Fine gradings on classical simple real Lie algebras

M. Kotchetov

Department of Mathematics and Statistics Memorial University of Newfoundland

Trends in Combinatorial Ring Theory
International Conference
Dedicated to the 70th Anniversary of Vesselin Drensky
Sofia, 20–24 September 2021

Outline

- Gradings on algebras
 - Definitions and examples
 - Refinement and coarsening
 - Classification problems for gradings
 - Transfer of gradings
- Gradings on simple Lie algebras
 - Types A₁ and G₂
 - Classical except A₁ and D₄
- Gradings on associative algebras (with involution)
 - Graded-division algebras
 - Involutions and sesquilinear forms
 - Fine gradings

Gradings and (semi)group gradings

Let A be a nonassociative algebra over a field \mathbb{F} .

Definition (Grading on an algebra)

A *grading* on \mathcal{A} is a vector space decomposition $\Gamma:\mathcal{A}=\bigoplus_{s\in\mathcal{S}}\mathcal{A}_s$ such that, whenever $\mathcal{A}_x\mathcal{A}_y\neq 0$, there exists a unique $z\in\mathcal{S}$ such that $\mathcal{A}_x\mathcal{A}_y\subseteq\mathcal{A}_z$. This gives a partially defined operation on \mathcal{S} : x*y:=z.

Definition (*G*-graded algebra)

Let G be a (semi)group, written multiplicatively.

- A *G-grading* on \mathcal{A} is a vector space decomposition $\Gamma: \mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$ such that $\mathcal{A}_g \mathcal{A}_h \subseteq \mathcal{A}_{gh}$ for all $g, h \in G$.
- (A, Γ) is said to be a *G-graded algebra*, and A_g is its homogeneous component of degree g.

 $\Gamma: \mathcal{A} = \bigoplus_{s \in S} \mathcal{A}_s$ is a *(semi)group grading* if there exists a (semi)group G and $\iota: S \hookrightarrow G$ such that $\mathcal{A}_x \mathcal{A}_y \neq 0 \Rightarrow \iota(x * y) = \iota(x)\iota(y)$.

Universal grading groups

Example (Gradings from matrix units)

 $M_n(\mathbb{F}) = \bigoplus_{1 \leq i,j \leq n} \mathbb{F} E_{ij}$ is a semigroup grading, but not a group grading. $M_n(\mathbb{F}) = \operatorname{Span} \{E_{11}, \dots, E_{nn}\} \oplus \bigoplus_{1 \leq i \neq j \leq n} \mathbb{F} E_{ij}$ is an ab. group grading.

The *support* of a *G*-grading Γ is the set $\operatorname{Supp}\Gamma:=\{g\in G\mid \mathcal{A}_g\neq 0\}.$

Fact: For any semigroup grading on a simple Lie algebra, the support generates an abelian group.

Elduque 2021: There exists a non-semigroup gradings on $\mathfrak{so}_{26}(\mathbb{C})$.

Definition (Universal group and universal abelian group)

The *universal (abelian) group* of $\Gamma: \mathcal{A} = \bigoplus_{s \in S} \mathcal{A}_s$, where all $\mathcal{A}_s \neq 0$, is the (abelian) group $U(\Gamma)$ with generating set S and defining relations xy = z whenever $0 \neq \mathcal{A}_x \mathcal{A}_y \subseteq \mathcal{A}_z$ (i.e., xy = x * y whenever defined).

 $S \hookrightarrow U(\Gamma) \Leftrightarrow \Gamma$ is an (ab.) group grading. Then Γ is a $U(\Gamma)$ -grading, and this is universal among realizations (G, ι) .

Examples of abelian group gradings

Example

The following is a \mathbb{Z} -grading on $\mathfrak{g}=\mathfrak{sl}_2(\mathbb{C})$: $\mathfrak{g}=\mathfrak{g}_{-1}\oplus\mathfrak{g}_0\oplus\mathfrak{g}_1$ where

$$\mathfrak{g}_{-1} = \text{Span}\,\{\left[\begin{smallmatrix} 0 & 0 \\ 1 & 0 \end{smallmatrix} \right]\},\, \mathfrak{g}_0 = \text{Span}\,\{\left[\begin{smallmatrix} 1 & 0 \\ 0 & -1 \end{smallmatrix} \right]\},\, \mathfrak{g}_1 = \text{Span}\,\{\left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix} \right]\}.$$

This can also be regarded as a \mathbb{Z}_m -grading for any m > 2, but the universal group is \mathbb{Z} .

Example (Cartan grading)

Let $\mathfrak g$ be a s.s. Lie algebra over $\mathbb C,\,\mathfrak h$ a Cartan subalgebra. Then

$$\mathfrak{g}=\mathfrak{h}\oplus(igoplus_{lpha\in\Phi}\mathfrak{g}_lpha)$$

can be viewed as a grading by the root lattice $\langle \Phi \rangle$. Supp $\Gamma = \{0\} \cup \Phi$; $U(\Gamma) = \langle \Phi \rangle \cong \mathbb{Z}^r$ where $r = \dim \mathfrak{h}$.

