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Abstract

This work presents an automatic notification mechanism within an intelligent cardiology
information system based on electrocardiogram (ECG), photoplethysmography (PPG), and heart rate
variability (HRV) analysis for the detection of deviations from the normal range of key HRV
parameters. Particular attention is paid to signal preprocessing, noise suppression methods, and
reliable detection of characteristic points. The proposed automatic notification system relies on
developed algorithms for HRV parameter extraction and analysis, covering time-domain, frequency-
domain, and nonlinear characteristics in order to identify physiological risk conditions. When
deviations from normality are detected—for example, reduced SDNN values or an increased LF/HF
ratio—the system triggers an automatic alert to the observing medical specialist. The system is
designed for real-time operation and is suitable for deployment on edge or wearable devices.
Experimental results demonstrate high performance of the proposed methodology when evaluated on
recordings from a proprietary database created by the authors.
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1. INTRODUCTION

Modern technologies for registration, processing and analysis of physiological signals
open up new opportunities for early diagnosis, monitoring of health status and decision-
making in real time. Signals such as electrocardiogram (ECG) and photoplethysmography
(PPG) are among the most commonly used non-invasive methods for assessing cardiovascular
function. These signals enable the derivation of Heart Rate Variability (HRV) parameters,
which provide valuable information about autonomic nervous system regulation and the risk
of adverse physiological conditions.

The integration of intelligent sensor information systems, combining reliable signal
registration, pre-processing, feature extraction and automatic notification, is key to modern
healthcare and to implement the concept of personalized medicine. In recent years, there has
been growing interest in implementing algorithms for real-time ECG and PPG processing on
edge devices, allowing rapid on-site analysis without reliance on centralized computing
resources.
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This article presents an intelligent sensor information system developed by the authors
for monitoring and analysis of ECG, PPG and HRV. Particular attention is paid to automatic
notification of deviations from the norm of the main HRV parameters. The system has been
evaluated using recordings from a proprietary database created by the authors.

2. LITERATURE REVIEW

2.1. Physiological signal acquisition (ECG, PPG) and wearable sensors

The last decade has witnessed rapid progress in compact biosensors and wearable
devices for ECG and PPG measurements. ECG remains the “gold standard” for the electrical
activity of the heart, while PPG offers an optical, low-power and convenient solution for long-
term monitoring. Design trends include the integration of multi-sensor modules, embedded
high-resolution ADCs, hardware mechanisms for suppressing interference and motion
artifacts, as well as wireless interfaces (BLE/Wi-Fi) for low latency and energy efficiency.
The data is often accompanied by accelerometric signals to capture motion-induced artifacts.

2.2. Preprocessing and noise suppression

The quality of the recorded signals is critical for subsequent analysis. For ECG, artifacts
from baseline drift, muscle noise and network interference are typical; for PPG — motion
noise, sensor pressure variations and light changes. Well-established approaches are:

» Wavelet filters and multi-resolution analysis to separate high-frequency noise
and baseline drift;

» Adaptive filters (LMS/RLS) with a reference accelerometer channel;

» Empirical Mode Decomposition (EMD), SSA, Savitzky—Golay smoothing and
Kalman filters for dynamic cleaning;

» Hybrid methods for artifact suppression using a multi-channel
(ECG+PPG+ACC (accelerometer signal)) approach.

2.3. Feature point detection

Accurate localization of R-waves (ECG) and systolic peaks/zero crossings (PPG) is
fundamental. Classical methods include Pan—Tompkins [1], differential operators, matched
filtering and wavelet detectors. Differential PPG (dPPG), first/second derivative analysis and
adaptive thresholding are often used in PPG. Learning models (CNN (Convolutional Neural
Network)/UNet/LSTM(Long Short-Term Memory)/Transformers) are increasingly being
applied for robust detection in noise and motion.

