

Seventh International Scientific Conference “Innovative STEM Education” STEMedu-2025
05 – 10 October 2025, Veliko Tarnovo, Bulgaria https://www.math.bas.bg/vt/stemedu

41

STEM TECHNIQUES IN PROGRAMS FOR RECOGNIZING REGULAR

LANGUAGES IN THE TEACHING OF THE “LANGUAGE PROCESSORS”

COURSE

Juliana Dochkova-Todorova
“St. Cyril and St. Methodius”

University of Veliko Tarnovo, Bulgaria
doskova@ts.uni-vt.bg

Maya Hristova
“St. Cyril and St. Methodius”

University of Veliko Tarnovo, Bulgaria
maia.hristova@ts.uni-vt.bg

STEM ПОХВАТИ ПРИ ПРОГРАМИТЕ ЗА РАЗПОЗНАВАНЕ НА

АВТОМАТНИ ЕЗИЦИ В ОБУЧЕНИЕТО ПО ДИСЦИПЛИНАТА

„ЕЗИКОВИ ПРОЦЕСОРИ“

Abstract

The paper presents a study on the possibilities of applying STEM approaches in teaching language
processors, with a focus on algorithms for recognizing input words. The authors examine different
implementation options for recognizing regular languages and analyse the methodical aspects related
to them.

Typical mistakes made by students when creating the programs are systematized. Suggestions have
been made on error detection methodologies, aimed at improving students' mastery of algorithmic
thinking.

The study also draws attention to the integration of artificial intelligence tools in solving
programming tasks.

Keywords: Finite Automata; Teaching Language Translators; Language Recognition; Regular
Expressions.

INTRODUCTION

Formal languages and finite automata constitute a central component of theoretical
computer science [1]. They provide a mathematically rigorous framework for representing
symbols and rules, allowing the precise description of valid sequences of symbols, commonly
referred to as words. These models are grounded in set theory and formal logic, which makes
it possible to analyze computational problems with a high degree of precision. Through
formal grammars and automata, it becomes feasible to characterise entire classes of languages
and to determine whether specific problems are solvable or unsolvable within a given
computational model [1]. This theoretical foundation is essential for understanding not only
the structure of languages themselves but also the underlying principles of algorithmic
processes and computation in general. By studying these models, students and researchers
develop the ability to reason about abstract systems, prove properties of languages, and
establish equivalences between different representations of the same language.

In addition to their theoretical significance, formal languages and automata have a
profound impact on practical software development [2]. They form the basis for the design
and construction of fundamental tools such as compilers and interpreters, where knowledge of
grammars, parsing techniques, and state machines ensures the accurate translation of high-

Science Series “Innovative STEM Education”, Volume 7, 2025

42

level programming languages into machine-executable instructions. Beyond this core
application, these models are employed in code optimization, error detection, and verification
of program correctness. Moreover, they are instrumental in security-related tasks, such as
filtering malicious input or identifying dangerous patterns, as well as in text-processing
applications including search engines, data parsing, and natural language processing. By
bridging the gap between abstract theory and concrete implementation, the study of formal
languages and automata equips students with the skills to design efficient algorithms, reason
systematically about computational processes, and apply formal methods in diverse
technological contexts. This integration of theory and practice exemplifies the essential role of
formal models in both education and real-world software engineering [2].

In turn, finite automata are one of the tools with which modern computer and software
systems are built [2], [3]. The theory of automata and languages is a key part of the
foundations of computer science. Its study contributes to the understanding of the working
principles of computers and the methodologies that are used [1].

Formal languages and finite automata are grounded in strong theoretical foundations.
They also have a significant practical impact, playing a crucial role in modern software
development. The study of these models informs the design and implementation of essential
tools in computer science. A primary example is the construction of compilers and
interpreters, where knowledge of formal grammars, parsing techniques, and automata theory
ensures the accurate translation of high-level programming languages into machine-
executable instructions. Moreover, these concepts are directly applied in the optimization of
code, the detection and handling of errors, and the enforcement of syntactic and semantic
correctness throughout the compilation process.

Regular languages also play a special role in computer science, as they are a well-
studied class of formal languages that can be recognised by a finite automaton, either
deterministic or nondeterministic. This class of languages corresponds to regular languages
described by regular expressions and to languages generated by regular grammars.

The fundamental role of regular languages for many theoretical areas in computer
science is determined by their formal rigor, computational efficiency and practical
applicability. Compilers, search engines, verification systems and text processing tools are
developed using them. Furthermore, regular languages provide a good theoretical basis for the
development of more complex model classes of languages such as context-free and context-
aware languages.

On the other hand, important in computer science education are the development of
algorithmic thinking, knowledge of various mathematical models, and a number of other
cognitive and practical skills that relate directly to STEM education components.

Algorithmic thinking can be expressed by the ability to solve problems through clear
instructions for a finite number of steps, executable by a human or computer. Part of this
thinking is the ability to break down a task into subtasks. Furthermore, defining and
implementing algorithms requires skillful recognition of different patterns. Correct estimation
of complexity, the amount of time a program takes to run, and the memory required are also
essential for developing effective algorithms.

The essence of mathematical modeling is the representation of real or abstract systems
by various mathematical structures in order to analyse and predict behavior. In courses such as
Language Processors, students model systems and algorithms using automata, regular
expressions, and context-free grammars.

STEM approaches play a crucial role in the teaching of the Language Processors
discipline by fostering algorithmic thinking, mathematical reasoning, and technical
competence. Through tasks such as modelling systems with finite automata, constructing
lexical and syntactic parsers, and implementing compiler modules, students develop the

Science Series “Innovative STEM Education”, Volume 7, 2025

43

ability to decompose complex problems into manageable components and design systematic
procedures for their resolution.

By integrating theoretical concepts with practical applications, STEM-based instruction
enables learners to apply formal methods to real-world computing tasks. This connection
between abstract models and hands-on implementation not only strengthens students’
analytical and problem-solving skills but also prepares them to develop software solutions
that are both correct and efficient.

