MATEMATUKA И MATEMATUYECKO ОБРАЗОВАНИЕ, 2014 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2014

Proceedings of the Forty Third Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 2–6, 2014

ON SOME NUMERICAL CHARACTERISTICS OF A BIPARTITE GRAPH*

Krasimir Yordzhev

The paper considers an equivalence relation in the set of vertices of a bipartite graph. Some numerical characteristics showing the cardinality of equivalence classes are introduced. A combinatorial identity that is in relationship to these characteristics of the set of all bipartite graphs of the type $g = \langle R_g \cup C_g, E_g \rangle$ is formulated and proved, where $V = R_g \cup C_g$ is the set of vertices, E_g is the set of edges of the graph g, $|R_g| = m \ge 1$, $|C_g| = n \ge 1$, $|E_g| = k \ge 0$, m, n and k are integers.

1. Introduction. The widespread use of graph theory in different areas of science and technology is well known. For example, graph theory is a good tool for the modelling of computing devices and computational processes. So many of graph algorithms have been developed [7, 9]. One of the latest applications of graph theory is calculating the number of all disjoint pairs of S-permutation matrices [10, 11]. The concept of disjoint S-permutation matrices was introduced by Geir Dahl [3] in relation to the popular Sudoku puzzle. On the other hand, Sudoku matrices are special cases of Latin squares in the class of gerechte designs [2].

Let p be a positive integer. By [p] we denote the set

$$[p] = \{1, 2, \dots, p\}.$$

 $A\ bipartite\ graph$ is the ordered triplet

$$g = \langle R_g \cup C_g, E_g \rangle,$$

where R_g and C_g are sets such that $R_g \neq \emptyset$, $C_g \neq \emptyset$, and $R_g \cap C_g = \emptyset$. The elements of the set

$$V_g = R_g \cup C_g$$

will be called *vertices*. The set

$$E_q \subseteq R_q \times C_q = \{ \langle r, c \rangle \mid r \in R_q, c \in C_q \}$$

will be called the set of edges. Repeated edges are not allowed in our considerations.

Let $g' = \langle R_{g'} \cup C_{g'}, E_{g'} \rangle$ and $g'' = \langle R_{g''} \cup C_{g''}, E_{g''} \rangle$. We will say that the graphs g' and g'' are isomorphic and we will write $g' \cong g''$, if $R_{g'} = R_{g''}$, $C_{g'} = C_{g''}$, $|R_{g'}| = |R_{g''}| = m$, $|C_{g'}| = |C_{g''}| = n$ and there are $\rho \in \mathcal{S}_m$ and $\sigma \in \mathcal{S}_n$, where \mathcal{S}_p is the symmetric group, such that $\langle r, c \rangle \in E_{g'} \iff \langle \rho(r), \sigma(c) \rangle \in E_{g''}$. The object of this work is bipartite graphs considered up to isomorphism.

Key words: bipartite graph, equivalence relation, factor-set, binary matrix.

^{*2010} Mathematics Subject Classification: 05C30.

Let m, n and k be integers, $m \geq 4$, $n \geq 1$, and let $0 \leq k \leq mn$. Let us denote by $\mathfrak{G}_{m,n,k}$ the set of all bipartite graphs without repeated edges of the type $g = \langle R_q \cup C_q, E_q \rangle$, considered up to isomorphism, such that $|R_g| = m$, $|C_g| = n$ and $|E_g| = k$.

For more details on graph theory see [4, 6, 7].

In [5] Roberto Fontana proposed an algorithm which randomly obtain a family of $n^2 \times n^2$ mutually disjoint S-permutation matrices, where n=2,3. In n=3 he ran the algorithm 1000 times and found 105 different families of nine mutually disjoint Spermutation matrices. Then he obtained $9! \cdot 105 = 38\ 102\ 400$ Sudoku matrices. In relation with Fontana's algorithm, it looks useful to calculate the probability of two randomly generated S-permutation matrices being disjoint.

The solution of this problem is given in [11], where a formula is described for calculating all pairs of mutually disjoint S-permutation matrices. The application of this formula when n=2 and n=3 is explained in detail in [10].