Examples continued

Example (Pauli grading on $\mathfrak{sl}_2(\mathbb{C})$)

The Pauli matrices $\sigma_3 = \left[\begin{smallmatrix} 1 & 0 \\ 0 & -1 \end{smallmatrix} \right], \ \sigma_1 = \left[\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix} \right], \ \sigma_2 = \left[\begin{smallmatrix} 0 & -i \\ i & 0 \end{smallmatrix} \right]$ define a grading on $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$ by $\mathbb{Z}_2 \times \mathbb{Z}_2$, namely, $\mathfrak{g} = \mathfrak{g}_a \oplus \mathfrak{g}_b \oplus \mathfrak{g}_c$ where

$$\mathfrak{g}_{\textit{a}} = \text{Span}\,\{\left[\begin{smallmatrix} 1 & 0 \\ 0 & -1 \end{smallmatrix}\right]\},\, \mathfrak{g}_{\textit{b}} = \text{Span}\,\{\left[\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}\right]\},\, \mathfrak{g}_{\textit{c}} = \text{Span}\,\{\left[\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix}\right]\};$$

Supp $\Gamma = \{a, b, c\}$; $U(\Gamma) = \mathbb{Z}_2^2 = \{e, a, b, c\}$.

Example (Generalized Pauli grading on $M_n(\mathbb{F})$, $\mathfrak{gl}_n(\mathbb{F})$ and $\mathfrak{sl}_n(\mathbb{F})$)

If \mathbb{F} contains a primitive n-th root of unity ε , then the matrices

$$X = \begin{bmatrix} \varepsilon^{n-1} & 0 & \dots & 0 & 0 \\ 0 & \varepsilon^{n-2} & \dots & 0 & 0 \\ \dots & & & & & \\ 0 & 0 & \dots & \varepsilon & 0 \\ 0 & 0 & \dots & 0 & 1 \end{bmatrix} \text{ ("clock") and } Y = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \dots & & & & & \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & 0 & \dots & 0 & 0 \end{bmatrix} \text{ ("shift")}.$$

define a grading on $\mathbb{R}=M_n(\mathbb{F})$ by $\mathbb{Z}_n^2=\langle a,b\rangle$, namely, $\mathbb{R}_{a^ib^j}=\mathbb{F}X^iY^j$.

Gradings induced by group homomorphisms

Given $\Gamma: \mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$, a group homomorphism $\alpha \colon G \to H$ induces ${}^{\alpha}\Gamma: \mathcal{A} = \bigoplus_{h \in H} \mathcal{A}'_h$ where $\mathcal{A}'_h = \bigoplus_{g \in \alpha^{-1}(h)} \mathcal{A}_g$.

Example (Gradings on polynomial algebra by assigning weights)

 $\mathbb{F}[x_1,\ldots,x_n]=\bigoplus_{h\in H}\mathcal{A}_h$ with $\mathcal{A}_h=\operatorname{Span}\{x_1^{k_1}\cdots x_n^{k_n}\mid w_1^{k_1}\cdots w_n^{k_n}=h\}$ is induced from the standard \mathbb{Z}^n -grading by $e_i\mapsto w_i\in H$ (ab. group).

Example (\mathbb{Z}_2 -gradings on $\mathfrak{sl}_2(\mathbb{F})$)

Let $\Gamma: \mathfrak{sl}_2(\mathbb{F}) = \operatorname{Span} \{ \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \} \oplus \operatorname{Span} \{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \} \oplus \operatorname{Span} \{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \}$ be the Cartan grading and $\alpha: \mathbb{Z} \to \mathbb{Z}_2$ be the quotient map. Then ${}^{\alpha}\Gamma: \mathfrak{sl}_2(\mathbb{F}) = \operatorname{Span} \{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \} \oplus \operatorname{Span} \{ \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \}.$

- \mathbb{F} is a.c. \Rightarrow any nontrivial homomorphisms $\mathbb{Z}_2^2 \to \mathbb{Z}_2$ induces from the Pauli grading on $\mathfrak{sl}_2(\mathbb{F})$ a \mathbb{Z}_2 -grading isomorphic to the above.
- $\mathbb{F}=\mathbb{R}\Rightarrow$ one of the homomorphisms $\mathbb{Z}_2^2\to\mathbb{Z}_2$ induces the \mathbb{Z}_2 -grading $\mathfrak{sl}_2(\mathbb{F})=\operatorname{Span}\{\left[\begin{smallmatrix}0&1\\-1&0\end{smallmatrix}\right]\}\oplus\operatorname{Span}\{\left[\begin{smallmatrix}1&0\\0&-1\end{smallmatrix}\right],\left[\begin{smallmatrix}0&1\\1&0\end{smallmatrix}\right]\}$, which is not isomorphic to the above (the identity comp. is not ad-diagonalizable).

Refinements, coarsenings, and fine group gradings

Definition

Consider a G-grading $\Gamma: \mathcal{A} = \bigoplus_{g \in S \subseteq G} \mathcal{A}_g$ and an H-grading $\Gamma': \mathcal{A} = \bigoplus_{h \in S' \subseteq H} \mathcal{A}'_h$. We say that Γ' is a *coarsening* of Γ (or Γ is a *refinement* of Γ') if for any $g \in G$ there exists $h \in H$ such that $\mathcal{A}_g \subseteq \mathcal{A}'_h$. If we have \neq for some $g \in S = \operatorname{Supp} \Gamma$, then Γ a *proper* refinement of Γ' . A grading is *fine* if it does not have proper refinements.