In this context, the integration of STEM-oriented techniques into the learning process
provides a number of significant benefits that extend beyond the acquisition of factual
knowledge. One of the most important outcomes is the cultivation of abstract and algorithmic
thinking, which equips learners with the ability to decompose complex problems into
manageable components and to design systematic procedures for their resolution. Such skills
are fundamental not only in the study of formal languages and automata theory, but also in
broader areas of computer science and engineering.

Furthermore, STEM-based methods contribute to the development of strong
mathematical and technical competences, particularly in domains closely connected with the
theory and practice of formal languages. For instance, learners gain practical experience in
designing and implementing compiler modules, where the application of formal grammars
and parsing algorithms becomes an essential exercise in bridging theoretical constructs with
real-world implementations. At the same time, exposure to interdisciplinary STEM
approaches fosters the capacity to adopt and adapt various engineering strategies for problem
solving, encouraging students to apply analytical reasoning, experimentation, and iterative
design in diverse computational contexts.

Taken together, these benefits illustrate the pedagogical and practical value of
incorporating STEM principles into computer science education, ensuring that learners not
only acquire theoretical knowledge, but also develop the cognitive and technical skills
necessary to apply it effectively in professional and research settings.

The main objectives of this study are to analyse the methods for solving formal
language recognition problems and to systematize the students' errors. For the purposes of this
study, observations were carried out over the last two academic years during the delivery of
the course “Language Processors” to computer science students at the Faculty of Mathematics
and Informatics, St. Cyril and Methodius University of Veliko Tarnovo. The study presents
three approaches for solving a basic formal language recognition problem and systematizes
methodological notes related to their teaching. An analysis is made of the errors made by
students in solving the problem, the reasons for them and the possibilities of avoiding them.
Finally, some ideas for the use of AI in teaching by lecturers and students are proposed.

EXPOSITION

1. Theoretical foundations and application

Students studying computer science and software engineering are introduced to the
theoretical foundations of computer science during their studies through the courses Automata
and Language Theory, Language Processors, Language Translators and Translation Methods.
Some of the topics covered relate to finite automata and regular languages in the following
sequence:

1. Regular languages (RL) and regular grammars (RG)
2. Properties of regular languages
3. Finite-state automata (FA) – recognisers and transducers
4. Deterministic finite automaton (DFA)

Science Series “Innovative STEM Education”, Volume 7, 2025

44

5. Nondeterministic finite automaton (NFA)
6. Determinization of DFAs
7. Equivalence of automata and regular grammars
8. Minimisation of DFAs
9. Algorithms for regular grammars
10. Regular expressions (RE) and regular languages
11. Equivalence of regular expressions and automata
12. Lexical analysis as a stage of compiler and interpreter work

The basic definitions needed for the algorithms of the subject of this study are given in
many textbooks on automata theory [4], [5], [6] and online tutorials [7], [8], [9]. Only the
main ones will be presented informally here for the purpose of exposition:

 An alphabet is a set of symbols called letters. A word is a sequence of letters of
an alphabet. In this sense, strings and computer programs are words. An example
of an alphabet is the set {a, b} whose letters are 'a' and 'b'.

 A formal language (FL) is a set of words. Most often, an FL includes all possible
words that are constructed according to certain rules. The rules are specified
differently according to the goals of specific tasks – description of word
properties, formal grammars (FG), finite automata, stack automata, regular
expressions, etc.

 According to the Chomsky hierarchy, a regular language is a formal language
defined by a class of formal grammars known as regular grammars. To define
such a language all the above ways can be used, for example the language L =
{a(n) b(m)| n≥1, m≥0} includes all words starting with any number of letters 'a',
having at least one such letter, and ending with any number of letters 'b'.

 A DFA is a kind of pattern consisting of different states that are connected
together by transitions. One of the states is initial, and some of them are final.
For each state and for each possible input letter, there is a transition function
defined to transition to another state. The automaton starts from the initial state
and processes the letters of the input word as it transitions from state to state.
Once all letters of the input word have been read, the last state reached
determines whether or not this DFA recognises the input word. Recognition is
performed only in the states that are final.

 Automata are represented by graphs called diagrams, where the operation of an
automaton corresponds to a path in this graph.

 In NFA, unlike DFA, there can be multiple transitions to different states from
each state and for each letter. Thus, for a single input word, more corresponding
paths in the graph are obtained. NFA recognises an input word if at least one of
these paths reaches a final state of the automaton.

 A regular expression (RE) is a character model that also describes a set of words
using sequences of alphabet letters and special characters such as *, +, and
parentheses, where * indicates repetition, the symbol + selects a letter from
several possible ones, and parentheses change the precedence. For example, the
RE "a (a+b)*" describes all words that are arbitrary sequences of the letters 'a'
and 'b' beginning with the letter 'a'. The regular language is the set of words that
can be described by a given RE.

Multiple statements about these basic concepts make up the theory of formal languages,
but also directly reflect the needs of practice. In turn, equivalence claims connect the different
ways of specifying regular languages: RG, DFA/NFA, RE, etc. But they are also based on
proven algorithms for obtaining an equivalence structure that specifies the same set of words,
i.e. equivalence means matching the corresponding regular languages.

Science Series “Innovative STEM Education”, Volume 7, 2025

45

A practical application is in regular language recognition tasks where an algorithm is
constructed to determine whether a word belongs to a specified formal language. The
application extends to various areas of computer science – where text, data and commands are
handled. The main areas are:

 Development of compilers and interpreters – In lexical analysis when splitting
the input program into keywords, identifiers, numbers, etc.;

 Regular expressions in practice – In searching and replacing text and in
validating formats such as email, phone number, URL, ISBN, etc.;

 Security – filtering dangerous strings and recognizing attack patterns;
 Natural language processing – tokenization and morphological analysis.

A major aspect in motivating students to study complex theoretical concepts is precisely
their application in practice. Analysing concrete cases from compiler construction, text
processing, and search applications provides a clear illustration of the skills and knowledge
students are expected to acquire.

Working on formal language recognition problems prepares students to design fast and
secure software solutions by giving them the necessary mathematical and algorithmic
foundation.

