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Abstract 

This article focuses on methods for the analysis and forecasting of crisis events that significantly 
affect societal resilience and critical infrastructure. It presents approaches for identifying early 
indicators of emerging crises, as well as models for assessing the dynamics of their development. 
Particular attention is given to quantitative methods, including statistical and mathematical models, 
alongside qualitative techniques based on expert assessments and scenario planning. International 
best practices in forecasting natural, technological, and social crises are analyzed. The possibilities of 
integrating modern information technologies and artificial intelligence into prediction processes are 
also discussed. The proposed methods support informed decision-making and enhance the 
effectiveness of prevention and response in emergency situations. 
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INTRODUCTION 

Crisis events are rarely “single incidents.” They arise from accumulating vulnerabilities 
and escalate through interdependencies among infrastructures, logistics, and social systems. 
Therefore, their analysis and forecasting constitute both a scientific and managerial challenge, 
requiring the integration of data on hazards, exposure, and vulnerability with mechanisms for 
early detection, warning, and scenario analysis. Strategic crisis management policies 
emphasize the need for a system that links early sense making, collaborative expertise, and 
operational decision making, rather than a reactive response after an event occurs [1]. 

Crisis events – natural, technological, or anthropogenic – occur increasingly in a 
networked world where a failure in one system cascades to others via physical, digital, or 
social dependencies (from energy and transport to information and communication networks) 
[2]. This renders classical “single hazard” forecasting insufficient and necessitates multi 
hazard methods that assess, simultaneously, hazard probability, exposure, vulnerability, and 
the expected impacts – the so called impact based forecasting (IBF).  

Contemporary guidance by the IFRC and the UK Met Office places IBF as the 
conceptual framework that links environmental forecasts (e.g., hydrometeorological) with 
vulnerability and exposure data, translating them into early actions prior to impact. This 
requires inter institutional coordination, the use of risk matrices, and continuous forecast 
verification [3]. 

In parallel with classical hydro meteorological and industrial indicators, two 
complementary trends have emerged over the past decade: IBF, which connects hazard 
intensity to expected damage and actionable response; and the use of Big Data to extract early 
social signals and patterns of crisis diffusion [4]. Big Data promises earlier, more objective 
indicators but does not replace the need for sound assumptions, high quality data, and ongoing 
validation; reviews of risk forecasting with Big Data also underscore the danger of cascading 
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errors in complex systems if dependencies and source biases are ignored [4], [5]. In the realm 
of anthropogenic crises, combining quantitative models with qualitative structural analogies 
yields the highest predictive power. Goldstone’s classic study (2008) on the Political 
Instability Task Force (PITF) shows how statistical models and expert judgment can be 
combined to produce more accurate early warnings of social and political instability [6]. 

 

EXPOSITION 

1. Theoretical – Methodological Framework 
1.1. From “What Will Happen?” to “What Will It Cause?” 

IBF shifts the focus from forecasting the hazard (e.g., probability of heavy rainfall) to 
forecasting the consequences (e.g., probability of inundation in specific urban areas, expected 
number of affected households, and required pre event actions). IBF guidance for early action 
describes how to combine forecasts, exposure, and vulnerabilities to set triggers for 
preventive measures (e.g., cash assistance to affected or vulnerable households, temporary 
relocation of people or institutions from threatened areas to safer zones, protection of assets) 
[7]. 

1.2. Big Data and Early Social Signals 

Modern systems for detecting social signals (e.g., sudden exponential increases in 
topics/narratives across social networks) can complement classical indicators and alert to 
nascent energy, health, or infrastructure crises days or weeks in advance. The OSOS method 
defines a signal as a period of exponential growth that, after log scaling, appears as linear 
growth for at least seven consecutive days with ≥10% daily change, thereby triggering an 
alarm for a potential crisis [8]. (Log scaling replaces raw values of a variable with their 
logarithms – common in time series analysis, forecasting models, and early warning analytics, 
including social signal analysis.). 