2.4. Feature extraction and HRV analysis

» HRV quantifies the dynamics of the time intervals between heartbeats (RR for
ECG and PPI for PPG). The literature distinguishes three groups of metrics [2],
[3], [4];

» Time domain: mean RR/PP, SDNN, RMSSD, pNN50/pNN20, HRVTij, etc.;

» Frequency domain: VLF, LF, HF, LF/HF (estimated using FFT, AR models and
Welch periodogram);

» Nonlinear measures: Poincaré¢ (SD1/SD2), entropies (ApEn, SampEn, FuzzyEn),
fractal/scale measures (DFA al/a2, Hurst), recurrent quantifiers (RQA).
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For PPG-derived HRV [5], [6], the comparability with ECG-derived HRV and the
influence of artifacts are discussed, and procedures for artifact correction, interpolation, and
quality indices are recommended before spectral and nonlinear analysis.

2.5. Application scenarios and decision-making

HRYV and related ECG/PPG features are used for:
» Assessment of autonomic regulation, stress and fatigue;
» Detection of arrhythmias (e.g. atrial fibrillation) and high-risk episodes;
» Monitoring of training recovery and exertion in athletes;
» Cardiorespiratory monitoring (incl. SpO: and respiratory modulation of PPG).
Solutions are increasingly implemented as rules/algorithms for alerting and
classification models running in real-time on edge hardware.

2.6. Machine learning and deep learning

Classical models (SVM, Random Forest, GMM, k-Means) remain strong for tabular
features, while deep learning (1D-CNN, LSTM/GRU, CNN-LSTM, Attention/Transformers)
[7], [8], [9], [10], dominates for raw signals and event detection. The following are observed:
Self-supervised/contrastive methods for limited labeled data;

Multi-task and multi-modal (ECG+PPG+ACC) architectures;

Explainable Al (SHAP, Grad-CAM) for interpretation in clinical context;
TinyML/edge machine learning (ML) optimizations (quantization, pruning,
distillation) for performance on resource-constrained devices.

VVVYY

2.7. Databases, evaluations and standards

Public datasets such as MIT-BIH Arrhythmia, MIT-BIH NSR, PhysioNet Fantasia,
MIMIC  (clinical ECG/PPG), BIDMC PPG and Respiration, CapnoBase
(PPG/SpO2/Respiration) [11], [12], [13] and others are widely used. Good practices are:

» Standardization of preprocessing (resampling, filtering, artifact markers) [14];

» Cross-validation by subjects/records and clear distinction of training/test sets;

» Composite metrics (Accuracy, F1/Macro-F1, AUC-ROC/PR, Se/Sp, PPV/NPV),
as well as clinically relevant thresholds for alarm;

» Compliance with regulatory and ethical requirements (GDPR-by-design,
cybersecurity) when designing sensor systems and processing sensitive health
data.

2.8. Open challenges

Despite progress, unsolved problems remain:

» Robustness under strong motion/low light for PPG and under long-term
ambulatory recordings;

» Personalization of models according to age, gender, training status, medication
intake and co-treatment of two or more diseases;

» Calibration between devices and different manufacturers/sensor geometries;

» Explainability and trust in automated solutions, as well as integration into
clinical workflows;

» Balance between energy efficiency of edge devices and accuracy/latency
requirements.
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In conclusion, various independent studies show similar results and point to the use of
integrated platforms that combine reliable registration (ECG/PPG), advanced preprocessing
(wavelet/EMD/adaptive filters), a rich palette of HRV metrics and intelligent
detection/classification models executable at the end-user node. The present study is a step
forward in these studies, representing a sequential process from pre-processing to decision-
making; robust detection of characteristic points in noise; combined temporal, spectral and
nonlinear HRV indices; real-time mechanism for automatic notification and validation on both
public and own datasets.

In recent years, the concept of a Digital Twin has found increasingly widespread
application in healthcare, allowing the construction of personalized, dynamically updated
patient models that support monitoring, prediction and decision-making.