2. Approaches to implementing programs for regular language recognition

We will consider the following basic problem of regular language recognition:
Problem. To write a program to recognise a given formal language. After starting, the

user is expected to enter an input word, and then it is checked whether it is from the language
or not. As a result, whether the word is from the language is output. Use only assignment
commands, input and output commands, conditional operators and loops.

The input word is remembered as a string or in a one-dimensional array. The formal
language may be specified in various ways, for example:

 with a general appearance of the words and a description of their properties;
 DFA;
 RE;
 NFA;
 formal grammar.

Of algorithmic and practical interest are the first three ways. For the other two ways, the
following considerations hold:

 The realization of a NFA operation corresponds to the realization of more than
one DFA according to most possible transitions of each step of the automaton
operation. Therefore, in this case, a deterministic algorithm is applied at the
beginning and thus the problem is reduced to one DFA.

 For languages specified by FG, one initially proceeds to equivalent finite
automata via the equivalence algorithms.

In solving these three variants of the regular language recognition problem, we will
focus on the three main approaches considered in the Language Processors course at the
Faculty of Mathematics and Informatics and offered separately in examples and problems
from textbooks and online learning materials such as [5], [10], [11]:

 Approach 1: An algorithm based on the properties of words in the language
 Approach 2: An algorithm implementing the performance of a DFA recognizing

the words of the language
 Approach 3. An algorithm based on the RE defining the given language.

Science Series “Innovative STEM Education”, Volume 7, 2025

46

Approach 1

The first methodological approach applied to the problem of regular language
recognition is centered on the design and implementation of algorithms that exploit intrinsic
word-level properties such as length, ordering of symbols, and frequency of occurrence.
Within this framework, the structural features of words are systematically analyzed in order to
identify patterns that are characteristic of a specific formal language. Such features may
include constraints on permissible symbol sequences, distributional regularities, or recurring
syntactic structures that collectively form a distinctive linguistic "signature".

This approach is particularly effective in scenarios where explicit grammatical
descriptions are either unavailable or computationally expensive to process, since the
recognition task can be reduced to the identification of quantifiable word attributes. By
focusing on measurable structural indicators, the algorithm is able to approximate language
membership decisions with a relatively high degree of efficiency. Consequently, this method
has found widespread application in the development of formal language recognition
programs, where its simplicity and computational feasibility make it a valuable tool for both
theoretical experimentation and practical implementation in software systems.

The analysis of the input word requires a detailed consideration of the formal properties
that are characteristic of the language. These include the word length, the character frequency,
the ordering of characters and subwords, symmetries and repetitions, and the positions of
specific subwords.

The first step of the property-based algorithm involves analysing the description of the
language. To illustrate, consider the language L = {a bn a | n ≥ 1}. Each word in this language
has a strict structure and exhibits the following properties:

 a minimum length of three characters, since the word starts with exactly one
letter 'a', followed by one or more letters 'b', i.e. n ≥ 1, and ends with exactly one
letter 'a';

 the first and last characters are always 'a';
 the intermediate characters consist solely of 'b';
 each word contains exactly two occurrences of the character 'a' – at the

beginning and at the end.
In the second step of the algorithm, the given word is broken down into characters and

the number of characters is checked to see if they satisfy the conditions of the language
properties. Let us consider the word "abbba". The beginning of the word w[0] = 'a' consists of
one character 'a' and this matches the language properties L. The intermediate subword w[1:-
1] = 'bbb' contains only characters 'b' whose length is at least 1, which in turn also satisfies
the condition. The last subword w[-1] = 'a' again contains one character 'a'. As a conclusion,
we can confirm that the word w = 'abbba' belongs to the language under consideration.

In a next step of the algorithmic approach, a further check of the ordering of the
symbols is performed, since in many cases it is not enough that the number of symbols
corresponds to the properties of the language, but it is also important in which order they
occur. For the language L under consideration, each word would have the following form:

𝑤 = 𝑎⏟

௕௘௚௜௡௡௜௡௚

 𝑏𝑏𝑏 …ᇣᇤᇥ
௢௡௟௬ ௕,௢௡௘ ௧௜௠௘௦ ௠௜௡௜௠௨௠

 𝑎⏟
௘௡ௗ

i.e. the letter 'a' is not allowed among the letters 'b'. Accordingly, this step would have to

check that the first character of the input word is 'a', that the last character is also 'a', and that
the intermediate part contains only the letters 'b' in the correct order – that all characters
between the first and second characters are only 'b'.

Science Series “Innovative STEM Education”, Volume 7, 2025

47

The algorithmic method of recognizing regular languages through input word properties
is closely related to the STEM approach. As such, it develops algorithmic thinking. It is also
intuitive enough and this makes it suitable for students who have not sufficiently mastered
formal modelling with automata. It consists of basic constructs – counters, conditions and
loops and this makes it easy to implement. Moreover, it is flexible enough, which allows
working with more complex conditions.

One drawback of this method is its limited applicability beyond regular languages, as
the relevant property can be derived more efficiently for regular languages. As the complexity
of language classes increases—for example, in the case of context-free and context-sensitive
languages—more advanced programming techniques and language constructs become
necessary.

Approach 2

The second approach, discussed within the framework of the Language Processors
course, is grounded in one of the fundamental tools of formal language theory, namely the
DFA. This approach emphasizes the systematic construction and analysis of automata as a
means of formalizing and solving language recognition problems. A well-established
technique associated with this methodology is the so-called "set and simulate operation"
method, which provides a structured procedure for the creation of an automata-based
recogniser.

In this method, the behavior of the automaton is explicitly described by simulating its
response at each individual step of processing the input word. More specifically, the set of
possible states is examined and updated as the automaton reads the successive symbols of the
input sequence, thereby enabling a step-by-step account of the recognition process. This
makes it possible to capture not only the final acceptance or rejection of the word, but also the
intermediate computational states through which the automaton transitions.

As a classical and widely adopted approach, the set and simulate operation method
serves as a pedagogical bridge between the theoretical underpinnings of automata theory and
their practical application in the construction of recognisers. Its stepwise nature ensures
transparency in the analysis of automaton behavior, making it a particularly effective method
for teaching, demonstrating, and implementing language recognition algorithms.