Example

 $\mathfrak{sl}_2(\mathbb{C}) = \operatorname{Span}\left\{\left[\begin{smallmatrix} 1 & 0 \\ 0 & -1 \end{smallmatrix}\right]\right\} \oplus \operatorname{Span}\left\{\left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix}\right], \left[\begin{smallmatrix} 0 & 0 \\ 1 & 0 \end{smallmatrix}\right]\right\} \text{ is a } \mathbb{Z}_2\text{-grading that is a proper coarsening of the Cartan grading and also of the Pauli grading.}$

Fact: If G is the universal group of Γ , then for any coarsening Γ' there exists a homomorphism $\alpha: G \to H$ such that $\Gamma' = {}^{\alpha}\Gamma$.

Example (Fine elementary grading on $M_n(\mathbb{F})$)

The group grading $M_n(\mathbb{F}) = \operatorname{Span} \{E_{11}, \dots, E_{nn}\} \oplus \bigoplus_{1 \leq i \neq j \leq n} \mathbb{F} E_{ij}$ is fine. (But it has a proper refinement that is not a group grading.)

Isomorphism and equivalence

Definition (Homomorphism of graded algebras)

Let $\mathcal{A}=\bigoplus_{g\in G}\mathcal{A}_g$ and $\mathcal{A}'=\bigoplus_{g\in G}\mathcal{A}'_g$ be G-graded algebras. A homomorphism of graded algebras (or graded homomorphism) is an algebra map $\psi:\mathcal{A}\to\mathcal{A}'$ such that $\psi(\mathcal{A}_g)\subseteq\mathcal{A}'_g$ for all $g\in G$.

In particular, \mathcal{A} and \mathcal{A}' are isomorphic as G-graded algebras (or graded-isomorphic) if there exists a graded isomorphism $\mathcal{A} \to \mathcal{A}'$.

Definition (Equivalence of graded algebras)

Let $\mathcal A$ be an algebra with a G-grading $\Gamma:\mathcal A=\bigoplus_{g\in\mathcal S\subseteq G}\mathcal A_g$ and $\mathcal A'$ be an algebra with an H-grading $\Gamma':\mathcal A'=\bigoplus_{h\in\mathcal S'\subseteq H}\mathcal A'_h$. Then $\mathcal A$ and $\mathcal A'$ are equivalent if there exists an algebra isomorphism $\psi:\mathcal A\to\mathcal A'$ and a bijection $\alpha\colon\mathcal S\to\mathcal S'$ such that $\psi(\mathcal A_g)=\mathcal A'_{\alpha(g)}$ for all $g\in\mathcal S$.

If G and H are universal groups, then α extends to a group isomorphism $G \to H$ and the condition on ψ says that it is a graded isomorphism $(A, {}^{\alpha}\Gamma) \to (A', \Gamma')$.

Classification problems

Definition

- Two G-gradings on \mathcal{A} , $\Gamma:\mathcal{A}=\bigoplus_{g\in G}\mathcal{A}_g$ and $\Gamma':\mathcal{A}=\bigoplus_{g\in G}\mathcal{A}_g'$, are *isomorphic* if \exists an algebra automorphism $\psi:\mathcal{A}\to\mathcal{A}$ such that $\psi(\mathcal{A}_g)=\mathcal{A}_g'$ for all $g\in G$ (i.e., $(\mathcal{A},\Gamma)\cong (\mathcal{A},\Gamma')$ as G-graded alg.)
- A G-grading $\mathcal{A} = \bigoplus_{g \in S \subseteq G} \mathcal{A}_g$ and an H-grading $\mathcal{A} = \bigoplus_{h \in S' \subseteq H} \mathcal{A}'_h$ are *equivalent* if \exists an algebra automorphism $\psi : \mathcal{A} \to \mathcal{A}$ and a bijection $\alpha \colon S \to S'$ such that $\psi(\mathcal{A}_g) = \mathcal{A}'_{\alpha(g)}$ for all $g \in S$.

Given a "nice" algebra A, classify

- fine (abelian) group gradings on A up to equivalence;
- all G-gradings on A up to isomorphism, for a fixed group G.

If we classified G-gradings on \mathcal{A} for any G, it is still not trivial to determine which of them are fine and which of them are equivalent.

If $\dim \mathcal{A} < \infty$ then for any G-grading Γ on \mathcal{A} , \exists a fine grading Δ on \mathcal{A} and a homom. $\alpha: U(\Delta) \to G$ such that $\Gamma = {}^{\alpha}\Delta$, but it is often hard to determine which of the induced gradings are isomorphic.

A transfer theorem

Let $\mathbb F$ be an arbitrary field. Let $\mathcal A$ and $\mathcal B$ be f.d. algebras over $\mathbb F$, each with any number of multilinear operations.

Theorem

Suppose we have a homomorphism $\theta \colon \mathbf{Aut}_{\mathbb{F}}(\mathcal{A}) \to \mathbf{Aut}_{\mathbb{F}}(\mathcal{B})$.

Then, for any abelian group G, we have a mapping, $\Gamma \mapsto \theta(\Gamma)$, from G-gradings on \mathfrak{B} .

If Γ and Γ' are isomorphic then $\theta(\Gamma)$ and $\theta(\Gamma')$ are isomorphic.

