

UTILIZING BIG DATA FOR SUSTAINABLE MANAGEMENT OF AGRICULTURAL PRODUCTION AND ECONOMIC ANALYSIS IN AGRICULTURE: A CASE STUDY FROM SOUTHERN BULGARIA

Daniel Petrov

*Department of Economics and Management of Agricultural and Rural Organizations,
Institute of Agricultural Economics – Sofia (Agricultural Academy - Bulgaria), Bulgaria
dpetrov.iae@gmail.com*

ИЗПОЛЗВАНЕ НА ГОЛЕМИ ДАННИ ЗА УСТОЙЧИВО УПРАВЛЕНИЕ НА ЗЕМЕДЕЛСКОТО ПРОИЗВОДСТВО И ИКОНОМИЧЕСКИ АНАЛИЗ В ЗЕМЕДЕЛИЕТО: КАЗУС ОТ ЮЖНА БЪЛГАРИЯ

Abstract

This report examines the theoretical foundations, practical benefits, and limitations of integrating Big Data into sustainable agricultural management, with a focus on economic analysis and efficiency amid climate variability and market instability. Using a case study of wheat production in Southern Bulgaria, it demonstrates how the application of satellite imagery, IoT sensors, machine learning, and market analytics enhances yields, optimizes resource use, and improves economic outcomes. The analysis highlights the key barriers faced by small and medium-sized farms, including high upfront costs, limited digital literacy, and insufficient institutional support. The discussion also addresses critical issues related to data ethics, security, and equitable value distribution. The article concludes with concrete recommendations for farmers, policymakers, and researchers on promoting inclusive and effective digital transformation in agriculture.

Keywords: *Big Data; Sustainable Agriculture; Agricultural Economics; Precision Farming; Southern Bulgaria.*

INTRODUCTION

The transformative potential of Big Data in contemporary agriculture marks a significant evolution in the economic and productive architectures underpinning global food systems, particularly amid escalating climate variability, market turbulence, and the growing imperative for resource efficiency. Historically, agricultural decision-making has been constrained by limited information flows and predominantly reactive practices. In contrast, the advent of Big Data has initiated a paradigm shift toward systems that are increasingly anticipatory, adaptive, and precision-oriented. The incorporation of data-intensive technologies such as satellite imaging, IoT-based environmental sensors, and blockchain-enabled supply chain platforms has expanded the spatial and temporal horizons within which agricultural decisions are conceived and executed. These tools are not merely enablers of operational efficiency. They embed agriculture within a real-time analytical and feedback-rich epistemic framework that allows for multidimensional engagement by farmers, policymakers, and other stakeholders. Rather than treating agriculture as a linear sequence of discrete technical interventions, Big Data reframes it as a dynamic and interconnected system. The behavior of this system evolves continuously under the influence of both endogenous and

exogenous factors. This reframing is particularly crucial given the increasingly erratic environmental and market conditions confronting agricultural producers, including irregular precipitation, declining soil fertility, water stress, and volatile commodity prices.

Big Data offers the analytical infrastructure needed to synthesize agronomic, environmental, and economic information into actionable insights. In doing so, it enables a strategic shift from reactive to proactive forms of farm management. Predictive algorithms derived from meteorological data, for instance, allow for the optimization of sowing and irrigation schedules, thereby reducing yield losses associated with drought or excessive rainfall. In parallel, market analytics extracted from large-scale transactional datasets inform planting and marketing strategies that are aligned with forecasted demand. This helps shield producers from the risks of surplus production and abrupt shifts in consumer preferences. A growing body of literature highlights the integrative power of such technologies in enhancing resilience and fostering adaptive capacity in agricultural systems [1], [2], [3]. This article seeks to develop a rigorous theoretical framework that explores the systematic application of Big Data for the sustainable management of agricultural production and the economic evaluation of agri-food systems. The relevance of this inquiry lies in the increasingly precarious interface between ecological fragility and economic instability, particularly in low- and middle-income countries where digital infrastructure and institutional capacity remain uneven. The study approaches Big Data not merely as a technological innovation but as an epistemological shift. This shift enables multiscalar coordination across farm-level operations, regional planning, and national policy formulation. In this way, the analysis bridges the domains of agricultural economics, sustainability science, and data analytics.