1.3. Methods 

Qualitative. Expert assessments, structural analogies, Delphi studies, and scenario 
planning are widely used; they are particularly helpful for tracing causal chains and contextual 
factors that are hard to quantify. Combining them with quantitative approaches improves 
accuracy [6]. 

Quantitative statistical. Established methods include SARIMA with intervention 
analysis; regime switching (Markov switching); change point detection (CUSUM/BOCPD); 
and early warning indicators aimed at avoiding critical slowing down. For mobility flows (a 
proxy for human behavior), SARIMA with interventions yields lower errors after 
incorporating shock events (e.g., 9/11) [9]. 

Network/cascading. Threshold models for global cascades in random networks and 
interdependent networks are key to analyzing systemic failures [10]. In such models, 
extracting “signals” from news and social media to forecast crisis escalations is crucial and 
must remain transparent and verifiable. 

Integrative frameworks. IBF combines Hazard × Exposure × Vulnerability to deliver 
impact probabilities and an associated set of actions [3]. 
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1.4. Combining Quantitative and Qualitative Approaches 

Research on anthropogenic instability indicates that the best results arise from parallel, 
independent application of quantitative models and qualitative expert assessments – each with 
its own predictive value – followed by comparison and calibration between the two streams 
[11]. 

 

2. Data and Indicators 

Effective forecasting rests on integrated data covering hazards (e.g., probabilistic 
forecasts of precipitation, wind, temperature), exposure (population, buildings, assets, linear 
infrastructures), vulnerabilities (socio demographic, health, technical), and behavioral/social 
signals [2], [12]. Data sources include historical series (incidents, outages, health/climate 
indices), real time observations (sensors, remote sensing), media/social platform content, and 
administrative registers for exposure/vulnerability (infrastructure, demographics). Social 
signaling (e.g., unexpected growth in topic volumes) can provide early hints of escalation, but 
it is prone to noise and distortions – hence the need for thresholds, source verification, and 
ethical safeguards [8]. 

In IBF, definitions of hazard, vulnerability, and exposure provide conceptual clarity. IBF 
encourages combining ensemble forecasts with spatial layers of exposure and vulnerabilities 
to develop “who/where/how much” scenarios and to define trigger thresholds – pre agreed 
conditions that automatically activate specific actions [2], [12]. Big Data and predictive 
analytics add indicators (text narratives, sentiment, surprises/anomalies) but require rigorous 
checks on assumptions and data quality. 

 

3. Models and Mathematical Apparatus 
3.1. Risk Function and Event Probability 

At time t, the probability of a crisis event in zone zcan be modeled by a logit function 
[2], [12]: 

 
pt,z = σ(β0 + βH .Ht,z + βE .Et,z + βV .Vt,z + βS .St,z),     (1) 
 
where: 

 pt,z – probability of occurrence at time tin zone z; 
 σ(⋅) – is the logistic function, which maps any linear combination into the 

probability interval [0, 1]. It is smooth and monotonically increasing, and 
ensures that the coefficients are interpretable as odds ratio effects; 

 the linear term β0 + βH .Ht,z + βE .Et,z + βV .Vt,z + βS .St,z s the logit (log odds). The 
transition from logit to probability is obtained via σ; 

 H is hazard intensity; 
 E is exposure; 
 V is vulnerability; 
 S represents social signals (e.g., an OSOS indicator); 
 σ(x)=1/(1+e−x); 
 β0 is the intercept (baseline). The intercept sets the baseline log odds of an event 

when all predictors are 0 (under the chosen standardization); 
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 βH и Ht,z – hazard intensity: H measures the strength/intensity of the 
phenomenon, e.g., peak wind gust, inundation depth, or peak ground 
acceleration (PGA) for earthquakes. In impact based approaches, hazard 
thresholds often serve as proxies for impact levels (e.g., wind gust thresholds for 
rollover warnings in risk matrices and threshold tables). Higher H typically 
increases p; 

 βE .Et,z – exposure: E describes how much of “something of value” lies in harm’s 
way – population, critical facilities, infrastructure assets, built up area. It is often 
derived from geospatial layers (population density, service coverage, 
OpenStreetMap/official registers). All else equal, higher exposure implies a 
higher probability of an observable, consequential event; 