For any group homomorphism $\alpha \colon G \to H$, we have $\theta({}^{\alpha}\Gamma) = {}^{\alpha}(\theta(\Gamma))$.

Corollary

If θ is an isomorphism then $\mathcal A$ and $\mathcal B$ have the same classification of G-gradings up to isomorphism and fine gradings up to equivalence.

Type $A_1 \Leftrightarrow$ quaternion algebras

Let Ω be a quaternion algebra over \mathbb{F} . Then $\operatorname{Aut}_{\mathbb{F}}(\Omega)$ is smooth. Assume $\operatorname{char} \mathbb{F} \neq 2$. Then $\operatorname{Aut}_{\overline{\mathbb{F}}}(\Omega_{\overline{\mathbb{F}}})$ is a simple alg. group of type A_1 and $\mathcal{L} := [\Omega, \Omega]$ is a simple Lie algebra of type A_1 . The "restriction" map $\operatorname{Aut}_{\mathbb{F}}(\Omega) \to \operatorname{Aut}_{\mathbb{F}}(\mathcal{L})$ is an isomorphism.

 $\mathbb{F}=\mathbb{R}\Rightarrow$ two simple Lie algebras of type A_1 : the split real form $\mathfrak{sl}_2(\mathbb{R})$ and the compact real form $\mathfrak{so}_3(\mathbb{R})$, which correspond to $\mathbb{Q}=\mathbb{H}_s$ and \mathbb{H} . Hence, $\mathfrak{sl}_2(\mathbb{R})$ has 2 fine gradings up to equivalence (Cartan and Pauli, with universal groups \mathbb{Z} and \mathbb{Z}_2^2), while $\mathfrak{so}_3(\mathbb{R})$ has 1 (only Pauli).

The G-gradings induced from the Cartan grading on \mathbb{H}_s are

$$\Gamma(g)$$
: $\operatorname{deg}\begin{bmatrix}0 & 1\\0 & 0\end{bmatrix} = g^{-1}$, $\operatorname{deg}\begin{bmatrix}1 & 0\\0 & -1\end{bmatrix} = e$, $\operatorname{deg}\begin{bmatrix}0 & 0\\1 & 0\end{bmatrix} = g^{-1}$.

 $\Gamma(g)$ and $\Gamma(g')$ are isomorphic $\Leftrightarrow g' \in \{g,g^{-1}\}.$

The remaining G-gradings are parametrized by (T,μ) where $T \leq G$, $T \cong \mathbb{Z}_2^r$ with $0 \leq r \leq 2$, and $\mu: T \to \{\pm 1\}$ is a character (trivial for \mathbb{H}).

12/25

Type $G_2 \Leftrightarrow$ octonion algebras

Let \mathcal{C} be a Cayley algebra over \mathbb{F} . Then $\mathbf{Aut}_{\mathbb{F}}(\mathcal{C})$ is smooth.

Assume $\operatorname{char} \mathbb{F} \neq 2,3$. Then $\operatorname{Aut}_{\overline{\mathbb{F}}}(\mathcal{C}_{\overline{\mathbb{F}}})$ is a simple alg. group of type G_2 and $\mathcal{L} := \operatorname{Der}_{\mathbb{F}}(\mathcal{C})$ is a simple Lie algebra of type G_2 .

 $\mathrm{Ad}: \mathbf{Aut}_{\mathbb{F}}(\mathfrak{C}) \to \mathbf{Aut}_{\mathbb{F}}(\mathcal{L})$ is an isomorphism.

Hence, Ad gives a bijection between (isom. classes of) G-gradings on \mathcal{C} and \mathcal{L} , also between (equiv. classes of) fine gradings on \mathcal{C} and \mathcal{L} . Ad maps a grading $\mathcal{C} = \bigoplus_{g \in G} \mathcal{C}_g$ to the following grading on \mathcal{L} : $\mathcal{L}_g := \{D \in \operatorname{Der}_{\mathbb{F}}(\mathcal{C}) \mid D(\mathcal{C}_h) \subseteq \mathcal{C}_{gh} \ \forall h \in G\}.$

Theorem (Elduque 1998)

Any nontrivial grading on a Cayley algebra is, up to equivalence, either a grading induced by the Cayley–Dickson doubling process or a coarsening of the Cartan grading on the split Cayley algebra.

This leads to a classification of gradings on \mathcal{C} (Elduque–K. 2018).

 $\mathbb{F}=\mathbb{R}$ (CDM 2010) \Rightarrow 2 fine gradings on \mathbb{O}_s and split G_2 (with universal groups \mathbb{Z}^2 and \mathbb{Z}_2^3) and 1 on \mathbb{O} and compact G_2 (only \mathbb{Z}_2^3).

A, B, C, D \Leftrightarrow central simple assoc. alg. with involution

Assume $\operatorname{char} \mathbb{F} \neq 2$. Let \mathcal{R} be a f.d. central simple associative algebra over \mathbb{F} , $\dim_{\mathbb{F}} \mathcal{R} = n^2$, and φ be an \mathbb{F} -linear involution on \mathcal{R} such that

 B_r : $n = 2r + 1 \ (\Rightarrow \mathcal{R} \cong M_n(\mathbb{F})$ and φ is orthogonal), $r \geq 2$;

 C_r : n = 2r and φ is symplectic, $r \ge 2$;

 D_r : n = 2r and φ is orthogonal, $r \ge 3$.