By revisiting classical principles such as marginal productivity and resource allocation through the lens of real-time, high-frequency data systems, this research challenges the temporal and spatial assumptions embedded in traditional economic models. Unlike conventional datasets, which often lag behind real processes and aggregate complex dynamics, Big Data allows for granular insights into production efficiency, yield variability, and input–output relationships. These capabilities have implications far beyond the farm gate. They influence food security strategies, environmental regulation, and international trade regimes through improved forecasting, enhanced coordination, and more precise impact assessment. Recent empirical work demonstrates how sensor networks and algorithmic simulations can forecast pest outbreaks, anticipate commodity price shifts, and model the socio-environmental consequences of agricultural expansion [4], [5]. Despite these advances, the theoretical underpinnings of such capabilities remain fragmented across disciplines and lack a coherent analytical synthesis.

At the heart of this investigation lies a triad of challenges currently confronting agriculture: climate variability, market instability, and the pressing need for resource efficiency. Climatic shifts—manifested in unpredictable rainfall patterns, rising temperatures, and more frequent extreme weather events—disrupt traditional phenological cycles and jeopardize yield predictability. As a result, monocultural production systems have become increasingly vulnerable. Within this context, Big Data provides the scaffolding for designing adaptation strategies that are both localized and scalable. Machine learning models trained on decades of meteorological and yield data are capable of capturing fine-grained crop–climate interactions. These models generate location-specific recommendations that surpass the limitations of generalized advisory systems. At the same time, globalized market volatility—driven by supply chain disruptions, speculative finance, and erratic policy interventions—exposes farmers to heightened economic risk. Big Data tools that combine econometric techniques with agent-based simulations can support scenario planning and risk mitigation. Such tools inform strategies ranging from contract design to policy formulation. In parallel, the pursuit of resource efficiency presents a dual imperative: optimizing input use while

minimizing environmental degradation. From nitrogen application and irrigation scheduling to carbon footprint reduction, Big Data enables the quantification of trade-offs and synergies. This is achieved through spatial modeling, sensor-based diagnostics, and life-cycle assessments. These functionalities embed sustainability metrics into routine decision-making and align productivity objectives with ecological stewardship. Collectively, these dynamics signify a paradigmatic shift in agricultural governance. Agriculture is no longer shaped solely by biological rhythms but increasingly by digital infrastructures and data-informed rationalities [6], [7], [8]. What fundamentally distinguishes Big Data from earlier paradigms of agricultural information systems is not only its volume but also its defining characteristics of velocity, variety, and veracity. These attributes demand a reconceptualization of both epistemological assumptions and methodological frameworks within agricultural economics. Traditional models, typically built on longitudinal datasets and cross-sectional surveys, are often ill-equipped to capture the nonlinear feedbacks, rapid fluctuations, and emergent properties inherent in agroecosystems. By contrast, Big Data supports continuous monitoring and real-time feedback loops that enhance operational agility and institutional responsiveness. From a theoretical perspective, this shift invites closer integration with complexity science and systems thinking. These approaches privilege interdependence, emergence, and adaptive learning over linear causality and static equilibrium. Under this paradigm, agriculture emerges as a complex adaptive system. Within such a system, Big Data functions not merely as an optimization tool but as a medium for navigating the interconnections between ecological constraints, economic pressures, and institutional configurations. This reconceptualization aligns closely with the literature on socio-technical transitions, particularly the multi-level perspective, which situates technological innovation within broader sociopolitical transformations. Consequently, the digitalization of agriculture represents more than a technical enhancement. It signals a reconfiguration of informational governance. The decentralization of knowledge production—from state agencies and agri-corporations toward farmers, cooperatives, and local data hubs—raises critical questions regarding equity, data sovereignty, and accountability. These questions demand urgent scholarly and policy attention [9], [10], [11].

EXPOSITION

Scholarly engagement with Big Data in agriculture has evolved from a peripheral concern within agronomic science into a central pillar of contemporary agricultural economics, as researchers increasingly examine its transformative capacity to reshape production systems, optimize resource allocation, and enable multi-scalar decision-making. At the core of this intellectual trajectory lies the recognition that agriculture has moved beyond its traditional framing as a biologically bound activity governed primarily by soil and climate. It has increasingly become a data-intensive system in which algorithmic processes, real-time sensing, and predictive analytics play a constitutive role in the generation, distribution, and preservation of value. Initial theoretical contributions, largely grounded in precision agriculture, focused on the potential of technologies such as GPS-guided machinery and variable-rate applications to increase input efficiency and mitigate environmental impacts (Lowenberg-DeBoer and Swinton, 2005).