This approach involves two main phases. In the first, the automaton is formally defined
as A = (Q, Σ, δ, q଴ , F), where:

 Q is a finite set of states;
 Σ is the input alphabet;
 δ is the function of transitions, δ ∶ 𝑄 × Σ → 𝑄;
 q଴ ∈ 𝑄 is the initial state;
 F ⊆ 𝑄 is the set of final states.

In the second phase of the approach, a simulation of the automaton's operation on a
given input word is performed. Starting from the initial state, the automaton reads the symbols
sequentially, applying the transitions functionδ to each symbol to determine the next state.
Finally, it checks whether the reached state belongs to the setF . If yes – the word is
recognized [1]. This visualization can be implemented by programming code or by means of
various online tools (see Fig. 1).

Science Series “Innovative STEM Education”, Volume 7, 2025

48

Fig. 1. Online tool [20] for the simulation of DFA performance

The use of the DFA (specifying and simulating its operation) is an effective approach in
the teaching of the disciplines "Language Processors" and "Formal Languages and
Grammars", since it allows the integration of theoretical knowledge with practical algorithmic
thinking. By specifying automata and simulating their operation in the form of a running
program, students develop not only an understanding of formal methods, but also practical
skills that find application in areas such as lexical analysis, language design, and system
verification [12], [13].

Approach 3

The method of recognizing regular languages through regular expressions (RE) finds
application in the process of learning the Language Processors course. This method provides
an intuitive connection between theoretical models of formal languages and real programming
implementations. This property makes it particularly effective in practical problem solving
[12].

Regular expressions could serve as a formal means to describe regular languages, a
subset of formal languages that can be recognised by deterministic or nondeterministic finite
automata. The formal equivalence between regular expressions and finite automata is clearly
established in automata theory [1]. Regular languages coincide with languages of RE.

Using this approach, a regular expression is initially formulated that describes the
syntax of the words of the language. Consider the example formal language 𝐿 = {𝑎𝑏௡𝑎 |𝑛 ≥
0}. It could be represented by the template 𝑎𝑏∗𝑎, representing the RE. The next stage involves
a programming test using appropriate language constructs and/or language libraries. The last
step directly checks whether the given input word matches the regular template. If this
condition is satisfied, then the word belongs to the language.

Science Series “Innovative STEM Education”, Volume 7, 2025

49

The use of regular expressions enables syntactic pattern analysis, data filtering and
automatic validation of input to programs. It is used in tools such as lexical analyzers (lex,
flex), compilation systems, text editors and network filters [12].

The advantage of the considered approach lies in its practicality and ease of
implementation, especially in an educational environment where students learn the
equivalence of formal concepts in real code [13]. Its main drawback is that it is only
applicable to regular languages. More complex languages, such as those with nested
structures or dependent counts of different subwords, cannot be defined using regular
expressions and require the use of stack automata or context-free grammars [1].

Recognition of formal languages, and in particular regular languages, can be
implemented using any of the approaches considered - an algorithm based on word properties,
using DFA, or using regular expressions and direct testing. Although diverse in form and
implementation, for these languages they are equivalent in expressive power.

As stated above, according to automata theory, any regular language can be represented
in various equivalent ways, such as by a finite automaton, a regular expression, and an regular
grammar. Specifically:

 any regular expression can be transformed into a NFA and subsequently into a
DFA;

 any DFA can be algorithmically transformed into a regular expression;
 for every DFA there exists an regular grammar defining the same language;
 for every regular grammar there exists a NFA defining the same language.

Algorithms that check whether a word belongs to a language by evaluating length,
ordering, or frequency of characters were specified as Approach 1. These algorithms, when
they do not use a stack-type data structure or recursion, are equated in expressive power to
DFAs because they are based on a finite number of states and local verification. This makes
them only applicable to regular languages.

In turn, regular expressions provide a compact and expressive means of defining
syntactic patterns. They are widely used in practice - in language processors, compilers,
lexical analyzers and other text analysis systems. REs can be implemented using compiled
patterns in programming languages such as Python, Java or C++, allowing direct word testing
with minimal effort.

Since RE and DFA are mutually convertible, the use of regular patterns in a software
context actually implements the concept of a finite automaton without explicitly building a
machine model.

Tab. 1 Equivalence of different approaches

Approach Expressive
power

Transform
to DFA

Transform
to RE

Constraints

1. Property-based
algorithm

Regular ✅ ✅ Cannot account for dependencies in
properties

2. DFA Regular - ✅ Lacks support for comparing the
frequency of subwords in the accepted
language

3. Regular expression Regular ✅ - Cannot express contextuality

For any regular language, the approaches are equivalent in terms of being able to accept

the same sets of words. The choice of approach depends on the context, i.e. whether it is a
formal proof, a simulation, a program implementation or a lexical analysis.

Science Series “Innovative STEM Education”, Volume 7, 2025

50

Table 2 Comparison of the three approaches

Approach Form of implementation Suitable for
automation

Suitable for
proofs

Equivalence
with RE

1. Property-based
algorithm

Conditional checks on start/end
characters and occurrence counts

Partial No Yes

2. DFA States and transitions Yes Yes Yes

3. Regular
expression

Template Yes Yes Yes

A generalized comparison between the different approaches shows that learning the

Language Processors discipline requires systematic mastery of different methods for
recognizing formal languages. There is a theoretical equivalence between regular expressions,
finite automata and regular grammars that is well established in many research papers on
formal language theory. These approaches have equal expressive power with respect to
regular languages.

The correspondence between right-linear grammars and finite automata has also been
proved, and this fact is discussed in detail by [6]. In his work, he demonstrated formal
transformation rules between different representations. In turn, [14] analyzed the descriptive
complexity of going from automata to regular expressions and vice versa, stressing that
although transformation is possible, it is not always efficient.

In modern teaching, regular expressions are often used in beginning topics and exercises
because of their syntactic compactness and intuitiveness. A practice-oriented survey for
generating regular languages using regular expressions is presented by [15], with the authors
pointing out their advantages for fast recognition in real-world systems. In [16], a method for
synthesizing regular expressions from examples is proposed, which has been successfully
applied to training tasks in regular languages. This approach creates opportunities for semi-
automated learning and adaptive knowledge checking.