Let $\mathcal{L} = \operatorname{Skew}(\mathcal{R}, \varphi)$. Then \mathcal{L} is a simple Lie algebra of the indicated type, and the restriction map $\operatorname{Aut}_{\mathbb{F}}(\mathcal{R}, \varphi) \to \operatorname{Aut}_{\mathbb{F}}(\mathcal{L})$ is an isomorphism, except in the case D_4 .

Let $\mathcal R$ to be a f.d. s.s. associative algebra with $Z(\mathcal R)=\mathbb K$, where $\mathbb K$ is a quadratic étale algebra over $\mathbb F$ (either $\mathbb F\times\mathbb F$ or a quadratic field extension of $\mathbb F$), and φ be an involution of the second kind (i.e., $\mathbb F$ -linear but not $\mathbb K$ -linear $\Leftrightarrow (\mathcal R, \varphi)$ is central simple). Hence $\dim_{\mathbb F} \mathcal R = 2n^2$.

 A_r : n = r + 1, $r \ge 2$. Let \mathcal{L} be the quotient of the derived algebra of $\operatorname{Skew}(\mathcal{R}, \varphi)$ modulo its center.

The "restriction" map $\operatorname{Aut}_{\mathbb{F}}(\mathcal{R},\varphi) \to \operatorname{Aut}_{\mathbb{F}}(\mathcal{L})$ is an isomorphism, except in the case $n=3=\operatorname{char}\mathbb{F}$.

Graded-simple associative algebras

 ${\mathbb D}$ is a *graded-division* algebra if all nonzero homogeneous elements are invertible (\Rightarrow graded ${\mathbb D}$ -modules have a graded basis).

Theorem ("Graded Wedderburn Theorem")

Let \Re be a G-graded algebra (or ring). Then \Re is graded-simple and satisfies d.c.c. on graded one-sided ideals \Leftrightarrow there exists a graded-division algebra $\mathfrak D$ and a graded right $\mathfrak D$ -module $\mathfrak V$ of finite rank such that $\Re \cong \operatorname{End}_{\mathfrak D}(\mathcal V)$ as G-graded algebras.

```
\begin{array}{l} \operatorname{End}^{\operatorname{gr}}_{\mathbb{D}}(\mathcal{V}) := \bigoplus_{g \in G} \operatorname{End}_{\mathbb{D}}(\mathcal{V})_g \text{ is a $G$-graded algebra where} \\ \operatorname{End}_{\mathbb{D}}(\mathcal{V})_g := \{ \mathcal{T} \in \operatorname{End}_{\mathbb{D}}(\mathcal{V}) \mid \mathcal{T}(\mathcal{V}_h) \subseteq \mathcal{V}_{gh} \ \forall h \in G \}. \end{array}
```

Select a graded \mathcal{D} -basis $\{v_1, \ldots, v_k\}$ of \mathcal{V} , and let $\deg v_i = g_i$. $\mathcal{R} \cong M_k(\mathbb{F}) \otimes \mathcal{D}$, where $\deg(E_{ij} \otimes d) = g_i(\deg d)g_j^{-1}$ for homog. $d \in \mathcal{D}$.

 $\mathfrak{R}=M_n(\mathbb{F})\Rightarrow \mathfrak{D}\cong M_\ell(\mathbb{F})$ with a division grading, $k\ell=n$. If \mathbb{F} is a.c. then $\mathfrak{D}_e=\mathbb{F}$, hence, with any G-grading on $M_n(\mathbb{F})$, we have $M_n(\mathbb{F})\cong M_k(\mathbb{F})\otimes M_\ell(\mathbb{F})$ where all homog. components of $M_\ell(\mathbb{F})$ are 1-dim (Bahturin–Sehgal–Zaicev 2001).

Central simple graded-division algebras

Theorem (Havlíček–Patera–Pelantová 1998 and BSZ 2001 for $\operatorname{char} \mathbb{F} = 0$; Bahturin–Zaicev 2003)

Let T be an ab. group and $\mathbb F$ an a.c. field. Then, for any division grading on $\mathbb D=M_\ell(\mathbb F)$ with support T, there exists a decomposition $T=H_1\times\cdots\times H_r$ such that $H_i\cong\mathbb Z^2_{\ell_i}$ and $\mathbb D\cong M_{\ell_1}(\mathbb F)\otimes\cdots\otimes M_{\ell_r}(\mathbb F)$ where $M_{\ell_i}(\mathbb F)$ has a generalized Pauli grading by H_i .

More generally, let \mathcal{D} be a graded-division algebra with support T and $\mathcal{D}_e = \mathbb{F}$. Pick $0 \neq X_t \in \mathcal{D}_t$ for any $t \in T$. Then $\mathcal{D}_t = \mathbb{F}X_t$ for any $t \in T$, so \mathcal{D} is a *twisted group algebra* of T.

If T is abelian, we have $X_sX_t=\beta(s,t)X_tX_s$ where the mapping $\beta:T\times T\to \mathbb{F}^\times$ is an alternating bicharacter, i.e., multiplicative in each variable and satisfies $\beta(t,t)=1$ for all $t\in T$.