This article presents elements of this concept developed by the authors — an intelligent
sensor system for recording ECG and PPG signals, extraction of HRV indicators,
customization of thresholds and a combined decision-making algorithm (rule logic + machine
learning). The aim is to demonstrate how these modules can serve as the basis for building a
full-fledged Digital Twin.

MODERN TECHNOLOGIES FOR REGISTRATION, PROCESSING AND
ANALYSIS OF PHYSIOLOGICAL SIGNALS (ECG, PPG) — GENERAL TREND

Modern technologies for registration, processing and analysis of ECG and PPG signals
are moving from classical algorithms to end-to-end deep learning models. While traditional
approaches are based on pre-filtering, spectral transforms (FFT, wavelets), local features, rule
logic and classical machine learning algorithms such as SVM and Random Forest, new
systems accept a raw or minimally pre-processed signal and automatically extract informative
features, then perform classification or regression. This trend is especially clearly outlined in
the ECG area, where 1D/2D CNN, LSTM/BILSTM, attention, transformers are used, due to
their advantages and applicability for arrhythmia diagnosis, heart failure prediction, etc.
Similarly, PPG signals work well in classification such as blood pressure estimation (cuff-less
BP estimation), sleep disorder diagnosis, stress recognition and other cardiovascular
applications. This is indicative of the trend in recent years for deep learning to replace manual
feature engineering and enable personalized, scalable solutions for real-time physiological
signal processing.

Modern physiological signal registration systems use both advanced contact sensors and
new remote measurement methods. In addition to standard finger or ear PPG sensors, the so-
called remote PPG (rPPG) is also being developed, in which microscopic variations in skin
color are analyzed using a simple camera to extract pulse signals without physical contact. In
parallel, there is a trend towards multimodal input data, in which ECG, PPG and other sensors
(accelerometer, blood pressure) are combined to compensate for noise, artifacts and missing
segments. Convolutional-neural-networks can perform direct fusion of several signals without
the need for manually extracted features. A method for ECG reconstruction from PPG is also
used, based on a hybrid model with attention-mechanism, CNN and BiLSTM, which allows
to enrich the information even when direct ECG recording is not available. These examples
show how advanced sensors and multimodal data fusion significantly increase the quality and
reliability of registration and input data for subsequent Al analysis.
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Preprocessing and quality assessment with AI

Noise, motion artifacts, and contact pressure variations are serious challenges when
working with PPG signals, and to a lesser extent, ECG. Modern solutions increasingly apply
artificial intelligence to assess signal quality at the input to remove defective segments and
avoid erroneous metric calculations. One new approach is the use of a lightweight
convolutional-neural-network (CNN) combined with Quantum Pattern Recognition (QPR), in
which PPG segments are converted into a two-dimensional “image” (time x sample) and
classified as “good” or “bad” in real time. Similar techniques are already being applied to
ECG, where deep models automatically remove drift, filter out noise, and isolate signal
components without the need for complex hand-built filters. Modern deep architectures
integrate preprocessing steps into their internal structure, leading to greater noise and artifact
resistance and more accurate automatic analysis of physiological signals.

Signal extraction and analysis: Deep learning (DL) architectures

After preprocessing, modern ECG and PPG analysis systems increasingly use deep
architectures for automatic feature extraction and signal interpretation. CNN and especially
I1D-CNN are preferred for detecting local morphological features — e.g. QRS complexes in
ECG or venous waves in PPG. The combined CNN + LSTM/BiLSTM architectures combine
spatial and temporal features, which allows for better modeling of signal dynamics. In recent
years, attention mechanisms and transformers have been integrated, which direct the model’s
“attention” to the most significant parts of the signal; for example, in PPG blood pressure
estimation, it has been shown that attention on CNN+BiLSTM reduces errors by focusing on
relevant segments. When implemented on edge devices, slim/lightweight architectures with
fewer parameters and low resource consumption are required. These approaches demonstrate
how deep learning can simultaneously extract features and perform analysis in real time,
without the need for manually defined features.

