MATEMATUKA И MATEMATUYECKO ОБРАЗОВАНИЕ, 2014 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2014

Proceedings of the Forty Third Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 2–6, 2014

ONE SUFFICIENT CONDITION FOR THINNESS OF SEQUENCES*

Dimcho K. Stankov

It is known that every interpolating sequence of type 1 for H^{∞} is a thin sequence, which satisfies an additional topological condition by R. Mortini. In this paper, we present another proof of this fact. More precisely, we prove that if there exists a thin radial sequence in the open unit disk such that the interpolation problem admits a solution with norm 1, then this condition is fulfilled.

1. Introduction. Let H^{∞} be the Banach algebra of all bounded analytic functions in the open unit disk $D=\{z\in\mathbb{C}:|z|<1\}$ with the supremum norm. Its spectrum, or maximal ideal space, is the space M (H^{∞}) of all nonzero multiplicative linear functionals on H^{∞} endowed with the weak*-topology. Then M (H^{∞}) is a compact Hausdorff space and Carleson's corona theorem says that D is dense in M (H^{∞}). As usual we identify a function $f\in H^{\infty}$ with its Gelfand transform \hat{f} , defined by \hat{f} (x) = x (x) for x = x (x). Taking the boundary values of the functions on x0 = x1 = x2 = x3, we can consider x3 = x4 = x5 as an essentially supremum-norm closed subalgebra of x5 = x6 (x7). The maximal ideal space x6 as an estimated with the Shilov boundary of x6.

To proceed, we need to present a few definitions. For points x and y in $M(H^{\infty})$ the pseudohyperbolic distance is defined by

$$\rho(x, y) = \sup\{|h(x)| : h \in ball(H^{\infty}), h(y) = 0\}.$$

where $ball\ (H^\infty)$ stands for the closed unit ball of H^∞ . By Schwarz-Pick's lemma $\rho(z,w)=|z-w|/|1-\overline{z}w|$ for z and w in D. It is well known that the relation defined on $M\ (H^\infty)$ by $x\sim y \Longleftrightarrow \rho(x,y)<1$ defines an equivalence relation on $M\ (H^\infty)$. The equivalence class containing a point $x\in M\ (H^\infty)$ is called the Gleason part of x and is denoted by $P\ (x)$. If $P\ (x)$ consists of a single point, we call the part (or point) trivial. If the part consists of more than one point, the part (or point) is called nontrivial ([1]).

A sequence $\{x_n\}_n$ in $M(H^\infty)$ is called interpolating if for every bounded sequence $\{a_n\}_n$ of complex numbers there is a function $f \in H^\infty$ such that $f(x_n) = a_n$ for all n. A sequence $\{x_n\}_n$ in $M(H^\infty)$ is said to be discrete if there exists a sequence of open sets $\{U_n\}_n$ with $x_n \in U_n$ for every n, whose closures are pairwise disjoint. Every interpolating sequence is discrete.

^{*2010} Mathematics Subject Classification: 30H05, 30H50, 46J15.

Key words: bounded analytic functions, interpolating sequences, thin sequences.

This research is partially supported by Shumen University under Project No RD-08-252/2013.

An interpolating sequence $\{z_n\}_n$ in D is characterized by Carleson ([2]) as follows:

$$\inf_{j} \prod_{n:n \neq j}^{\infty} \left| \frac{z_j - z_n}{1 - \overline{z}_n z_j} \right| > 0,$$

For a sequence $\{z_n\}_n$ in D with $\sum_{n=1}^{\infty} (1-|z_n|) < \infty$, the function:

$$B(z) = \prod_{n=1}^{\infty} \frac{-\overline{z}_n}{|z_n|} \frac{z - z_n}{1 - \overline{z}_n z}, z \in D,$$

is called the Blaschke product with zeroes $\{z_n\}_n$. If $\{z_n\}_n$ is an interpolating sequence, then B(z) is also called interpolating.