Assume $|T| < \infty$ and set $\operatorname{rad}\beta := \{s \in T \mid \beta(s,t) = 1 \ \forall t \in T\}$. $\mathbb D$ is central simple over $\mathbb F \Leftrightarrow \beta$ is *nondegenerate*, i.e., $\operatorname{rad}\beta = \{e\}$.

Central simple graded-division algebras continued

If β is nondegenerate, T admits a *symplectic basis*, i.e., a generating set of the form $\{a_1,b_1,\ldots,a_m,b_m\}$ with $o(a_i)=o(b_i)=n_i\geq 2$ such that $\beta(a_i,b_i)=\zeta_i$, with $\zeta_i\in\mathbb{F}$ a primitive root of unity of degree n_i , while $\beta(a_i,b_j)=1$ for $i\neq j$ and $\beta(a_i,a_j)=\beta(b_i,b_j)=1$ for all i,j.

The elements $X_i := X_{a_i}$ and $Y_i := X_{b_i}$ generate \mathcal{D} as an \mathbb{F} -algebra and satisfy the following defining relations:

$$X_i^{n_i} = \mu_i, \ Y_i^{n_i} = \nu_i, \ X_i Y_i = \zeta_i Y_i X_i,$$

 $X_i X_j = X_j X_i, \ Y_i Y_j = Y_j Y_i, \ \text{and} \ X_i Y_j = Y_j X_i \ \text{for} \ i \neq j,$

so \mathcal{D} is a tensor product of (graded) *cyclic* or *symbol algebras*:

$$\mathcal{D} \cong (\mu_1, \nu_1)_{\zeta_1^{-1}, \mathbb{F}} \otimes \cdots \otimes (\mu_m, \nu_m)_{\zeta_m^{-1}, \mathbb{F}}.$$

 $\mathbb{F} = \mathbb{R} \Rightarrow \text{all } n_i = 2 \Rightarrow T \text{ is an elementary abelian 2-group and } \mathbb{D} \text{ is a tensor product of (graded) quaternion algebras.}$

Simple f.d. graded-division algebras with abelian T and any \mathcal{D}_e are classified (Bahturin–Zaicev 2016 and Rodrigo 2016).

Antiautomorphisms on $\operatorname{End}_{\mathcal{D}}(\mathcal{V})$

Theorem (Elduque 2010)

Let G be an abelian group and consider the G-graded algebra $\mathcal{R} = \operatorname{End}_{\mathcal{D}}(\mathcal{V})$ where \mathcal{D} is a graded-division algebra and \mathcal{V} is a nonzero graded right \mathcal{D} -module of finite rank.

- (1) If φ is an antiautomorphism of the graded algebra R, then there exists an antiautomorphism φ₀ of the graded algebra D and a nondegenerate φ₀-sesquilinear form B : V × V → D, by which we mean a nondegenerate F-bilinear mapping that is φ₀-sesquilinear over D, i.e.,
 - (i) $B(vd, w) = \varphi_0(d)B(v, w)$ and B(v, wd) = B(v, w)d, and homogeneous of some degree $g_0 \in G$, i.e.,
 - (ii) $B(\mathcal{V}_a, \mathcal{V}_b) \subset \mathfrak{D}_{g_0ab}$ for all $a, b \in G$, such that φ is the adjunction with respect to B, i.e.,
 - (iii) $B(rv, w) = B(v, \varphi(r)w)$ for all $r \in \mathbb{R}$ and $v, w \in \mathcal{V}$.
- (2) Another pair (φ_0', B') satisfies these conditions if and only if there exists $d \in \mathcal{D}_{\mathrm{gr}}^{\times}$ such that B' = dB and $\varphi_0' = \mathrm{Int}(d) \circ \varphi_0$.

Involutions on $\operatorname{End}_{\mathcal{D}}(\mathcal{V})$

Theorem (Elduque–K.–Rodrigo 2021)

- (3) If φ is an involution, then the pair (φ_0, B) as in part (1) can be chosen so that φ_0 is an involution and B is hermitian or skew-hermitian, by which we mean that $B(w, v) = \delta \varphi_0(B(v, w))$ for all $v, w \in \mathcal{V}$, where $\delta = 1$ (hermitian) or $\delta = -1$ (skew).
- (4) Let (φ_0, B) be a pair chosen for φ as in part (3). Then:
 - (i) Any other such pair (φ_0', B') has the form $(Int(d) \circ \varphi_0, dB)$ where $d \in \mathcal{D}_{gr}^{\times}$ satisfies $\varphi_0(d) = d$ (symmetric) or $\varphi_0(d) = -d$ (skew).
 - (ii) If φ_0' is a degree-preserving involution of $\mathbb D$ such that $\varphi_0'\varphi_0^{-1}$ is an inner automorphism of $\mathbb D$, then there exists $d\in \mathbb D_{\operatorname{gr}}^\times$ such that $\varphi_0'=\operatorname{Int}(d)\circ \varphi_0$ and the pair (φ_0',dB) satisfies part (3).

Corollary

Assume that (\mathfrak{R}, φ) is central simple as an algebra with involution. Then \mathfrak{D} admits a degree-preserving involution of the same kind as φ , and for any such involution φ_0 , there exists B as in part (3).

The graded algebras with involution $\mathfrak{M}^{\mathrm{ex}}(\mathfrak{D}, k)$

Let \mathcal{D} be a graded-division algebra with abelian support T and let $k \geq 1$ be an integer.