To do that, graph theory techniques have been used. It has been shown that to count the number of disjoint pairs of $n^2 \times n^2$ S-permutation matrices, it is sufficient to obtain some numerical characteristics of the set $\mathfrak{G}_{n,n,k}$ of all bipartite graphs of the type $g = \langle R_g \cup C_g, E_g \rangle$, where $V_g = R_g \cup C_g$ is the set of vertices, and E_g is the set of edges of the graph $g, R_g \cap C_g = \emptyset$, $|R_g| = |C_g| = n$, $|E_g| = k$.

The aim of this work is to formulate and prove a combinatorial problem related to some numerical characteristics of the elements of the set $\mathfrak{G}_{n,n,k}$.

For the classification of all non defined concepts and notations as well as for common assertions which have not been proved here see [1, 4, 8].

2. An equivalence relation in a bipartite graph. Let

$$g = \langle R_g, C_g, E_g \rangle \in \mathfrak{G}_{m,n,k}$$

for some natural numbers m, n and k and let $v \in V_q = R_q \cup C_q$.

By N(v) we denote the set of all vertices of V_g , adjacent with v, i.e., $u \in N(v)$ if and only if there is an edge in E_g connecting u and v. In other words if $v \in R_g$, then $N(v) = \{u \in C_g \mid \langle v, u \rangle \in E_g\}$ and if $v \in C_g$, then $N(v) = \{u \in R_g \mid \langle u, v \rangle \in E_g\}$. If v is an isolated vertex (i.e., there is no edge incident with v), then by definition $N(v) = \emptyset$ and degree(v) = |N(v)| = 0.

Since in
$$g$$
 there are no repeated edges, it is easy to see that
$$\sum_{u \in R_g} |N(u)| = k \quad \& \quad \sum_{v \in C_g} |N(v)| = k \quad \Longrightarrow \quad \sum_{w \in V_g} |N(w)| = 2k.$$

Let $g = \langle R_g, C_g, E_g \rangle \in \mathfrak{G}_{m,n,k}$ and let $u, v \in V_g = R_g \cup C_g$. We will say that uand v are equivalent and we will write $u \sim v$ if N(u) = N(v). If u and v are isolated, then by definition $u \sim v$ if and only if $u, v \in R_g$ or $u, v \in C_g$. Obviously if $u \sim v$, then $u \in R_g \Leftrightarrow v \in R_g$ and $u \in C_g \Leftrightarrow v \in C_g$. It is easy to see that the relation introduced above is an equivalence relation.

By V_{g} we denote the obtained factor-set (the set of the equivalence classes) with respect to the relation \sim and let

$$V_{g/\sim} = \{\Delta_1, \Delta_2, \dots, \Delta_s\},\,$$

where $\Delta_i \subseteq R_q$, or $\Delta_i \subseteq C_q$, $i = 1, 2, \dots s, 2 \le s \le 2n$. We assume that

$$\delta_i = |\Delta_i|, \quad 1 \le \delta_i \le n, \quad i = 1, 2, \dots, s$$

and for every $g \in \mathfrak{G}_{m,n,k}$ we define the multi-set (set with repetition)

$$[g] = \{\delta_1, \delta_2, \dots \delta_s\},\,$$

where $\delta_1, \delta_2, \dots, \delta_s$ are natural numbers, obtained as above.

Obviously

$$\sum_{i=1}^{s} \delta_i = m + n.$$

The next assertion is a generalization of Corollary 1 of Lemma 1 from [11].

Theorem 1. For any positive integers m, n and any nonnegative integer k such that $0 \le k \le mn$ the following equality holds:

$$\sum_{g \in \mathfrak{G}_{m,n,k}} \frac{1}{\prod_{\delta \in [g]} \delta!} = \frac{(mn)!}{m!n!k!(mn-k)!}$$

Proof. A binary (or boolean, or (0,1))-matrix is a matrix all of whose elements belong to the set $\mathfrak{B} = \{0,1\}$. With b(m,n,k) we will denote the number of all $m \times n$ binary matrices with exactly k elements equal to $1, k = 0, 1, \ldots, mn$.

It is easy to see that

(1)
$$b(m,n,k) = \binom{mn}{k} = \frac{(mn)!}{k!(mn-k)!}$$

We will prove that

(2)
$$b(m,n,k) = m!n! \sum_{g \in \mathfrak{G}_{m,n,k}} \frac{1}{\prod_{\delta \in [g]} \delta!}$$

Let $A = [a_{ij}]_{m \times n}$ be a $m \times n$ binary matrix with exactly k 1s. Then we construct a graph $g = \langle R_g \cup C_g, E_g \rangle$, such that the set $R_g = \{r_1, r_2, \dots, r_m\}$ corresponds to the rows of A, and $C_g = \{c_1, c_2, \dots, c_n\}$ corresponds to the columns of A, however there is an edge connecting the vertices r_i and c_j if and only if $a_{ij} = 1$. The graph which has been constructed obviously belongs to $\mathfrak{G}_{m,n,k}$.