The study of interpolating sequences is useful in many areas of function theory and operator theory. In [1] K. Hoffman proved that $P(x) \neq \{x\}$ if and only if x belongs to the closure of some interpolating sequence. Most of the results for interpolating sequences in $M(H^{\infty})$ have been obtained by P. Gorkin, H.-M. Lingenberg, R. Mortini [3], S. Axler and P. Gorkin [4] and K. Izuchi [5].

An interpolating sequence $\{x_n\}_n \subset M(H^\infty)$ is said to be thin if it satisfies the following condition:

(T)
$$\lim_{j \to \infty} \prod_{n: n \neq j}^{\infty} \rho(x_j, x_n) = 1.$$

A Blaschke product is called thin Blaschke product if its zero set $\{z_n\}_n \subset D$ is a thin sequence. Some results for thin sequences in different subsets of $M(H^{\infty})$ can be found in [6],[7],[8].

In [9] R. Mortini introduces another, more topological sufficient condition for a sequence of nontrivial points to be interpolating.

Theorem 1.1 ([9]). Let $\{x_n\}_n$ be a discrete sequence of nontrivial points in $M(H^{\infty})$. Suppose that there exist pairwise disjoint open sets $\{U_n\}_n$ in $M(H^{\infty})$, $x_n \in U_n$ such that

$$\delta = \inf_{j} \prod_{n:n \neq j}^{\infty} \rho(U_j, U_n) > 0,$$

Then $\{x_n\}_n$ is an interpolating sequence.

Here we shall consider the following condition:

There exist pairwise disjoint open sets $\{U_n\}_n$ in $M(H^{\infty})$, $x_n \in U_n$

(M) such that
$$\lim_{j\to\infty} \prod_{n:n\neq j}^{\infty} \rho(U_j, U_n) = 1$$
.

From the inequality $\prod_{n:n\neq j}^{\infty} \rho(U_j,U_n) \leqslant \prod_{n:n\neq j}^{\infty} \rho(x_j,x_n)$ we obtain that condition (M) implies condition (T) for a sequence $\{x_n\}_n \subset M(H^{\infty})$.

A sequence $\{x_n\}_n$ in $M(H^{\infty})$ is called an interpolating sequence of type 1 (or an isometric interpolating sequence) if for every sequence $\{a_n\}_n \subset l^{\infty}$, $\sup_n |a_n| \leq 1$, there exists a function $f \in H^{\infty}$, ||f|| = 1, such that $f(x_n) = a_n$ for all n. The maximum principle for holomorphic functions shows that any interpolating sequence of type 1 is necessarily contained in the corona $M(H^{\infty}) \setminus D$ of H^{∞} . In [8] it is shown that every 146

interpolating sequence of type 1 for H^{∞} satisfies condition (M).

In this paper, we present another proof of this fact. More precisely, we prove that if there exist a thin radial sequence $\{a_n\}_n \subset D$ and a function $f \in H^{\infty}$, $||f|| \leq 1$, such that $f(x_n) = a_n$ for all n, then $\{x_n\}_n \subset M(H^{\infty})$ satisfies condition (M).

- **2. Sequences satisfying the condition (M).** First, let us show that there are sequences $\{x_n\}_n \subset M(H^\infty)$ with the following property: there exist a thin radial sequence $\{a_n\}_n \subset D$ and a function $f \in H^\infty$, $||f|| \le 1$, such that $f(x_n) = a_n$ for all n. This follows from the following well-known facts:
- 1. In [6] P. Gorkin and R. Mortini proved that every discrete sequence in the Shilov boundary of H^{∞} is an interpolating sequence of type 1.
 - 2. In [7] R. Mortini proved the following theorem:

Theorem 2.1 ([7]). Let $E = \{x_n : n \in \mathbb{N}\}$ be a discrete sequence of points in $M(H^{\infty})$. Then, for every sequence $\{a_n\}_n \subset l^{\infty}$ with $\sup_n |a_n| \leq 1$ the interpolation problem $f(x_n) = a_n$, $||f|| \leq 1$, admits a thin Blaschke product as a solution if and only if E is contained in the zero set of a thin Blaschke product b on the corona of H^{∞} .