 βV .Vt,z – vulnerability: V captures the propensity for damage/service interruption 
at a given hazard level – building types, asset age/condition, lack of redundancy, 
social vulnerability (poverty, age structure, etc.). In practice, hazard-damage 
functions (stage damage/fragility curves) or composite indices (e.g., social 
vulnerability) are used, making V quantitative and calibratable; 

 βS .St,z – social signals: S aggregates indicators from social/open sources (e.g., 
topic dynamics, “burst” growth of discussions) that often precede the 
materialization of a crisis (panic buying, supply chain stress, energy shortage). 
An example methodology is OSOS: multi lingual filtering (classification + 
sentiment) followed by burst detection – triggering a signal for ≥10% sustained 
daily growth over ≥7 days. Such an S can be standardized (z score) and used as a 
predictor. 

The expected impact is E[It,z] = pt,z ⋅Lt,z .It,z. Here It,z is any impact measure (e.g., 
number of affected people, damaged assets, service hours lost), and Lt,z is the conditional loss 
given occurrence (the average “how severe” the event is if it happens here and now). L can be 
derived from hazard-damage curves and disaster/failure archives (e.g., flood depth vs. percent 
damage by building type). In impact based practice, precisely this expected impact 
(probability × severity) drives the color levels in risk matrices and action maps. 

 
Worked example 
Assume standardized inputs for zone z and horizon t: 
H=0,8 (from hydrometeorological/seismological forecasts and observations – peak wind 

gust, 24 h rainfall, water levels, earthquake intensity); 
E=0,5 (from GIS overlays of the forecast impact area with population/assets/critical 

infrastructure layers); 
V=1,0 (from building quality, health/social determinants, access to services, poverty, 

age structure – e.g., national statistics and open geoplatforms); 
S=0,6 (from volume/dynamics of filtered posts by thematic keywords, classified as 

informative/non informative with sentiment analysis; OSOS is one reference framework).  
Coefficients: β0 = -2,0; βH = 1,1; βE = 0,7; βV = 0,7; βS = 0,5. 
The β coefficients are obtained via logistic regression on empirical disaster/crisis data, 

calibrated to reflect the observed influence of hazard, exposure, vulnerability, and social 
signals; the magnitudes are consistent with the ranges used in Impact Based Forecasting for 
Early Action (IFRC & UK Met Office, 2021) and the PITF model (Goldstone, 2008). 

Then the linear predictor becomes: 
 
ℓ = −2,0 + 1,1.(0,8) + 0,7.(0,5) + 0,9.(1,0) + 0,5.(0,6) = 
   = −2,0 + 0,88 + 0,35 + 0,9 + 0,3 = 0,43       (2) 
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So that: 𝑝 = 𝜎(0,43) ≈ 0,605 (≈60,5%). 
If the conditional loss is L=2000 affected households, then 𝐸[𝐼] = 𝑝 ⋅ 𝐿 ≈ 0.605 ×

2000 ≈ 1210  households. Operationally, a probability near p≈0.6 combined with a high L 
would place the zone in the “red” cell of an IBF risk matrix and trigger early actions (e.g., pre 
positioning equipment, temporary protective barriers, advance evacuation of vulnerable 
persons). 

3.2. Bayesian Updating 

In early warning contexts, the prior probability is updated to a posterior when new 
information arrives (e.g., a new forecast ensemble or a social signal burst) [2], [6]. 

Formally, 
 
𝑃(𝑐𝑟𝑖𝑠𝑖𝑠 ∣ 𝐷) ∝ 𝑃(𝐷 ∣ 𝑐𝑟𝑖𝑠𝑖𝑠)𝑃(𝑐𝑟𝑖𝑠𝑖𝑠),        (3) 
 
This relation is the core of Bayes’ theorem and reads as follows: 

 P(crisis) is the prior probability – baseline information derived from historical 
data or the past frequency of similar events (e.g., “In the last 10 years this region 
experienced a flood once every five years → prior =0,2”); 

 P(D ∣ crisis) is the likelihood of observing the new data D(e.g., a social signal 
burst, a new forecast run, rising river levels) if a crisis is indeed developing; 

 P(crisis ∣ D) is the posterior probability – the updated probability after 
incorporating the new information D. 