Applications: Al-solved tasks over ECG/PPG

Deep learning is now used not only for preprocessing, but also for solving various
clinical and physiological tasks on ECG and PPG signals. One of the most established areas is
the classification and diagnosis of ECG arrhythmias, where dozens of successful models exist.
For PPG signals, methods for cuff-less BP estimation are being developed, often combining
PPG and ECG. Other applications include stress and psychophysiological state assessment
from PPG without preprocessing. In cases where ECG is missing, hybrid models with
attention-CNN+BiLSTM are being developed for ECG reconstruction from PPG, which
enrich the available information and allow diagnostics with limited resources. These examples
clearly show the wide range of tasks — from diagnosis and monitoring to prediction and
reconstruction — that are successfully solved today with Al on physiological signals.

Modeling of HRV with hybrid Al + traditional approaches

ECG/PPG modeling using Al involves building generative or prognostic models that not
only classify but also synthesize, reconstruct, and simulate physiological signals with
correlations to real-world processes. In the field of ECG, progress is being made in hybrid DL
models combining transformers and CNNs, such as DeepECG-Net, which use a self-attention
mechanism to model both local and global dependencies in the signals. These models can
assimilate heart variability, noise, and artifacts, creating reliable and flexible predictions and
reconstructions in real time. Significant progress has been observed in the field of modeling

205



Science Series “Innovative STEM Education”, Volume 7, 2025

HRV signals with artificial intelligence, especially in the task of estimating respiratory rate
(RR).

In addition, energy-efficient models with spiking neurons (SNN) are being developed in
PPG, which, by converting PPG segments into spike events, estimate RR with low errors.

In recent years, hybrid approaches have been gaining ground, combining classical
respiratory information extraction techniques with deep learning models to model the
respiratory wave (RR) more accurately and robustly. Traditionally, the respiratory rate is
estimated by spectral analysis of ECG or PPG — e.g. with an algorithm based on respiratory
sinus arrhythmia (RSA), band-pass filters or amplitude/interval variation analysis. In hybrid
systems, these classical features are fed as additional input to a CNN, LSTM or transformer,
allowing the model to learn from both physically based features and the raw signal. Such
hybrid architectures achieve lower RR estimation errors and more robust reproduction of the
respiratory wave in noise and motion because they combine the strengths of both worlds —
interpretability and physical meaning from classical methods and adaptive nonlinearity from
deep learning.

3. RISK ALARM METHOD

3.1. Windows and preprocessing

For the purposes of automatic alarming, the analysis of HRV parameters is performed in
streaming windows with a length of 60 s and an overlap (stride) of 10 s, which allows almost
online calculations and timely detection of deviations. In parallel, a longer reference window
of 5 min is used for validation and comparison with the baseline. For spectral analysis,
RR/PPI intervals are interpolated to a uniform grid of 4 Hz with cubic or shape-preserving
interpolation and are detrended to avoid drift. A strict Signal Quality Index (SQI) is
introduced - windows with more than 10% artifacts, extreme RR values (< 300 ms or > 2000
ms) and with a low correlation index between the raw and filtered signal are rejected; for
valid calculations, an SQI > 0.7 for ECG and > 0.8 for PPG is required. This multi-stage pre-
processing ensures that the alarm module only operates on quality segments and minimizes
false risk signals.

3.2. Parameters calculated in each window

In each defined window, a set of time, frequency and nonlinear indicators reflecting the
autonomic regulation and variability of the heart rate is calculated.

Time indicators include mean heart rate (mean HR), mean RR interval (mean RR),
standard deviation of normal intervals (SDNN), square root of the mean difference between
adjacent RR (RMSSD), percentage of differences >50 ms (pNN50), etc.