Lemma 2.2 ([10]). Let $\{z_n\}_n$ be a thin sequence in D. Then there exist sequences $\{\tau_n\}_n \subset (0,1)$ and $\{\gamma_n\}_n \subset (0,1)$ with $\lim_{n\to\infty} \tau_n = \lim_{n\to\infty} \gamma_n = 1$ such that whenever $\{\xi_n\}_n$ is a sequence in D satisfying $\rho(z_n,\xi_n) \leq \tau_n$, $n \in \mathbb{N}$, it follows that $\prod_{k:k\neq j}^{\infty} \rho(\xi_j,\xi_k) \geq 1$

 $\gamma_j, j \in \mathbb{N}$. In particular, $\{\xi_n\}_n$ is a thin sequence again. **Theorem 2.3.** Let $\{x_n\}_n$ be a sequence in $M(H^{\infty})$. Let there exist a thin radial sequence $\{a_n\}_n \subset D$, $|a_n| < |a_k|$ for n < k, and a function $f \in H^{\infty}$, $||f|| \le 1$, such that $f(x_n) = a_n$ for all n. Then $\{x_n\}_n$ satisfies condition (M).

Proof. We need some properties of the pseudohyperbolic distance in the open unit disk D. It is well known ([2]) that $\rho(z,w)=\frac{1}{2}\mathrm{tanh}\,\psi(z,w)$, whenever $\psi(z,w)$ is the hyperbolic distance in D from z to w, i.e., the length of the arc on the circle via the points z and w, which is orthogonal to the unit circle $\partial D=\{z\in\mathbb{C}:|z|=1\}$. If z and w are on a diameter of D, then the hyperbolic distance $\psi(z,w)$ coincides with the Euclidian distance between z and w. As is well known the pseudohyperbolic disk $K(z_0,r)$ is an

distance between z and w. As is well known the pseudohyperbolic disk $K(z_0, r)$ is an Euclidean disk with center $c = \frac{z_0(1-r^2)}{(1-r^2|z_0|^2)}$ and radius $R = \frac{r(1-|z_0|^2)}{(1-r^2|z_0|^2)}$. We note that if z_0 is a real number, then c is a real number and |c| < 1.

Since $\{a_n\}_n \subset D$ is a radial sequence, i.e., we have $\arg a_n = \arg a_k$ for $n \neq k$, and $|a_n| < |a_k|$ for n < k, there exists $\theta \in [0, 2\pi)$ such that if $g(z) = ze^{-i\theta}$, then:

$$v_n = g(a_n) \subset [0,1)$$
 for every n and $v_n < v_k$ for $n < k$.

But the distance $\rho(z, w)$ for z and w in D is invariant under Möbius transformations ([2]). Therefore,

$$\rho(a_n, a_k) = \rho(g(a_n), g(a_k)) = \rho(\upsilon_n, \upsilon_k)$$

for all $n \in \mathbb{N}$, $k \in \mathbb{N}$, and we obtain that the sequence $\{v_n\}_n$ is interpolating and thin. Moreover, the function $F = g \circ f$ belongs to H^{∞} , $||F|| \le 1$ and $f(x_n) = v_n$ for all n.

Since $\{v_n\}_n$ is an interpolating sequence, then $\{v_n\}_n$ is discrete, i.e., there exists is a sequence $\{V_n\}_n$ of open sets in the open unit disk D, such that $v_n \in V_n$ and $\overline{V}_n \cap \overline{V}_k = \emptyset$ for $n \neq k$. By Lemma 2.2 there exist two sequences $\{\tau_n\}_n \subset (0,1)$ and $\{\gamma_n\}_n \subset (0,1)$