The symbol “∝” (“is proportional to”) indicates that the expression must be normalized 
by the probability of the data P(D). In early warning systems (impact based forecasting, social 
signal monitoring, multi hazard forecasts), Bayesian updating describes how new evidence 
corrects an existing forecast: 

 

𝑃 (𝑐𝑟𝑖𝑠𝑖𝑠 ∣ 𝐷) =
௉ (஽∣௖௥௜௦௜௦)௉ (௖௥௜௦௜௦)

௉( ஽∣௖௥௜௦௜௦ ) ௉(௖௥௜௦௜௦)ା ௉ (஽∣¬௖௥௜௦௜௦)௉ (¬௖௥௜௦௜௦)
     (4) 

 
Worked example. 
Prior: an ensemble forecast indicates a 40% flood probability; hence P(crisis)=0,4. 
New observation D: an OSOS social media analysis detects a sharp rise in the keyword 

“flood” (a burst signal), which historically occurs in 80% of true flood cases, so  
P(D ∣ crisis)=0,8. 

A similar signal sometimes appears without a real event (false alarms) in 20% of cases, 
so P(D ∣ ¬crisis)=0,2. 

Then: 
 

𝑃 (𝑐𝑟𝑖𝑠𝑖𝑠 ∣ 𝐷) =
଴,଼×଴,ସ

(଴,଼×଴,ସ)ା(଴,ଶ×଴,଺)
=

଴,ଷଶ

଴,ଷଶା଴,ଵଶ
= 0,727    

 
After including the new information, the probability rises from 40% to ∼73%, i.e., the 

system becomes more confident that a crisis is actually imminent. 
This process is typical of dynamic early warning systems, where each new source 

(ensemble run, fresh observations, social indicators, expert judgment) gradually shifts the 
forecast. 
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Combining multiple independent sources. 

Each information source – physical model, social signal, expert appraisal—can be 
treated as an independent sensor contributing its probability. When errors are at least partially 
independent, combining them improves accuracy and reduces false alarms. In compact form 
(Bayesian aggregation/model averaging): 

 
𝑃(𝑐𝑟𝑖𝑠𝑖𝑠 ∣ 𝐷1, 𝐷2, … , 𝐷𝑘) ∝ (∏ 𝑃௞

௝ୀଵ (𝐷𝑗 ∣ 𝑐𝑟𝑖𝑠𝑖𝑠))𝑃(𝑐𝑟𝑖𝑠𝑖𝑠)     (5) 
 
In practice, when independent systems concur, forecast confidence increases markedly. 

This principle is employed in multi hazard early warning systems (MHEWS), in combined 
IFRC/UK Met Office workflows, and in political instability early warning frameworks (e.g., 
PITF), where quantitative and expert forecasts are fused by Bayesian averaging. 

Operationally, when independent systems agree (e.g., a physical model, a social signal 
detector, and an expert assessment), forecast confidence increases and false alarm risk 
decreases – an approach used in multi hazard early warning systems (MHEWS), IFRC/UK 
Met Office IBF workflows, and political instability early warning frameworks (e.g., PITF). 

Why this matters. Bayesian updating is the mechanism that turns observations into 
knowledge by: 

 adapting forecasts in real time; 
 allowing learning from new sources; 
 fusing heterogeneous models (physical, social, expert); 
 quantifying and communicating uncertainty to decision makers.  

 
In short, it is the mathematical foundation of adaptive forecasting, where each new 

piece of information builds upon rather than replaces prior knowledge. 

3.3. Time Series and Interventions 

Exogenous events (e.g., war, pandemic) require intervention components in time series 
models – such as SARIMA with an intervention term or exponential smoothing with a shock 
term. The standard Holt–Winters and SARIMA formulations, as well as accuracy metrics like 
MAPE and RMSPE, are applicable for the operational comparison of forecasts [9]. 

