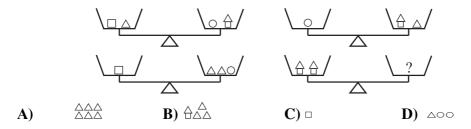
A SELECTION OF PROBLEMS FROM THE EIGHT MATHEMATICAL COMPETITION – SOFIA

Type One – Multiple Choice Answer

Fifth Grade

Problem

The four scales are in balance. What CANNOT be put in the place with the question mark?



Solution

From balance \mathbb{N}_{2} we can conclude that $\triangle \bigcirc \bigcirc$ weigh as much as $\triangle \stackrel{\triangle}{\Box} \triangle \stackrel{\triangle}{\Box} \triangle$.

Therefore $\triangle \circ \circ$ is heavier than $\triangle \triangle$.

Conclusion

The answer is D.

Sixth grade

Problem

Some Knights and Liars are living on the Here-and-There Island.

The Knights always tell the truth. The Liars always lie.

Six islanders met on the Here-and-There Island. Everyone told the others: "You are ALL liars!" How many are the Knights among those who met there?

A) 1; **B**) 3; **C**) 5; **D**) 6.

Solution

If ALL six islanders were Liars, then the statement "You are ALL liars!" would be TRUE. But this would mean that the Liars spoke the truth, which is IMPOSSIBLE \Rightarrow answer D is IMPOSSIBLE.

If at least TWO of those six islanders were Knights, then NONE of them would say "You are ALL liars!" because that is NOT TRUE \Rightarrow answers B and C are IMPOSSIBLE.

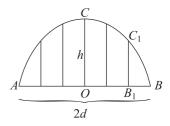
Conclusion

The answer is A.

Eleventh - Twelfth Grade

Problem

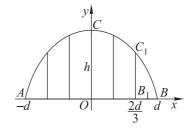
The arch AB is part of a bridge. It is also part of a parabola with an apex C which is the midpoint of the arch AB. There are five vertical trusses. They divide the segment AB into six equal parts. The main truss OC has a height of h. AB = 2d. Find $B_1C_1: OC = ?$



C)
$$\frac{2}{3}$$
: d;

Solution

We choose a co-ordinate system with OC and AB axes. In this system A(-d; 0), B(d; 0) and C(0; h). Since OC is the axis of symmetry of the parabola with C(0; h) as its apex, then the parabola has an equation $y = f(x) = ax^2 + h$.



If x = d, $ad^2 + h = 0$, then

 $\frac{|B_1 \setminus B|}{\frac{2d}{3} d^{\frac{2d}{3}}}$ $a = -\frac{h}{d^2}$, and so the arch AB

has an equation
$$y = f(x) = -\frac{h}{d^2}x^2 + h = h\left[1 - \left(\frac{x}{d}\right)^2\right]$$
 when $x \in [-d; d]$.

Point
$$B_1$$
 has co-ordinates $\left(\frac{2d}{3}; 0\right)$ and $B_1C_1 = f\left(\frac{2d}{3}\right) = h\left[1 - \left(\frac{2}{3}\right)^2\right] = \frac{5}{9}h$.

Therefore
$$B_1C_1: OC = \frac{5}{9}h: h = 5:9$$
.

Conclusion

The answer is **A**.

Type Two - Free Answer

Third Grade

Problem

We assume that % = 10 and %:Q = 2.

Find %.Q = ?

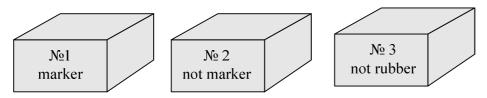
Solution

We know that % = 10. Then, from %: Q = 2, we find $10: Q = 2 \implies Q = 5$.

Therefore %.Q = 10.5 = 50.

Seventh grade

Problem



In each of these three Boxes (1, 2, 3), there is just ONE object – a marker, a rubber, a pen. Box \mathbb{N}_2 1 is labelled "marker", Box \mathbb{N}_2 2 – "not marker", and Box \mathbb{N}_2 3 – "not rubber". You know that only ONE of the labels is true. Find out what is the object in Box \mathbb{N}_2 1.

Solution

We will solve the problem by a table, writing plus (+) if the label is TRUE, and minus (-) if it is NOT TRUE.

Box № 1		Box № 2		Box № 3	
marker	+	pen	+	rubber	_
marker	+	rubber	+	pen	+
pen	_	marker	_	rubber	_
pen	_	rubber	+	marker	+
rubber	_	pen	+	marker	+
rubber	_	marker	_	pen	+

The solution is in the line with ONE plus and TWO minuses.

In our case this is line 6 and the object in Box № 1 is a RUBBER.

Ninth - Tenth grade

<u>Problem</u>

x and y are positive numbers. We have the equation $\frac{x}{y} + \frac{x+1}{y+1} + ... + \frac{x+2006}{y+2006} = 2007$.

The numerical value of the quotient $\frac{x^{2007} + xy^{2007}}{y^{2007}}$ is equal to

Solution

$$\frac{x}{y} + \frac{x+1}{y+1} + \dots + \frac{x+2006}{y+2006} = 2007 \iff \left(\frac{x}{y} - 1\right) + \left(\frac{x+1}{y+1} - 1\right) + \dots + \left(\frac{x+2006}{y+2006} - 1\right) = 0 \iff$$

$$\frac{x-y}{y} + \frac{x+1-y-1}{y+1} + \dots + \frac{x+2006-y-2006}{y+2006} = 0 \iff (x-y)\left(\frac{1}{y} + \frac{1}{y+1} + \dots + \frac{1}{y+2006}\right) = 0 \iff$$

$$\Leftrightarrow x-y=0 \text{ or } \frac{1}{y} + \frac{1}{y+1} + \dots + \frac{1}{y+2006} = 0.$$

Since
$$y > 0$$
 then $\frac{1}{y} + \frac{1}{y+1} + \dots + \frac{1}{y+2006} > 0$.

When
$$x > 0$$
, $y > 0$ then $\frac{x}{y} + \frac{x+1}{y+1} + \dots + \frac{x+2006}{y+2006} = 2007 \iff x = y$.

Therefore if
$$x = y$$
, $y > 0$, $\frac{x^{2007} + xy^{2007}}{y^{2007}} = \frac{x^{2007} + xx^{2006}}{x^{2007}} = \frac{2x^{2007}}{x^{2007}} = 2$.

The answer is 2.

Type Three – fully-developed solution required

Ninth - tenth grade

Problem

The sequence 4, 7, 1, 8, 9, 7... has general term $a_n (n \in N, n > 2)$. This general term a_n is equal to the last digit of the sum $a_{n-1} + a_{n-2}$.

Find *n* if the partial sum of the first *n* terms is 12 345.

Solution

Finding out more terms of the sequence $\underbrace{4, 7, 1, 8, 9, 7, 6, 3, 9, 2, 1, 3}_{12 \text{ terms}}$, 4, 7, ... we see that it is

periodic with a period of 12.

We assume that S_n is the partial sum of the first n terms

$$(n=12k+m; k=0, 1, 2, 3, ...; m=0, 1, 2, 3, ..., 11).$$

We find
$$S_{12} = 4 + 7 + 1 + 8 + 9 + 7 + 6 + 3 + 9 + 2 + 1 + 3 = 60$$
.

Hence
$$S_n = k.S_{12} + S_m = 60k + S_m (0 \le S_m < 60)$$
.

Since $S_n = 12345 = 60.205 + 45$, then k = 205 and $S_m = 45$ e.g. m = 8.

Therefore n = 12.205 + 8 = 2468.