with $\lim_{n\to\infty} \tau_n = \lim_{n\to\infty} \gamma_n = 1$ such that whenever $\{\xi_n\}_n$ is a sequence in the open unit disk D satisfying $\rho(v_n,\xi_n) \leq \tau_n$ for every n, it follows that $\prod_{k:k\neq j}^{\infty} \rho(\xi_j,\xi_k) \geq \gamma_j$, for every j. Let $W_n, n \in \mathbb{N}$, be the open pseudohyperbolic disk with centre v_n and radius τ_n . Then W_n is an open Euclidean disk with centre [0,1). We obtain that $U_n = V_n \cap W_n$ is an open set (intersection of two open Euclidean disks), $v_n \in U_n$ for every n and $\overline{U}_n \cap \overline{U}_k = \emptyset$ for $n \neq k$. If $[\eta_n, t_n] = \overline{U}_n \cap \mathbb{R}e$ z then $\eta_n < t_n$ for every n, and the increasing sequences $\{\eta_n\}_n$

Now fix $j \in N$, j > 1.

Let $A_n \in \overline{U}_n$, $A_j \in \overline{U}_j$ for n < j are arbitrary points. Write $\alpha_{n,j} = \psi(A_n, A_j)$ and $p_{n,j} = |A_n - A_j|$. Since A_n and A_j are points of Euclidean disks, then $\alpha_{n,j} \geq p_{n,j} \geq \eta_j - t_n$. For the pseudohyperbolic distance between \overline{U}_n and \overline{U}_j we obtain:

and $\{t_n\}_n$ tend to 1, because the sequence $\{v_n\}_n$ is an increasing and $\lim_{n\to\infty}v_n=1$.

$$\rho(\overline{U}_n, \overline{U}_j) = \frac{1}{2} \tanh \psi(\overline{U}_n, \overline{U}_j) = \frac{1}{2} \tanh(\inf \alpha_{n,j})$$
$$= \frac{1}{2} \tanh(\eta_j - t_n) = \frac{1}{2} \tanh \psi(t_n, \eta_j) = \rho(t_n, \eta_j).$$

because t_n and η_j lie on a diameter of D.

Let $A_n \in \overline{U}_n$, $A_j \in \overline{U}_j$ for n > j are an arbitrary points. Write $\alpha_{n,j} = \psi\left(A_n, A_j\right)$ and $p_{n,j} = |A_n - A_j|$. Analogously, since A_n and A_j are points of Euclidean disks, then $\alpha_{n,j} \geq p_{n,j} \geq \eta_n - t_j$. For the pseudohyperbolic distance between \overline{U}_n and \overline{U}_j we obtain:

$$\rho(\overline{U}_n, \overline{U}_j) = \frac{1}{2} \tanh \psi(\overline{U}_n, \overline{U}_j) = \frac{1}{2} \tanh(\inf \alpha_{n,j})$$
$$= \frac{1}{2} \tanh(\eta_n - t_j) = \frac{1}{2} \tanh \psi(t_j, \eta_n) = \rho(t_j, \eta_n).$$

because t_j and η_n lie on a diameter of D.

Put $\xi'_n = t_n$ for every $n \in \mathbb{N}$, $n \neq j$, and $\xi'_j = \eta_j$. We get $\xi'_n \in \overline{U}_n = \overline{V}_n \cap \overline{W}_n$, i.e. $\rho(v_n, \xi'_n) \leq \tau_n$ for every n. By the choice of $\{\tau_n\}_n$ and $\{\gamma_n\}_n$ we have:

(1)
$$\prod_{n:n$$

Put $\xi_n'' = \eta_n$ for every $n \in \mathbb{N}$, $n \neq j$, and $\xi_j'' = t_j$. We get $\xi_n'' \in \overline{U}_n$, for every n and analogously:

(2)
$$\prod_{n:n>j}^{\infty} \rho(\eta_n, t_j) = \prod_{n:n>j}^{\infty} \rho(\xi_n'', \xi_j'') \ge \prod_{n:n\neq j}^{\infty} \rho(\xi_n'', \xi_j'') \ge \gamma_j.$$