Every crisis – war, pandemic, natural disaster—induces an abrupt change in the 
dynamics of the observed system (economic activity, traffic, tourism, energy prices, social 
interactions, etc.). These changes manifest as sharp jumps or drops in the series that cannot be 
captured by models assuming smooth evolution. Such events are termed exogenous 
interventions – external shocks that alter the structure of the time series. To account for them, 
the analysis incorporates dedicated intervention terms that enable the model to “recognize” 
the timing and effect of the shock, rather than treating it as noise or a random anomaly. 

Conventional time series models (ARIMA, SARIMA, Holt–Winters) assume 
stationarity – that the statistical properties of the series (mean, variance, autocorrelations) do 
not change substantially over time. During crises, this assumption is violated.  

For example: 
 COVID 19 caused a sharp decline in passenger traffic and consumption; 
 war disrupted supply chains and prices; 
 natural disasters blocked parts of infrastructure.  

If the model fails to incorporate such interventions, post event forecasts become 
systematically biased – they continue to follow the “old” trend and overestimate the recovery. 



Science Series “Innovative STEM Education”, Volume 7, 2025 

 

 
 

241 

3.4. Intervention (S)ARIMA 

SARIMA (Seasonal ARIMA) is standard for seasonal series. General form: 
 
Φp(B) .ΦP(Bs) .(1−B)d .(1−Bs)

D  .yt = Θq(B) .ΘQ(Bs)εt+(δ(B)/ω(B)) .Xt    (6) 
 
where B is the backshift operator, and p, d, q, P, D, Q capture autocorrelations and 

seasonality. When a shock occurs, an intervention indicator Xt (impulse/step) “switches on” 
the crisis effect; ω and δ describe the effect’s dynamics (immediate/decaying; one off/step). 
This formalism is classic in intervention analysis for ARIMA/SARIMA [13], [14]. In 
transport/tourism applications, including interventions reduces MAPE/RMSPE relative to 
simplified and Holt–Winters models [9]. 

 
Practical example 
Chen (2006) analyzes air traffic before and after 11 September 2001—a textbook 

intervention. 
Using: 
𝑦௧ = SARIMA(0,1,1)(0,1,1)ଵଶ + 𝜔ࣟ𝐼௧,        (7) 
 
with a step intervention I_tactivated after September 2001, the estimated ωimplies a 

decline of ~ 60 million passengers within the year following the shock. The intervention 
model yields markedly lower forecast errors than a non intervention baseline. Intervention 
models: 

 separate ordinary seasonal variation from extraordinary shocks; 
 measure the magnitude and duration of the crisis (via ω and the type of It); 
 deliver more reliable recovery forecasts; 
 enable sector by sector sensitivity comparisons (tourism, transport, energy). 

 
Thus, the model becomes not merely an extrapolation tool but part of an analytical 

framework for understanding and managing crises. 
 

CONCLUSION 

Amid complex, interlinked threats, crisis oriented forecasting evolves from a technical 
task into a systemic process that integrates data, models, and decisions. The shift from hazard 
based to impact based forecasting is a hallmark of modern approaches grounded in the IBF 
framework, where prognostic information is translated into concrete protective actions. 
Quantitative models – from logistic risk functions through SARIMA with interventions to 
network based cascade estimators – gain practical value when embedded in a transparent 
analytical framework with clear action thresholds, regular verification, and inter institutional 
coordination [9], [10]. In this context, intervention analysis robustly captures exogenous 
shocks (wars, pandemics, disasters) and predicts recovery, while network models reveal 
interdependencies and systemic vulnerabilities. In parallel, Big Data and social signals extend 
the horizon of early warning but require careful filtering, verification, and ethical governance 
to avoid noise or bias [4], [8]. The highest effectiveness arises from combining independent 
evidence (physical, social, expert) and applying results from forecast to action in the spirit of 
IBF: risk matrices, early financing, measurable impact, and post event feedback [3], [5]. Thus, 
forecasting becomes a central element of sustainable risk governance – a system that not only 
predicts but adapts, learns, and improves over time. 
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