MATEMATUKA И MATEMATUYECKO ОБРАЗОВАНИЕ, 2002 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2002

Proceedings of Thirty First Spring Conference of the Union of Bulgarian Mathematicians Borovets, April 3–6, 2002

BOUNDS FOR TERNARY EQUIDISTANT CONSTANT WEIGHT CODES

Galina Todorova Bogdanova, Teodora Alexandrova Yorgova

In this paper we explore the problem of finding bounds for equidistant constant weight codes with $2 \le w < n \le 10$. Optimal ternary equidistant constant weight codes have been constructed by combinatorial and computer methods.

1. Introduction. Consider a finite set of q elements and containing a distinguished element "zero". The choice of a set does not matter in our context and we will use the set Z_q of integers modulo q. Let Z_q^n be the set of n-tuples (or vectors) over Z_q and $Z_q^{n,w}$ be the set of n-tuples over Z_q of Hamming weight w.

A code is called *constant weight* if all the codewords have the same weight w. A code is called *equidistant* if all the distances between distinct codewords are d. Let $B_q(n,d)$ denote the maximum number of codewords in an equidistant code over Z_q of length n and distance d (called an (n, M, d; q) equidistant code) and $B_q(n, d, w)$ denote the maximum number of codewords in an equidistant constant weight code over Z_q of length n, distance d, and weight w (called an (n, M, d, w; q) equidistant constant weight code ECWC).

Equidistant codes have been investigated by a large number of authors, mainly as examples of designs and other combinatorial objects. Some works published on this topic are [5], [6], [8], [12]. Constant weight codes have been studied by many authors. For some references for the binary case, see Brouwer et al. [3], Agrell [1] and for the ternary case, see Bogdanova [2] and Svanström [11]. A few papers study codes which are both equidistant and of constant weight, for example [7], [10] and [4]. The same problem is considered in this paper.

2. Preliminaries. Some bounds for ECWC are given by the following theorems: Theorem 1 (Trivial values).

$$B_3(n,d,w) = 1 \text{ if } d > 2w,$$

$$B_3(n,d,n) = 2.$$

Theorem 2 (the Johnson bounds for ECWC). The maximum number of codewords in a q-ary ECWC satisfy the inequalities:

$$B_q(n,d,w) \le \frac{n}{n-w} B_q(n-1,d,w),$$

$$B_q(n,d,w) \leq \frac{n(q-1)}{w} B_q(n-1,d,w-1).$$

The proof of the Theorem 2 is the same as the proof of Johnson bound for constantweight codes [11].

Theorem 3 [4]. For k = 1, 2, ..., n, if $P_k^2(w) > P_k(d) P_k(0)$, then

$$B_q(n, d, w) \le \frac{P_k^2(0) - P_k(d) P_k(0)}{P_k^2(w) - P_k(d) P_k(0)}.$$

Here $P_k(x)$ is the Krawtchouk polinomial defined by

$$P_{k}(x) = \sum_{i=0}^{k} {x \choose i} {n-x \choose k-i} (-1)^{i} (q-1)^{k-i}$$

and

$$P_k(0) = \binom{n}{k} (q-1)^k.$$

According to [7] there are no ECWC of order q, length q+1, distance q and weight q-1 which have more than $\frac{(q^2+q)}{2}$ codewords, regardless whether q is even or odd.

3. Some combinatorial bounds and constructions of ECWC.

Proposition 4. There exists a family of optimal ternary ECWC with parameters (n, 3, 3, 2; 3) for every integer $n \ge 3$.

Proof. Let u be a fixed codeword with length n and weight 2. Consider how many codewords are at distance exactly 3 from u we obtain that $B_3(n, 3, 2) = 3$.

Proposition 5. For w = 2, ..., n, $P_n(w) \neq 0$.

Proof.

$$P_n(w) = \sum_{i=0}^{n} {w \choose i} {n-w \choose n-i} (-1)^i (q-1)^{n-i}.$$

For the validity of binomial coefficients the following conditions must be satisfied:

$$\left|\begin{array}{c} i \le w \\ n - i \le n - w \end{array}\right.$$

Therefore i = w. Then $P_n(w) = (-1)^w (q-1)^{n-w} \neq 0$.

Proposition 6. For d = 3, w = 3, ..., n and k = n,

$$B_q(n,d,w) < (q-1)^3 + 1.$$

Proof.

$$B_q(n, d, w) \le \frac{P_k^2(0) - P_k(0) P_k(d)}{P_k^2(w) - P_k(0) P_k(d)}$$

For d=3 and k=n and using the same reasoning as in the Proposition 5 we obtain that

$$P_n(3) = \sum_{i=0}^{n} {3 \choose i} {n-3 \choose n-i} (-1)^i (q-1)^{n-i} = -(q-1)^{n-3}.$$

We have $P_n(0) = \binom{n}{n} (q-1)^n = (q-1)^n$ and consequently

$$B_q(n,d,w) \le \frac{(q-1)^{2n} + (q-1)^{2n-3}}{P_k^2(w) + (q-1)^{2n-3}} < (q-1)^3 + 1.$$

Corollary 7. There exists a family of optimal ternary ECWC with parameters $(4 + \lambda, 8, 3, 3 + t; 3)$ for every integer $\lambda \geq 0$ and $0 \leq t \leq n - 3$.