Now we apply (1) and (2):

$$\prod_{n:n \neq j}^{\infty} \rho(\overline{U}_n, \overline{U}_j) = \prod_{n:n < j}^{\infty} \rho(t_n, \eta_j). \prod_{n:n > j}^{\infty} \rho(\eta_n, t_j) \geq \gamma_j^2.$$

Since the function $F = g \circ f$ belongs to H^{∞} , $||F|| \leq 1$, and $f(x_n) = v_n$ for all n, then the set $O_n = F^{-1}(U_n)$ is open, $x_n \in O_n$ for every $n \in \mathbb{N}$, and $O_n \cap O_k = \emptyset$ for $n \neq k$. By the properties of the pseudohyperbolic distance ([2]):

$$\rho(\varphi_n, \varphi_j) \ge \rho(F(\varphi_n), F(\varphi_j)) \ge \rho(U_n, U_j),$$

where $\varphi_n \in O_n$ and $\varphi_j \in O_j$ are arbitrary points. Hence

$$\prod_{n:n\neq j}^{\infty} \rho(O_n, O_j) \ge \prod_{n:n\neq j}^{\infty} \rho(\overline{U}_n, \overline{U}_j) \ge \gamma_j^2$$

 $\prod_{n:n\neq j}^{\infty}\rho(O_n,O_j)\geq\prod_{n:n\neq j}^{\infty}\rho(\overline{U}_n,\overline{U}_j)\geq\gamma_j^2$ and we obtain $\lim_{j\to\infty}\prod_{n:n\neq j}^{\infty}\rho(O_n,O_j)=1$, since $\lim_{j\to\infty}\gamma_j=1$. The theorem is proved.

REFERENCES

- [1] K. HOFFMAN. Bounded analytic functions and Gleason parts. Ann. of Math., 86, 1 (1967), 74-111.
- [2] J. GARNETT. Bounded analytic functions. Graduate Texts in Mathematics vol. 236, Springer, New York, 1st revised edition, 2007.
- [3] P. GORKIN, H.-M. LINGENBERG, R. MORTINI. Homeomorphic disks in the spectrum of H^{∞} . Indiana Univ. Math. J., **39**, 4 (1990), 961–983.
- [4] S. Axler, P. Gorkin. Sequences in the maximal ideal space of H^{∞} . Proc. Amer. Math. Soc., 108, 3 (1990), 731-740.
- [5] K. IZUCHI. Interpolating sequences in the maximal ideal space of H^{∞} . J. Math. Soc. Japan, **43**, 4 (1991), 721–731.
- [6] P. Gorkin, R. Mortini. Asymptotic interpolating sequences in uniform algebras. J. London Math. Soc., 67 (2003), 481-498.
- [7] R. Mortini. Interpolation problems on the spectrum of H^{∞} . Monatchefte fur Mathematik, **158**, 1 (2009), 81–95.
- [8] D. Stankov, Tz. Tzonev. Thin sequences in the corona of H^{∞} . Central European Journal of Mathematics, 11, 10 (2013), 1843–1849.
- [9] R. MORTINI. Interpolating sequences in the spectrum of H^{∞} , I. Proc. Amer. Math. Soc. **128**, 6 (2000), 1703–1710.
- [10] C. Sundberg, T. Wolff. Interpolating sequences for QAB. Trans. Amer. Math. Soc., **276** (1983), 551–581.

Dimcho K. Stankov

Faculty of Mathematics and Informatics,

Shumen University Konstantin Preslavsky

115 Universitetska Str.

9712 Shumen, Bulgaria

e-mail: stankov.d@abv.bg

ЕДНО ДОСТАТЪЧНО УСЛОВИЕ ЗА ТЪНКОСТ НА РЕДИЦИ

Димчо Костов Станков

Известно е, че всяка интерполационна редица от тип 1 за е тънка редица, която удовлетворява едно допълнително условие на Р. Мортини. В тази работа предлагаме друго доказателство на този факт. По-точно доказваме, че ако съществува тънка радиална редица в отворения единичен кръг, за която интерполационната задача допуска решение с норма 1, то това условие е изпълнено.