Definition

Let $\widetilde{G}(T, k) := F \times T$, where F is the free abelian group generated by the symbols $\widetilde{g}_1, \dots, \widetilde{g}_k$.

(i) The $\widetilde{G}(T,k)$ -grading on $M_k(\mathfrak{D})\cong M_k(\mathbb{F})\otimes \mathfrak{D}$ defined by

$$\deg(E_{ij}\otimes d)=\tilde{g}_i\tilde{g}_j^{-1}t \ \ \text{for any } 0
eq d\in\mathfrak{D}_t$$

is denoted $\Gamma_{\mathbb{M}}(\mathfrak{D}, k)$ and the resulting graded algebra $\mathbb{M}(\mathfrak{D}, k)$.

(ii) Using the same grading on the opposite algebra, we obtain a $\widetilde{G}(T,k)$ -graded algebra $\mathcal{M}(\mathcal{D},k)\times\mathcal{M}(\mathcal{D},k)^{\mathrm{op}}$ so that the exchange involution $\mathrm{ex}:(x,y)\mapsto(y,x)$ is degree-preserving. The resulting graded algebra with involution will be denoted by $\mathcal{M}^{\mathrm{ex}}(\mathcal{D},k)$ and its grading by $\Gamma_{\mathcal{M}^{\mathrm{ex}}}(\mathcal{D},k)$.

The graded algebras with involution $\mathcal{M}(\mathcal{D}, \varphi_0, \boldsymbol{q}, \boldsymbol{s}, \underline{\boldsymbol{d}}, \delta)$

Let φ_0 be a degree-preserving involution on \mathcal{D} , let $q,s\geq 0$ be integers (not both zero), let $\delta\in\{\pm 1\}$ and let $\underline{d}=(d_1,\ldots,d_q)$ be a q-tuple of nonzero homogeneous elements of \mathcal{D} such that $\varphi_0(d_i)=\delta d_i$ for all i.

Let $t_i := \deg d_i$ and let F be the free abelian group generated by the symbols $\tilde{g}_1, \ldots, \tilde{g}_k$ where k := q + 2s. Define $\tilde{G} = \tilde{G}(T, q, s, \underline{t})$ to be the quotient of $F \times T$ modulo the following relations:

$$\tilde{g}_1^2 t_1^{-1} = \ldots = \tilde{g}_q^2 t_q^{-1} = \tilde{g}_{q+1} \tilde{g}_{q+2} = \ldots = \tilde{g}_{q+2s-1} \tilde{g}_{q+2s}.$$

Definition

The $\widetilde{G}(T, q, s, \underline{t})$ -graded algebra $M_k(\mathcal{D})$ with involution given by $\varphi(X) = \Phi^{-1}\varphi_0(X)^{\top} \Phi$ for all $X \in M_k(\mathcal{D})$ where

$$\Phi = \operatorname{diag}\left(\textit{\textbf{d}}_1, \ldots, \textit{\textbf{d}}_q, \begin{bmatrix} 0 & 1 \\ \delta & 0 \end{bmatrix}, \ldots, \begin{bmatrix} 0 & 1 \\ \delta & 0 \end{bmatrix}\right)$$

is denoted $\mathcal{M}(\mathcal{D}, \varphi_0, q, s, \underline{d}, \delta)$ and its grading $\Gamma_{\mathcal{M}}(\mathcal{D}, \varphi_0, q, s, \underline{d}, \delta)$.

Fine gradings on algebras with involution

Corollary

Let φ be an involution on an artinian algebra \Re . If (\Re, φ) is simple then, for any G-grading Γ on (\Re, φ) , exactly one of the following holds:

- Γ is the image of some ${}^{\alpha}\Gamma_{\mathcal{M}^{ex}}(\mathfrak{D},k)$ under an isomorphism of algebras with involution, where $T:=\operatorname{Supp}\mathfrak{D}$ is a subgroup of G and $\alpha:\widetilde{G}(T,k)\to G$ is a homomorphism with $\alpha|_T=\operatorname{id}_T$;
- Γ is the image of some ^αΓ_M(D, φ₀, q, s, d, δ) under an isomorphism of algebras with involution, where T := Supp D is a subgroup of G, φ₀ is a degree-preserving involution on D, and α : G(T, q, s, t) → G is a homomorphism with α|_T = id_T.

Theorem (Elduque-K.-Rodrigo 2021)

Assume $\mathbb D$ is finite-dimensional. If $(q,s) \neq (2,0)$ and the grading $\Gamma_{\mathbb D}$ on $\mathbb D$ is fine, then so is $\Gamma = \Gamma_{\mathbb M}(\mathbb D, \varphi_0, q, s, \underline d, \delta)$. Conversely, if $(\mathbb D, \varphi_0)$ is central simple over $\mathbb R$ and Γ is fine, then so is $\Gamma_{\mathbb D}$.

