(1-t^8)(1-t^6)(1-t^4)(1-t^2)^2}$	$\frac{1+t^2+6t^4+9t^6+12t^8+9t^{10}+6t^{12}+t^{14}+t^{16}}{(1-t^8)(1-t^6)(1-t^4)(1-t^2)^2}$
S ⁶ V	$\frac{1+t^2+t^3+2t^4+t^5+2t^6+t^7+t^8+t^{10}}{(1-t)(1-t^2)^2(1-t^3)(1-t^4)(1-t^5)}$	$\frac{1+t^2+3t^3+4t^4+4t^5+4t^6+3t^7+t^8+t^{10}}{(1-t)(1-t^2)^2(1-t^3)(1-t^4)(1-t^5)}$
$\Lambda^2 V$	$\frac{1}{1-t^2}$	$\frac{1}{1-t}$
$V_{(3,1)}$	$\frac{1}{(1-t^2)^2}$	$\frac{1}{(1-t)(1-t^2)}$
V _(5,1)	$rac{1+t^4}{(1-t^2)^3(1-t^3)}$	$\frac{1+t^3}{(1-t)(1-t^2)^2(1-t^3)}$

Table: Hilbert series for n = 2

W	$H(S(W)^{\mathrm{O}(2)},t)$	$H(S(W)^{SO(2)},t)$
$V \oplus V$	$\frac{1}{(1-t^2)^3}$	$\frac{1+t^2}{(1-t^2)^3}$
$V \oplus S^2V$	$rac{1}{(1-t)(1-t^2)^2(1-t^3)}$	$rac{1+t^3}{(1-t)(1-t^2)^2(1-t^3)}$
$S^2V \oplus S^2V$	$rac{1}{(1-t)^2(1-t^2)^3}$	$\frac{1+t^2}{(1-t)^2(1-t^2)^3}$
$V \oplus \Lambda^2 V$	$\frac{1}{(1-t^2)^2}$	$\frac{1}{(1-t)(1-t^2)}$
$S^2V\oplus \Lambda^2V$	$\frac{1}{(1-t)(1-t^2)^2}$	$\frac{1}{(1-t)^2(1-t^2)}$
$\Lambda^2 V \oplus \Lambda^2 V$	$\frac{1+t^2}{(1-t^2)^2}$	$\frac{1}{(1-t)^2}$
$V \oplus V \oplus V$	$\frac{1+t^2+t^4}{(1-t^2)^5}$	$\frac{1+4t^2+t^4}{(1-t^2)^5}$
$V \oplus V \oplus S^2V$	$\frac{(1+t+t^2+t^3+t^4)(1+t^3)}{(1-t^2)^4(1-t^3)^2}$	$\frac{1+2t^2+4t^3+2t^4+t^6}{(1-t)(1-t^2)^3(1-t^3)^2}$
$V \oplus S^3V$	$\frac{1+t^2+3t^4+t^6+t^8}{(1-t^2)^3(1-t^4)^2}$	$\frac{1+2t^2+8t^4+2t^6+t^8}{(1-t^2)^3(1-t^4)^2}$
$V \oplus S^4V$	$\frac{(1+t^4)(1+t+t^2+t^3+t^4+t^5+t^6)}{(1-t^2)^3(1-t^3)^2(1-t^5)}$	$\frac{1+t^2+4t^4+t^5+t^7}{(1-t^2)^3(1-t^3)(1-t^5)(1-t^6)}$
		400400450450 5 4

Let n = 3 and $W = S^3V$. Then we obtain that

$$H(S(W)^{\mathrm{O}(3)},t) = rac{(1+t^4)(1+t^6)(1+t^2+t^4+3t^6+5t^8+3t^{10}+t^{12}+t^{14}+t^{16})}{(1-t^2)(1-t^4)^3(1-t^6)^2(1-t^{10})}.$$

and

$$H(S(W)^{SO(3)}, t) = \frac{t^{14} + t^{13} - 2t^{11} + t^9 + 5t^8 + 5t^7 + 5t^6 + t^5 - 2t^3 + t + 1}{(1 - t^3)^2 (1 - t^5)(1 - t^2)^2 (1 - t^4)^2 (1 + t)}$$