Proof. From the Simplex code S, which has parameters (4,9,3;3) we construct ECWC $C=S\setminus\{0\}$. From the code C we construct a family of $(4+\lambda,8,3,3+t;3)$ ECWC C' in the following way:

$$C' = \left\{ \left(\underbrace{00 \dots 0}_{\lambda - t} \underbrace{11 \dots 1}_{t}, c \right) | c \in C \right\},\,$$

where $\lambda \geq 0$ and $0 \leq t \leq n-3$. Therefore $B_3(n,3,w) \geq 8$. For these parameters Proposition 6 gives $B_3(n,3,w) < 9$. So

$$B_3(n,3,w) = 8.$$

4. Bounds for ECWC. For codes of small size we apply combinatorial reasoning. For the rest of the values of M we use specificly developed, computer algorithms.

The best known upper and lower bounds (and exact values when these coincide) for ternary ECWC of length $n \leq 10$ are displayed in Table 1. If in a certain position only one number occurs, then this number is the exact value of $B_3(n,d,w)$ and the corresponding codes are optimal. If two numbers are given, then the right one is the best known upper bound for $B_3(n,d,w)$, received from Theorem 2 and Theorem 3. The left one is the best known lower bound for $B_3(n,d,w)$, received by our computer algorithm (exhaustive search), which is of exponential complexity.

All the numbers in column d=3 are obtained by Corollary 7.

Table 1. Bounds for optimal ternary ECWC

n	w	d=3	d = 4	d = 5	d = 6	d=7	d = 8	d = 9	d = 10
3	2	3							
4	2	3	2						
	3	8	2						
5	2	3	2						
	3	8	5	2					
	4	8	5	2					
6	2	3	3						
	3	8	5	4	2				
	4	8	6	4	3				
	5	8	6	3	2				
7	2	3	3						
	3	8	7	4	2				
	4	8	7	7	3	2			
	5	8	6	6	3	2			
	6	8	6	7	2	2			
8	2	3	4						
	3	8	7	4	2	_	_		
	4	8	7	7	5	2	2		
	5	8	8	7	8	3	2		
	6	8	6	7	8	2	2		
	7	8	8	8	4	2	2		
9	2	3	4		2				
	3	8	7	4	3		0		
	4	8	7	7	9	3	2	0	
	5	8	8	7	9	5	3	2	
	6 7	8	8	7	11 12	6	3	3	
	8	8	8	8	9	5 3	3 2	2 2	
10	2	3	5	0	9	3			
10	$\frac{2}{3}$	8	7	4	3				
	4	8	7	7	15	5	2		
	5	8	8	7	12 - 21	8 - 9	4	2	2
	6	8	8	7	14 - 20	8 - 15	5	3	2
	7	8	8	8	11 - 20	9 - 16	5	3	2
	8	8	8	8	12 - 21	10 - 11	5	2	2
	9	8	8	8	10	5	2	2	2
Щ	J	O	O	o	10	J	<u> </u>		7

REFERENCES

- [1] E. AGRELL, A. VARDY, K. ZEGER. Upper bounds for constant-weight codes. *IEEE Trans. Inform. Theory*, **46**, (2000), 2373–2395
- [2] G. T. BOGDANOVA. New bounds for the maximum size of ternary constant weight codes. Serdica Math. J., 26, No 1 (2000), 5–12.
- [3] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, W. D. Smith. A new table of constant-weight codes. *IEEE trans. Inform. Theory*, **36** (1990), 1344–1380.
- [4] F. W. Fu, T. Klove, Y. Luo, V. K. Wei. On equidistant Constant Weight codes. In proceedings WCC'2001 Workshop on Coding and Cryptograpy. Paris, France, Jan 2001, 225–232.
- [5] J. I. HALL. Bounds for equidistant codes and partual projective planes. *Discrete Math.*, **17** (1977), 85–94.
- [6] J. I. Hall, A. J. E. M. Jansen, A. W. J. Kolen, J. H. van Lint. Equidistant codes with distance 12. *Discrete Math.*, 17, (1977), 71–83.
- [7] W. Heise, Th. Honold. Some equidistant constant weight codes.
- http://fatman.mathematik.tu-muenchen.de/~heise/MAT/code_oval.html.
- [8] J. H. VAN LINT. A theorem on equidistant codes. Discrete Math., 67 (1973), 353-358.
- [9] P. R. J. ÖSTERGÅRD, M. SVANSTRÖM, G. T. BOGDANOVA. Bounds and constructions for ternary constant-composition codes. *IEEE Trans. Inform. Theory*, 2001, to appear.
- [10] D. R. STINSON, G. H. J. VAN REES. The equivalence of certain equidistant binary codes and symmetric BIBDs. *Combinatorica*, 4 (1984), 357–362.
- [11] M. SVANSTRÖM. Ternary codes with weight constraints. Ph. D. Thesis, Linköping University, 1999.
- [12] N. V. Semakov, V. A. Zinoviev. Equidistant q-ary codes with maximal distance and resolvable balanced incoplete block desins. *Problemi Peredachi Informatsii*, **4**, No 2 (1968), 3–10.

Galina Todorova Bogdanova Institute of Mathematics and Informatics Bulgarian Academy of Sciences P.O. Box 323, 5000 V. Tarnovo, Bulgaria e-mail: galina@moi.math.bas.bg Teodora Alexandrova Yorgova Institute of Mathematics and Informatics Bulgarian Academy of Sciences P.O. Box 323, 5000 V. Tarnovo, Bulgaria e-mail: teda@moi.math.bas.bg

ГРАНИЦИ ЗА ТРОИЧНИ ЕКВИДИСТАНТНО КОНСТАНТНО ТЕГЛОВНИ КОДОВЕ

Галина Т. Богданова, Теодора А. Йоргова

Изследван е проблема за намиране на граници за троични еквидистантни константно тегловни кодове при $2 \le w < n \le 10$. Използвани са комбинаторни и компютърни методи за конструиране на оптимални троични еквидистантни константно тегловни кодове.