Classification up to equivalence: central simple over \mathbb{R}

Theorem (Elduque–K.–Rodrigo 2021)

Let \Re be a f.d. central simple algebra over \Re and φ an involution on \Re . Set $\delta = +1$ if φ is orthogonal and $\delta = -1$ if φ is symplectic. If (\Re, φ) is equipped with a group grading Γ , then Γ is fine if and only if \Re is equivalent as a graded algebra with involution to one of the following:

- $\mathcal{M}(2m; \mathbb{R}; q, s, \underline{d}, \delta) := \mathcal{M}(\mathcal{D}(2m; +1), *, q, s, \underline{d}, \delta)$ where $m \ge 0$, $X^* = X^{\top}$ for all $X \in \mathcal{D}(2m; +1) \cong M_{2^m}(\mathbb{R})$,
- $\begin{array}{l} \bullet \ \ \mathcal{M}(2m;\mathbb{H};q,s,\underline{d},\delta) := \mathcal{M}\big(\mathcal{D}(2m;-1),*,q,s,\underline{d},-\delta\big) \ \textit{where} \ m \geq 1, \\ X^* = \overline{X}^\top \ \textit{for all} \ X \in \mathcal{D}(2m;-1) \cong \textit{M}_{2^{m-1}}(\mathbb{H}), \end{array}$

where in the case (q,s)=(2,0), the pair $\underline{d}=(d_1,d_2)$ satisfies $\deg d_1 \neq \deg d_2$. Moreover, the above graded algebras with involution are classified up to equivalence by the following invariants: m, q, s, δ , signature(\underline{d}), and the orbit of the multiset $\{\deg d_1,\ldots,\deg d_q\}$ in $T\cong \mathbb{Z}_2^{2m}$ under the action of the orthogonal group $\mathrm{O}(T,\mu)$ where $\mu:T\to \{\pm 1\}$ is the quadratic form defined by $X_t^*=\mu(t)X_t$ for $X_t\in \mathfrak{D}_t$.

Classification up to equivalence over $\mathbb R$ and $\mathbb C$

Let \mathcal{D} be a f.d. graded-division algebra with support T and $\mathcal{D}_e = \mathbb{F}$. Suppose $\mathcal{D} \neq \mathbb{F}$ admits a degree-preserving involution that makes it central simple as an algebra with involution. Then $\operatorname{char} \mathbb{F} \neq 2$ and T is an elementary abelian 2-group, i.e., a vector space over GF(2).

Any such involution maps $X_t \mapsto \eta(t)X_t$ where $\eta: T \to \{\pm 1\}$ is a *nonsingular* quadratic form with polarization β :

$$\eta(st) = \eta(s)\eta(t)\beta(s,t)$$
 for all $s, t \in T$,

and either $rad\beta = \{e\}$ or $rad\beta = \{e, f\}$ with $\eta(f) = -1$.

- If $\mathbb{F} = \mathbb{R}$ then $X_t^2 \in \mu(t)\mathbb{R}_{>0}$ defines a quadratic form $\mu : T \to \{\pm 1\}$ and hence a *distinguished involution* on \mathbb{D} . μ is nonsingular if $\mathbb{K} := Z(\mathcal{D})$ is \mathbb{R} or \mathbb{C} (but not $\mathbb{R} \times \mathbb{R}$).
- If \mathbb{F} is a.c. and $\mathbb{K} = \mathbb{F}$ ($\Leftrightarrow \operatorname{rad}\beta = \{e\}$), let $Q(T,\beta)$ be the set of quadratic forms on T whose polarization is β . Then $\operatorname{Sp}(T,\beta)$ acts naturally on both T and $Q(T,\beta)$, and $Q(T,\beta)$ is a T-torsor, i.e., admits a simply transitive T-action compatible with the $\operatorname{Sp}(T,\beta)$ -actions.

Classification up to equivalence: summary

Let (\mathcal{R}, φ) be central simple as an algebra with involution over \mathbb{F} , $\operatorname{char} \mathbb{F} \neq 2$. Then fine gradings on (\mathcal{R}, φ) are classified up to equivalence by a finite ab. group T, with |T| a divisor of $\dim \mathcal{R}$, and an orbit of multisets in a vector space over GF(2) as follows:

$\mathbb{K} := \mathcal{Z}(\mathcal{R})$	${\mathbb F}$ is real closed	${\mathbb F}$ is alg. closed
F	$\mathrm{O}(\mathit{T},\mu)$ on T	$\operatorname{Sp}(T,\beta)$ on $Q(T,\beta)$
$\mathbb{F} \times \mathbb{F}$, nontriv.	$\mathrm{AO}(\overline{T},ar{\mu})$ on $\overline{T}:=T/\langle f angle$	$\mathrm{ASp}(\overline{T}, ar{eta}) \ on \ \overline{T} := T/\langle f \rangle$
$\mathbb{F} \times \mathbb{F}$, triv. gr.	no multiset	no multiset
$\mathbb{F}[i]$, nontriv.	$\operatorname{Sp}(\overline{T},ar{eta})$ on $\overline{T}:=T/\langle f angle$	
$\mathbb{F}[\mathbf{\emph{i}}]$, triv. gr.	$\operatorname{Sp}(V,\mathfrak{F})$ on $V:=T/T^{[2]}$	

where *T* is 2-elementary except in the shaded cells ($\Rightarrow T \cong A \times A$).

The average number $\hat{N}(k)$ of fine gradings for $\deg \mathcal{R} \leq k$ satisfies $\exp(bk^{2/3}) \leq \hat{N}(k) \leq \exp(ck^{2/3})$ for a.c. \mathbb{F} (K.–Parsons–Sadov 2013).