The structure of finite automata can be considered as a mechanism for formal
recognition of regular languages [17], including minimization and simulation strategies. This
approach allows precise control over recognition states and transitions and is particularly
suitable for simulation learning and building language compilers.

While algorithms based on word properties (such as length, ordering, character
frequency), such as Approach 1, are not formally defined in automata theory, they have
significant educational value. They are widely used in the initial stages of learning to form
algorithmic reasoning. In the context of academic disciplines such as Language Processors,
this approach supports the transition between theory and practice by providing concrete and
implementable steps.

In [18], we demonstrate the application of regular expressions combined with automata
in decoding output from neural networks for handwriting recognition. This demonstrates a
concrete software application of the considered approaches and reinforces their relevance not
only in education but also in practice.

The considered approaches for regular language recognition are theoretically equivalent
but have different advantages depending on the application context. DFAs offer formal rigor
and transparency, regular expressions offer expressive compactness, and property-based
algorithms offer an intuitive transition to practically applicable algorithms. In this respect,
their use in the Language Processors course helps to build a solid foundation.

Science Series “Innovative STEM Education”, Volume 7, 2025

51

3. Methodological notes on approaches to problem solving

Consider the regular language L = {(ab)nbmak| n≥ 1, m≥ 0, k≥ 2} to the basic problem
described above. Regardless of the approach chosen to solve the problem, several key stages
are passed during learning:

1. Analyzing the problem condition using example words from within and outside
the language;

2. Compose an algorithm in accordance with the previously considered
approaches;

3. Program in a pseudocode or programming language;
4. Creating test words for verification and possibly going through several tests and

program adjustments.
During the first stage, both the language word of minimum length abaa and other words

of similar length are determined: abbaa, abaaa, ababaa, abbbaa, etc. These words could be
used for the test in stage 4. Helping to understand the condition and create the algorithm is
also the identification of some words that are not in the language. Particularly useful at this
stage are online tools such as [19] for simulating the operation of a finite automaton, see Fig.
1. This makes it faster and easier to track the automaton's performance for a given input word
by illustrating each transition with an animation. Visualization and interactivity support better
understanding and even increase motivation when learning concepts.

For Stage 3 of the problem solving, the following implementations of the three
approaches are considered during the Language Processors exercises, reflecting the algorithm
chosen in the second stage.

3.1. Approach 1 – property checker program:

In regular language recognition tasks, even when the languages are specified by regular
expressions or finite automata, this subapproach is frequently employed, relying on a
structural analysis of the words in the language. To illustrate the approach under
consideration, we will use the language L mentioned above.

As mentioned, the method used requires to perform a correct analysis of the structure of
the words that belong to L. Such words have:

 One or more sequences consisting of the subword ab , as for (𝑎𝑏)௡, 𝑛 ≥ 1;
 It is possible to follow any number of charactersb due to the requiremen 𝑚 ≥ 0;
 The word ends with at least two letters a and this is defined by the condition

𝑘 ≥ 2.
This structure allows the use of a deterministic algorithm that does not require

simulating an automaton or building a regular expression, but is based on checking the
ordering and number of characters. Such an algorithm could be described by the following
pseudocode:

Function is_in_language(w):
 index← 0
 n← 0
 while there is an ab at the current position:
 index← index + 2
 n← n + 1
 if n < 1→ reject
 as long as there are 'b' characters:
 index← index + 1
 as long as there are 'a' characters:

Science Series “Innovative STEM Education”, Volume 7, 2025

52

 count_a← count_a + 1
 index← index + 1
 if count_a ≥ 2 and index = length→ accept
 otherwise→ reject

The presented algorithm considers a linearly given input word and checks its properties
without explicitly needing to simulate the automaton's operation. This contributes to make the
approach used suitable for educational purposes and illustrates the efficient recognition of
regular languages by generalizing their characteristic properties.

The method is applicable to relatively simple regular languages where blocks of letters
and words with certain repeatable features are distinguished. For more complex constructions,
this approach becomes impractical or inapplicable, which highlights the role of formal
models.

3.2. Approach 2 - Create a NFA/ DFA automaton:

As mentioned, regular language recognition is a key aspect of the theory of formal
languages and automata. In the course of the Language Processors course, problems are also
solved using Approach 2, which is based on constructing a NFA, converting it to a DFA, and
simulating its operation through a program and using the facilities of various online resources.

Let us consider the language L, also used in the description of Approach 1 in Section
3.1. According to the equivalences discussed above, any such language can be specified by a
finite automaton, a regular expression, or a formal grammar of type 3 in Chomsky's
classification.

The NFA that could be used in this case is given in Fig. 2 and has the following states:
 q0 – Home, expecting the first 'a' from 'ab';
 q1 – after 'a', expects 'b';
 q2 – end of the first or consecutive block 'ab', possibly moving to the next letter

'a' (for a new block 'ab') or to the next subword – for bm this is state q3, and for
am this is state q4;

 q3 – for the subword bm, where m> 0, it can stay in this state or go to q4;
 q4 – this is reached after the first letter 'a' of the subword ak;
 q5 – second and subsequent letters 'a' are added and this is the final state.

This automaton has the following transitions:

 𝑞0
௔
→ 𝑞1

 𝑞1
௕
→ 𝑞2

 𝑞2
௔
→ 𝑞1 (repeat ab)

 𝑞2
௕
→ 𝑞3

 𝑞2
௔
→ 𝑞4 (if m = 0)

 𝑞3
௕
→ 𝑞3

 𝑞3
௔
→ 𝑞4

 𝑞4
௔
→ 𝑞5

 𝑞5
௔
→ 𝑞5.

The nondeterminism of the automaton here is determined by the state q2 and the input
letter 'a'. This can mean a new beginning (transition to the state q1) or the beginning of the
last subword consisting of the letters 'a' (transition to q4).

Science Series “Innovative STEM Education”, Volume 7, 2025

53

Fig. 2 NFA for the language under consideration

Applying the NFA to DFA conversion algorithm for this automaton yields the equivalent
DFA given in Fig. 3.