Frequency characteristics are assessed by spectral analysis: for classical processing, the
Welch method is applied (4 s windows with a Han window and 50% overlap), and as an
alternative — an autoregressive model with order 8—16, selected by AIC (Akaike Information
Criterion). Powers in the low-frequency band LF (0.04-0.15 Hz), high-frequency HF (0.15—
0.40 Hz) and the coefficient of the sympathovagal balance LF/HF are extracted from the
spectrum.

Nonlinear indicators include Poincar¢ plot analysis (SD1, SD2), Detrending Fluctuation
Analysis (DFA) with al for short scales (4—16 heartbeats) and a2 for long scales (16—64
beats), Hurst exponent, as well as entropy measures — Sample Entropy with standard
parameters m=2 and r=0.2-SD of RR/PPI. This combination of indicators provides a
comprehensive assessment of the instantaneous autonomous state of the organism.
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3.3. Personalization and z-calibration

To reflect individual variability and minimize false alarms, the system performs
threshold personalization by collecting baseline data for a period of > 7 days under
standardized conditions (morning rest, same posture and time). For each indicator x, the mean
value p x and the standard deviation ¢ xare calculated in different contexts (rest, after
exercise, before sleep). During online monitoring, the standardized value is calculated:

Z,xi, (1

which automatically adapts the alarm thresholds to the individual profile of the
participant. This z-calibration allows the risk threshold to be individualized rather than fixed,
and thus increases the sensitivity and specificity of the alarm module.

To ensure explain ability of the system and the ability to trace the alarm logic, in
addition to the ML module a rule-based subsystem with flags P1-P4 is implemented.

Each flag signals a characteristic “risky” pattern of HRV indicators within each window.

P1 — Suppressed variability
The flag is triggered when there is a significant decrease in time-domain variability:

Zspnn<—1.5 OR Zgpyn (2)

P2 — Autonomic imbalance
The flag is triggered when sympathetic activity predominates:

zir > 1.5 OR (LF/HF>2.5 AND zy <—1. 3)

HF

P3 — Loss of fractality
The flag is triggered by changes in nonlinear dynamics:

Zg1 > 1.0 OR ZsamleEn <1.0 (Support ZRMSSD < —1. (4)

P4 — Resting tachycardia
The flag is triggered for accelerated heart rate:

Zygr>15 for 230 s. ®))

Each flag returns an indicator variable 1P; (1 if the flag is active, 0 otherwise). Based on
these indicators a rule-based score R, is calculated, which integrates the weights of the
individual flags:

Ryyie = clip(0.35 -1{P,} +0.3 - 1{P>} + 0.25- 1{P5}0.35- 1{Pa4}), (6)
where clip(+) limits the value to the interval [0,1].

A control concept is used where the system uses two different thresholds for activation
and deactivation so that it does not switch on and off due to small, rapid fluctuations. In the
presented alarm logic, this means that the alarm is only activated after R>0.6 in two
consecutive windows and is only released after R <0.4 for >60 seconds, which prevents
"flickering" or false triggering. This rule-based part enables explainable alarming, which
complements and stabilizes the ML model.
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3.4 Machine learning module — model type, features and training procedure

The machine learning module is designed as a lightweight supervised classifier for
window-level risk estimation, operating in parallel with the rule-based alarming logic. Its
input consists of the same standardized HRV feature set calculated in each window, including
selected time-domain (mean HR, SDNN, RMSSD), frequency-domain (LF, HF, LF/HF), and
nonlinear indicators (SD1, SD2, DFA o, Sample Entropy), all expressed in z-normalized form
to ensure inter-subject comparability. This feature selection preserves physiological
interpretability while providing sufficient discriminatory power for abnormal autonomic
states.

The ML model is trained using labeled HRV windows corresponding to normal and
high-risk conditions, defined according to clinically established HRV thresholds and expert
annotations. A shallow classification architecture (logistic regression / tree-based classifier) is
employed to ensure low computational complexity, fast inference, and suitability for edge or
wearable deployment. Model training follows a standard supervised learning procedure,
including stratified train—validation splitting and regularization to prevent overfitting. The
output of the ML module is a continuous risk probability in the range [0,1], which is
combined with the rule-based score to improve robustness, sensitivity, and temporal stability
of the alarm decision.