Conversely, let $g = \langle R_g \cup C_g, E_g \rangle \in \mathfrak{G}_{m,n,k}$. We number in a random way the vertices of R_g by natural numbers from 1 to m without repeating any of the numbers. This can be done by m! ways. We analogously number the vertices of C_g by natural numbers from 1 to n. This can be done by n! ways. Then we construct the binary $m \times n$ matrix $A = [a_{ij}]_{m \times n}$, such that $a_{ij} = 1$ if and only if there is an edge in E_g connecting the vertex with number i of R_g with the vertex with number j of C_g . Since $g \in \mathfrak{G}_{m,n,k}$, the matrix that has been constructed has exactly k 1s. It is easy to see that when $q, r \in [m]$, the qth and rth rows of A are equal to each other (i.e., the matrix A does not change if we exchange the places of these two rows) if and only if the vertices of R_g corresponding to numbers q and r are equivalent according to relation \sim .

The analogous assertion is true about the columns of the matrix A and the edges of the set C_g , which proves formula (2).

From (1) and (2) it follows that

$$m!n! \sum_{g \in \mathfrak{G}_{m,n,k}} \frac{1}{\prod_{\delta \in [g]} \delta!} = \frac{(mn)!}{k!(mn-k)!},$$

which proves the theorem.

REFERENCES

- [1] M. AIGNER. Combinatorial Theory. Classics in Mathematics, Springer-Verlag, 1979.
- [2] R. A. Bailey, P. J. Cameron, R. Connelly. Sudoku, gerechte designs, resolutions, affine space, spreads, reguli, and hamming codes. *Amer. Math. Monthly*, **115** (2008), 383–404.
- [3] G. Dahl. Permutation matrices related to sudoku. *Linear Algebra and its Applications*, **430**, 8–9, (2009), 2457–2463.
- [4] R. Diestel. Graph Theory. Springer-Verlag Heidelberg, New York, 1997, 2000, 2006.
- [5] R. FONTANA. Fractions of permutations an application to sudoku. *Journal of Statistical Planning and Inference*, **141**, 12 (2011), 3697–3704.
- [6] F. Harary. Graph Theory. Addison-Wesley, Massachusetts, 1998.
- [7] I. MIRCHEV. Graphs. Optimization algorithms in networks. SWU "N. Rilsky", Blagoevgrad, 2001.
- [8] V. N. Sachkov, V. E. Tarakanov. Combinatorics of Nonnegative Matrices. Translations of Mathematical Monographs. American Mathematical Society, 2002.
- [9] M. SWAMI, K. THULASIRMAN. Graphs, networks and algorithms. John Wiley & Sons, 1981.
- [10] K. YORDZHEV. Bipartite graphs related to mutually disjoint s-permutation matrices. ISRN Discrete Mathematics, 2012 (2012), Article ID 384068, 18 pages.
- [11] K. YORDZHEV. On the number of disjoint pairs of s-permutation matrices. Discrete Applied Mathematics, 161, 18 (2013), 3072–3079.

Krasimir Yankov Yordzhev N. Rilsky South-West University 66, Ivan Mihailov Str. 2700 Blagoevgrad, Bulgaria e-mail: yordzhev@swu.bg

ВЪРХУ НЯКОИ ЧИСЛОВИ ХАРАКТЕРИСТИКИ НА БИПОЛЯРЕН ГРАФ

Красимир Янков Йорджев

В статията се разглежда една релация на еквивалентност в множеството от върхове на произволен биполярен граф. Въвеждат се някои числови характеристики показващи мощността на отделните класове на еквивалентност. Получено и доказано е едно комбинаторно тъждество свързано с тези характеристики в множеството от всички биполярни графи от вида $g=\langle R_g \cup C_g, E_g \rangle$, където $V=R_g \cup C_g$ е множеството от върхове, а E_g е множеството от ребра на графа $g, |R_g|=m \geq 1,$ $|C_g|=n \geq 1, |E_g|=k \geq 0, m,n$ и k са цели числа.