Fig. 3. DFA for the language under consideration

The DFA of Fig. 3 has the following table of transitions given in Tab. 3.

Tab. 3. Table of transitions for DFA

State Input 'a' Input 'b'

q0 q1 q4

q1 q4 q2

q2 q5 q3

q3 q6 q3

q4 q4 q4

q5 q7 q2

q6 q7 q4

q7 q7 q4

Science Series “Innovative STEM Education”, Volume 7, 2025

54

The initial state of the deployed DFA is q0. The symbol 'a' from q0 leads to q1, and 'b'
directly to q4, which is a prerequisite for a loop. The loop from 𝑞1 → 𝑞2 → 𝑞3 handles the
alternations of the letters 'a' and 'b'. In turn, the state q4 leads to a loop – any input leads back
to state q4. The final part of the input word characters is controlled by the states q5, q6 and
q7, and on reaching q7 the automaton can read more characters 'a' or read 'b' and return to the
state q4.

This automaton could be implemented using the following pseudocode:

function recognise(word):
 state = q0
 for symbol in word:
 if symbol in transitions[state]:
 state = transitions[state][symbol]
 else:
 return False
 return state in final_states

This approach demonstrates the equivalence between the theoretical formulation of
regular languages and their practical implementation via finite automata. The diagram and
table of transitions aid in visualizing and understanding the logic, and the pseudocode shows
that automata can be applied directly to validate words of the language.

For demonstration in the learning process it is often necessary to use the capabilities of
various online tools. These include JFLAP, which supports manual construction and an
automatic conversion function [11], as well as various NFA → DFA web applications that
interactively convert NFA to DFA and display tables and diagrams [20], [21]. Another
possibility is provided by the web/desktop simulators AutomataVerse / Automaton Simulator /
FSA-Animate, which allow to define a NFA, perform a conversion, step-by-step simulation
and create diagrams [22], [23], [24].

3.3. Approach 3 – RE

Another approach applied in the learning process is based on regular expressions. For
the considered language L, the structure of words is described by three sequential blocks:

 one or more repetitions of the subword 'ab';
 any number of letters 'b';
 at least two letters 'a'.

This leads to a RE of the form (𝑎𝑏)ା𝑏∗𝑎ଶ𝑎∗, and in a full matching formalisation its
form could be ^(? : 𝑎𝑏) + 𝑏 ∗ 𝑎{2, }$. Equivalent expressions are ^𝑎𝑏(? : 𝑎𝑏) ∗ 𝑏 ∗ 𝑎{2, }$
and ^(? : 𝑎𝑏){1, }𝑏 ∗ 𝑎{2, }$. The different variants are interchangeable, since they use
equivalent operations to describe at least one iteration of 'ab' (plus +, a quantifier {1,}, or a
"shift" of the first 'ab' before the star).

Another RE for this language is ab (ab)* b* aa a*. Again, online tools could be used to
check for equivalence of REs and to check for equivalence of REs and finite automata [19].
REs can be visualized with syntactic diagrams as the one shown in Fig. 4.

Science Series “Innovative STEM Education”, Volume 7, 2025

55

Fig. 4. Syntactic diagram of the language under consideration

RE accurately describe regular languages and are equivalent to finite automata
(NFA/DFA). Each RE can be efficiently transformed to a NFA, and then to a DFA. Also, each
DFA defines a RE using standard state exclusion algorithms. Therefore, the "RE",
"NFA/DFA", and "algorithm by property" approaches are equivalent in expressive power for
regular languages; they differ in specification convenience, analysis capabilities,
minimization, and implementation resource consumption.

In practical environments (Python, Java, .NET, JavaScript), it is important to use
fullmatch via^...$ or the corresponding method (fullmatch, matches()), since a subword is
often sought. The RE used does not contain any non-regular mechanisms, so it can be
implemented with DFA without exponential backtracking action. The results of unit tests and
benchmarks confirm that in a practical implementation the recognition is efficient.

Table 4. Comparison between RE and DFA

Criterion Regular expression (RE) Finite Deterministic Automaton
(DFA)

Specification Short and readable: ^(?:ab)+b*a{2,}$ More detailed in terms of states and
transitions

Implementation One line in many languages (regex
engine)

Concise description of machine
operation, easy generation of
validators

Performance Depends on the flavor (often
backtracking); here it is regular and fast

Guaranteed linear in input length
(DFA)

Analysis/demonstrability Harder formal proof with RE alone Easy invariants, proof by states

Modification Small changes that are often easy Adds and minimizes states; harder
to implement by human

Code generation Built into languages Requires code and a table for
transitions

In the final stage of problem solving, students are directed to test and validate the

program they have created. This is particularly relevant for their further independent work on
similar problems. The program tests, called Property-based test, should include input words in
two groups - words belonging to the language and words outside the language. The choice of
these words is based on the first stage of problem solving, when the properties of words in the
language are considered in detail. It is recommended to choose values of the variables used in

Science Series “Innovative STEM Education”, Volume 7, 2025

56

the description that are on the boundaries of the intervals and in combination for the different
variables.

4. Methodological notes on automatic tests and student errors

During the course of the Language Processors Discipline, students work independently
on problems similar to the one considered here and solve such problems as part of the written
exam. The following is a summary of the most common mistakes they make with the different
approaches, an analysis of the causes of these mistakes, and a systematization of
recommendations for avoiding them.

Table 5 presents the errors in the independent solutions of the considered problem, made
most often by students in the training. To each of them are added which is the corresponding
approach, examples of words that are misrecognised, and the reasons for the error.