The experimental dataset consists of HRV recordings collected from a 12 participants
under controlled conditions. Continuous cardio signals were recorded during resting state,
transitional (borderline) conditions, and induced high-risk scenarios, resulting in several
hundred overlapping analysis windows of 60 s duration. Each window was labeled as normal,
warning, or high-risk based on established HRV thresholds and expert-defined criteria.
Although the dataset size is modest, it is sufficient to evaluate the feasibility, responsiveness,
and robustness of the proposed alarm module.

4. RESULTS

Figure 1 presents a plot of the observed values of the SDNN, RMSSD and LF/HF
indicators over time. All values are within the normal range (LF/HF = 1.54-1.85; SDNN =
75-85 ms; RMSSD = 5872 ms), therefore there is neither a yellow nor a red background in
the graph — i.e. the system has not activated either a warning or an alarm.

HRV parameters of one participant without alarm
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Fig. 1. Normal values of the observed parameters
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Figure 2 shows colored yellow background areas indicating warning mode (level 1).

Average risk HRV values and active alarm in one participant
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Fig. 2. Limit values of the monitored parameters (yellow background)

Figure 3 presents an example of a “high risk” graph — it shows how, under abnormal
HRYV values, the system enters an active alarm. The red background marks the intervals in
which simultaneously: LF/HF > 2.5, SDNN < 50 ms, RMSSD < 35 ms and the system
triggers an active alarm (level 2).

HRV high-risk values and active alarm in one participant
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Fig. 3. Risk values of the monitored parameters

Table 1 presents the quantitative performance metrics of the proposed alarm module
when applied to high-risk HRV conditions defined by predefined threshold criteria (LF/HF >
2.5; SDNN < 50 ms; RMSSD < 35 ms). The results in Table 1 demonstrate that the alarm
module achieves high sensitivity (91.8 %) and specificity (89.6 %), indicating reliable
detection of high-risk HRV states with a low false-positive rate. The positive predictive value
(87.3 %) and negative predictive value (93.4 %) further confirm that the system correctly
identifies both risky and normal windows in most cases. Despite operating continuously on
edge hardware, the module maintains a very low average alarm latency (120 ms) and modest
computational footprint—only 28 % CPU load and 7 MB RAM—making it suitable for real-
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time, wearable or mobile implementations. These figures suggest that the hybrid rule-plus-ML
approach can deliver clinically meaningful alerts without overloading embedded devices.

Table 1. Performance of the alarm module under high-risk parameters

Metric Value
Sensitivity (Se) 91.8 %
Specificity (Sp) 89.6 %
Positive Predictive Value (PPV) 87.3 %
Negative Predictive Value (NPV) 93.4 %
Average alarm latency 120 ms
Average CPU load (edge device) 28 %
RAM usage (edge device) 7MB
CONCLUSION

The developed multi-level alarm generation system can considered as a first step
towards building a digital twin of the patient’s cardiovascular condition. By continuously
receiving ECG, PPG and HRV data, the system dynamically updates a virtual model of
autonomic regulation, and the personalized z-scores serve as individual parameters of this
twin, adapting over time.

Future work may extend the proposed hybrid model with predictive components, such
as forecasting HRV recovery after exercise or estimating the probability of high-risk episodes,
which are typical functionalities of digital twin frameworks. Furthermore, “what-if”
simulations based on fractal HRV generators or other synthetic signal models could be
incorporated to evaluate HRV responses under different training regimens, stressors, or
medication scenarios. These extensions would transform the current alarm module from a
reactive monitoring tool into a proactive, predictive digital twin platform supporting
personalized risk assessment and decision-making.
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