Let
$$n=3$$
 and $W=S^4V$. Then,
$$H(S(W)^{\mathrm{O}(3)},t)=H(S(W)^{\mathrm{SO}(3)},t)= \\ \frac{A(t)}{(1-t^7)(1-t^5)^2(1-t^4)^2(1-t^3)^4(1-t^2)^3},$$

where

$$A(t) = t^{28} + t^{27} + 3t^{24} + 9t^{23} + 17t^{22} + 22t^{21} + 28t^{20} + 41t^{19} + 63t^{18} + 85t^{17} + 107t^{16} + 118t^{15} + 121t^{14} + 118t^{13} + 107t^{12} + 85t^{11} + 63t^{10} + 41t^{9} + 28t^{8} + 22t^{7} + 17t^{6} + 9t^{5} + 3t^{4} + t + 1.$$

Let
$$n=3$$
 and $W=V_{(3,1,0)}$. Then,
$$H(S(W)^{\mathrm{O}(3)},t)=H(S(W)^{\mathrm{SO}(3)},t)= \frac{A(t)}{(1-t^5)^2(1-t^4)^3(1-t^3)^4(1-t^2)^3(1+t)},$$

where

$$A(t) = t^{26} + t^{25} + 9t^{22} + 22t^{21} + 50t^{20} + 79t^{19} + 120t^{18} + 160t^{17} + 221t^{16} + 269t^{15} + 325t^{14} + 339t^{13} + 325t^{12} + 269t^{11} + 221t^{10} + 160t^{9} + 120t^{8} + 79t^{7} + 50t^{6} + 22t^{5} + 9t^{4} + t + 1.$$

Applications: Coregular O(2)- and O(3)-representations

- Let G be a reductive complex linear algebraic group. A finite dimensional representation W of G is called *coregular* if the algebra of invariants $\mathbb{C}[W]^G$ is regular, i.e. isomorphic to a polynomial algebra.
- The irreducible coregular representations of connected simple complex algebraic groups were classified by Kac, Popov and Vinberg in 1976.
- The reducible coregular representations of connected simple complex algebraic groups were classified by Schwarz in 1978.

Question: What can we say about $\mathbb{C}[W]^{O(n)}$?

We use that if

$$H(\mathbb{C}[W]^{\mathrm{O}(n)},t)=rac{p(t)}{\prod_i(1-t^{h_i})}, \quad ext{where } p(t)=\sum_j t^{l_j}.$$

and if $p(t) \neq 1$ then $\mathbb{C}[W]^{\mathrm{O}(n)}$ is not polynomial, hence W is not coregular.

Coregular O(2)- and O(3)-representations

Theorem

Let W be a polynomial $\mathrm{GL}(2)$ -module. If the algebra $S(W)^{\mathrm{O}(2)}$ is polynomial, then up to an $\mathrm{O}(2)$ -isomorphism W is one of the following:

- (1) V, S^2V , S^3V , S^4V , Λ^2V , $V_{(3,1)}$;
- (2) $V \oplus V$, $V \oplus S^2V$, $S^2V \oplus S^2V$, $V \oplus \Lambda^2V$, $S^2V \oplus \Lambda^2V$.

Theorem

Let W be a polynomial $\mathrm{GL}(3)$ -module. If the algebra $S(W)^{\mathrm{O}(3)}$ is polynomial, then up to an $\mathrm{O}(3)$ -isomorphism W is one of the following:

- (1) V, S^2V , Λ^2V , Λ^3V ;
- (2) $V \oplus V$, $V \oplus S^2V$, $V \oplus \Lambda^2V$, $V \oplus \Lambda^3V$, $S^2V \oplus \Lambda^3V$, $\Lambda^2V \oplus \Lambda^2V$, $\Lambda^2V \oplus \Lambda^3V$;
- (3) $V \oplus V \oplus V$, $V \oplus V \oplus \Lambda^3 V$, $\Lambda^2 V \oplus \Lambda^2 V \oplus \Lambda^3 V$.

The end

Thank you for your attention!