Table 5. Classification of main errors in students' solutions

Approach Error Examples Reason

1, 2, 3 Incorrect conceptual
interpretation of word terms in
language

The word abba is
recognised

Incomplete analysis in the
language terms in Stage 1 and
gaps in the test words in Stage 4

1, 3 Incorrect division of the input
word into a sequence of
obligatory and optional
subwords

The word abaa is not
recognised

Incomplete analysis in language
terms in Stage 1 and gaps in test
words in Stage 4

1, 2, 3 Unprocessed boundary cases
and short words

The word ab and the
blank word are
recognised

Not all boundary cases were
analysed during condition
analysis and testing

1 Generating output before full
validation or generating more
output messages

More messages for not
recognizing the word
abaaba

Error in program structure

1 Recognition of words with
letters not allowed for the
language

Word recognition
ababaaaz

No alphabet check

2 The constructed automaton does
not recognise the language of
the condition

Words outside the
language are recognised,
words from the language
are not recognised

Incomplete encoding of
condition words from language
or ignorance of DFA operation

3 Formulation of RE that is not
equivalent to the given language

Words outside the
language are recognised,
words from the language
are not recognised

Lack of knowledge of and
insufficient experience with RЕ

Most of the above errors are due to gaps in understanding of the theoretical propositions

and the high level of abstraction in them. As a consequence of time pressure and the
preference for simplified solution approaches, the initial stage of problem solving is
frequently insufficiently examined, leading to incomplete analyses of word structures and,
consequently, to errors that are difficult to detect.

A diagram illustrating the types of errors made by students in solving regular language
recognition problems is given in Fig. 5. The data were obtained during the last two academic
years for the Computer Science major in the Faculty of Mathematics and Computer Science
and refer only to Approach 1. The main results are:

 Analyzed solutions to a language recognition problem using Approach 1: total
number 38

 Completely correctly solved problems: 9

Science Series “Innovative STEM Education”, Volume 7, 2025

57

 Main errors in the remaining solutions:
o Misinterpretation of the condition: 19
o Incorrect subword splitting: 11
o Boundary cases: 16
o Wrong positioning of the output in the structure: 3
o Inadmissible letters: 2

 In some decisions there are 2 or even 3 errors
Following are some recommendations to avoid the mentioned errors of students:

 Thorough analysis of the terms of the words in the language and giving more
examples for words in the language and for words outside the language;

 Using more and varied words to test the programme in Stage 4;
 Accurately identifying the beginning and end of subwords;
 Analyzing the possible lengths of input words and subwords;
 Adhering to the basic structure of the algorithm: input, processing, output;
 Visualization of the equivalent DFA and tracking its performance with example

words;
 Creation of RE to be consistent and separate for each subword.

It follows from the results of this analysis that test words are an important basis for
solving the problems to detect errors in the code. On the one hand, they make it easier for the
instructor during the exercises because it makes it easier to detect the students' errors and
guide them to correct them. On the other hand, with their help, students could search for and
correct their own errors. Another good practice is setting an independent work task requiring a
reasoned selection of such words.

Fig. 5. Analysis of errors in solutions of problems with Approach 1

Science Series “Innovative STEM Education”, Volume 7, 2025

58

The role of students' independent work on the tasks set by the lecturer is important for
the successful learning of the algorithms and approaches considered. These should be graded
in complexity and cover languages with different possible errors, similar to those listed in
Table 5. For example, the following formal languages are such for the task considered in this
study:

 L1={(ab)n (ba)m | n≥1, m≥0}
 L2={(abc)n cm | n≥1, m≥0}
 L3={bn (ba)m ak | n≥0, m≥1, k≥0}
 L4={(aba)n (bab)m | n≥0, m≥1}
 L5={b2n (ba)m ak | n≥0, m≥0, k≥1}.

Another good practice used in many universities [25], [26] is to assign course projects

that are even closer to the practical application of automata. In these, students have to develop
their own interpreters for certain small languages, using their knowledge of formal languages
and their recognition programs.

5. Use of AI in learning

Artificial Intelligence is making inroads into many areas of modern computing and
learning, even in areas such as mathematical proofs and security, with successful results
almost everywhere.

Now and in the near future, when many routine activities are performed by AI, the need
for programmers who can spot errors in algorithms and programs, test and ensure the required
quality of code is expected to increase. These are mostly skills that AI cannot automate [27].
The "sense of rightness" of an AI-generated program can be misleading, and therefore
developing critical thinking is another important competency of future programmers.

For now, many universities allow the use of AI in training and even recommend it as an
assistant in development in order to help students build the skills needed for their profession.
In many cases, however, requirements are placed on how to use and mandatory tagging of the
aid, and students are also introduced to important general recommendations and best practices
such as correctness checking and context description rules.

In the specific topic of regular languages, tutors could use AI to generate test words, to
create help text for tasks and code, to detect errors in student work, and to create a system of
additional tasks for practice. In doing so, they should also take a critical approach and
personally check the AI-generated text and code.

In terms of practice, AI is used to varying degrees [27] by programmers, but they all
understand the limitations of AI and largely direct their work into checking that the generated
code meets the objectives, In doing so, developers need a good knowledge of programming,
algorithms and data structures. Only then can they conduct successful human verification or
create automated tests. In this sense, the basic problem considered here can be modified by
adding an AI-generated solution that needs to be verified and corrected by students.

Given the task of writing a C++ program that, for an input word, checks whether it is
from the language 𝐿 = {(𝑎𝑏)௡ 𝑏௠ 𝑎௞ |𝑛 > 0, 𝑚 >= 0, 𝑘 > 1} or not, the AI (ChatGPT,
OpenAI) handles it successfully. The program code that is generated meets the requirements.
In addition, the AI also generates an explanation of the very approach used to solve the
problem in question. Also after the computer program, an explanation of the code and
examples of words that belong to the language and those that do not belong are generated.

The AI was also given the task of writing a C++ program that, when given an input
word, checks whether it belongs to the same language L using the DFA and a program
implementing its operation. This task was again solved correctly.

Science Series “Innovative STEM Education”, Volume 7, 2025

59

Another problem the AI had to solve was to write a C++ program that again checks
whether an input word belongs to L, but using the third approach presented by RE. The
generated solution included a brief analysis of the language and program code that solved the
given problem. The explanation of this code is correct and accompanied by brief explanatory
notes on how it could be executed.

In the process of working with the AI, the task was also set to write a program (without
specifying the programming language used) to recognise a formal language given a generic
type of words with the requirement: after starting, input of an input word is expected, then a
check is made whether it is from the language and this result is output, only assignment
commands, input and output commands, conditional operators and loops are used. In this
case, the generated code, Python's default, was unoptimized. The explanation of the code and
the preliminary analysis of the given problem contained several inaccuracies, with only a few
correct elements. Some of the words that the AI thought belonged to the language under
consideration were misidentified as such. Because of these weaknesses of the AI-generated
solutions, it is imperative that students are well versed in the theoretical material being studied
and check the solutions themselves – their own, others' and AI-generated - carefully enough.

CONCLUSION

The application of STEM approaches to programming of regular language recognition
systems in the study of the discipline "Language Processors" proves to be highly effective in
forming a deep understanding of theory and practice. The use of methods based on science,
technology and mathematics helps students not only to learn formal models of automata, but
also to develop skills in detecting and correcting their own and others' errors. This builds a
more sustainable link between theoretical concepts and their practical application in real
software solutions.

The incorporation of advanced online tools and techniques from the field of artificial
intelligence provides additional opportunities for automation of checks, optimization of
algorithms and interactive learning. This allows students to experiment and observe the results
of their programs in real time, which stimulates critical thinking and creative problem solving.

In conclusion, STEM approaches are proving to be effective in Language Processor
education by encouraging analytical thinking, practical application of knowledge, and
independent error detection. Future research may focus on integrating increasingly advanced
AI technologies and simulation environments to extend the possibilities for individualized and
interactive learning, as well as on developing new methodologies for assessing learned
competencies in the context of STEM approaches.

ACKNOWLEDGEMENTS

This work was partially supported by St. Cyril and St. Methodius University of Veliko
Tarnovo, Bulgaria under Project No. FSD-31-328-18/23.04.2025, 2025, “Methodology for
Modeling and Developing Information Systems with Artificial Intelligence in the Education
Sector”.

REFERENCES

1. Sipser, M. (2012). Introduction to the Theory of Computation (3rd ed.). Cengage Learning.

2. Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2006). Introduction to Automata Theory, Languages, and
Computation (3rd ed.). Addison-Wesley.

3. Kozen, D. C. (1997). Automata and Computability. Springer.

Science Series “Innovative STEM Education”, Volume 7, 2025

60

4. Esparza, J., & Blondin, M. (2023). Automata Theory - An Algorithmic Approach. The MIT Press.

5. Linz, P. (2012). An Introduction to Formal Languages and Automata. Jones & Bartlett Learning.

6. Pettorossi, A. (2022). Automata Theory and Formal Languages - Fundamental Notions, Theorems, and
Techniques. Springer.

7. Automata Tutorial - GeeksforGeeks. Available at: https://www.geeksforgeeks.org/theory-of-computation/theory-
of-computation-automata-tutorials/ (last view: 18-08-2025)

8. Automata Theory Tutorial. Available at: https://www.tutorialspoint.com/automata_theory/index.htm (last view:
18-08-2025)

9. Theory of Automata Tutorial for Beginners (Safdar Dogar, YouTube playlist). Available at:
https://www.youtube.com/playlist?list=PLduM7bkxBdOckkPOjexEV8KKCjqYh1T_3 (last view: 18-08-2025)

10. Murlak, F., Niwinski, D., & Rytter, W. (2023). 200 Problems on Languages, Automata, and Computation.
Cambridge University Press & Assessment. DOI: https://doi.org/10.1017/9781009072632

11. JFLAP. Available at: https://www.jflap.org/ (last view: 18-08-2025)

12. Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2007). Compilers: Principles, Techniques, and Tools (2nd
ed.). Addison-Wesley.

13. Lewis, H. R., & Papadimitriou, C. H. (1997). Elements of the Theory of Computation (2nd ed.). Prentice Hall.

14. Gruber, H., & Holzer, M. (2014). "From Finite Automata to Regular Expressions and Back." Int. J. Found.
comput. sci.

15. Chaudhari, R. et al. (2022). "A Review Paper on Generating Regular Language Using Regular Expression."
EasyChair Preprint.

16. Lee, M., So, S., & Oh, H. (2016). "Synthesizing Regular Expressions from Examples." GPCE.

17. Reghizzi, S. C. (2009). Formal Languages and Compilation. Springer.

18. Strauß, T. et al. (2015). "Regular Expressions for Decoding Neural Network Outputs." arXiv:1509.04438.

19. FLACI - Formal Languages and Compilers and Interpreters. Available at: https://flaci.com/home/# (last view:
18-08-2025)

20. NFA to DFA Converter. Available at: https://nfa-to-dfa-converter.vercel.app/?utm_source=chatgpt.com (last
view: 18-08-2025)

21. NFA to DFA (Joey Lemon). Available at: https://joeylemon.github.io/nfa-to-dfa/?utm_source=chatgpt.com (last
view: 18-08-2025)

22. Automataverse. Available at: https://www.automataverse.com/?utm_source=chatgpt.com (last view: 18-08-2025)

23. Automaton Simulator. Available at: https://automatonsimulator.com/?utm_source=chatgpt.com (last view: 18-
08-2025)

24. FSA-Animate (Alex Klibisz). Available at: https://alexklibisz.github.io/FSA-Animate/?utm_source=chatgpt.com
(last view: 18-08-2025)

25. Pädagogisches Landesinstitut Rheinland-Pfalz. Available at: https://inf-schule.de/ (last view: 18-08-2025)

26. Uni Freiburg - Einführung in die Programmierung. Available at: https://proglang.informatik.uni-
freiburg.de/teaching/info1/2023/ (last view: 18-08-2025)

27. Dohmke, T. (Blog). Available at: https://ashtom.github.io/developers-reinvented (last view: 18-08-2025)

Received: 26-08-2025 Accepted: 15-12-2025 Published: 29-12-2025

Cite as:
Dochkova-Todorova, J., Hristova, M. (2025). “STEM Techniques in Programs for Recognizing Regular
Languages in the Teaching of the “Language Processors” Course”, Science Series “Innovative STEM
Education”, volume 07, ISSN: 2683-1333, pp. 41-60, 2025. DOI: https://doi.org/10.55630/STEM.2025.0705