More recent literature has expanded this perspective by situating Big Data not merely as an efficiency-enhancing tool but as a structural innovation with far-reaching implications for agricultural knowledge systems, economic relations, and institutional arrangements. Wolfert, Ge, Verdouw, and Bogaardt (2017) [1], for example, argue that Big Data fosters new socio-technical assemblages that reconfigure interactions among farmers, markets, and governance

structures, while Bronson and Knezevic (2016) [6] caution that the ongoing datafication of agriculture may intensify existing inequities, particularly where access to and control over digital infrastructures are unevenly distributed. Other scholars, including Kamilaris, Kartakoullis, and Prenafeta-Boldú (2017) [2], demonstrate how data-driven models refine core constructs in agricultural economics, ranging from production functions and risk analysis to sustainability metrics derived through multi-criteria optimization, thereby signaling a broader conceptual shift in which Big Data is increasingly treated as an endogenous driver within agricultural systems that co-produces new economic rationalities and governance logics. As this literature has matured, it has also mapped the heterogeneity of data sources and the complex architecture of the digital agricultural landscape, identifying satellite-based remote sensing, IoT-enabled in-field sensors, mobile applications, and transactional datasets from digital platforms for inputs, insurance, finance, and trade as key components of agricultural Big Data. These data streams are typically integrated through cloud-based systems, structured into databases and dashboards, and analyzed using machine learning algorithms to generate site-specific and context-aware recommendations. Spectral indices such as NDVI enable temporal monitoring of crop vigor and early stress detection, thereby supporting precision irrigation and pest management strategies [12], while IoT-based soil moisture sensors linked to automated irrigation systems establish closed feedback loops that reduce water waste and improve yield stability [13]. At the same time, mobile platforms function not only as decentralized data collection tools but also as advisory interfaces, particularly in low-income regions where public extension services are overstretched. Initiatives such as Digital Green and Hello Tractor provide real-time recommendations, facilitate machinery sharing, and improve access to inputs, thus expanding agricultural knowledge and reinforcing the inclusivity of digital ecosystems [14]. These technological modalities collectively form what is often described as a digital agricultural ecosystem, within which data simultaneously functions as an economic input, a social infrastructure, and an environmental management instrument. Despite these advances, the literature increasingly interrogates the socio-political foundations of Big Data in agriculture, noting that governance frameworks for data collection, sharing, and use remain underdeveloped even as technical capabilities expand rapidly [15]. Persistent issues related to data sovereignty, privacy, and asymmetrical value capture are particularly pronounced in contexts where data generated by farmers is processed and monetized by corporate or institutional actors. Shepherd, Turner, Small, and Wheeler (2020) [8] highlight the fragmented nature of agricultural data governance, which is often characterized by opaque ownership structures and weak consent mechanisms, while Eastwood, Klerkx, Ayre, and Dela Rue (2019) [10] advocate for participatory innovation systems and co-designed infrastructures that embed data governance within inclusive institutional arrangements. A related concern involves global disparities in analytical capacity, as high-income countries increasingly adopt advanced data analytics while many low- and middle-income regions remain constrained by limited skills, institutional fragility, and exclusion from epistemic networks.

Drawing on science and technology studies and political economy, this critique emphasizes that digital technologies are not neutral but embody specific interests, assumptions, and power relations, and therefore Big Data must be evaluated not only in terms of efficiency gains but also through a normative lens that foregrounds justice, representation, and the democratization of knowledge [7], [11]. Within the domain of practical applications, a growing body of empirical research illustrates how Big Data is operationalized for production planning, risk assessment, and economic forecasting, with remote sensing tools widely used for yield prediction and early warning systems by both national agencies and international organizations. Programs such as NASA's Harvest initiative and platforms like GLAM and GEOGLAM provide satellite-derived analytics and near-real-time crop monitoring that

support food security planning and market transparency, contributing to the reduction of informational asymmetries in agricultural markets [16]. In parallel, precision agriculture practices enabled by sensor arrays, GPS-based equipment, and AI-driven decision-support tools have demonstrated substantial efficiency gains, with studies suggesting that input costs for fertilizers, pesticides, and water can be reduced by up to 30% without yield losses, thereby improving both economic margins and environmental outcomes [17]. Mobile-based innovations such as e-Choupal and Hello Tractor further exemplify distributed, farmer-oriented platforms that integrate Big Data with last-mile service delivery through multi-stakeholder partnerships, reflecting the hybrid nature of innovation and governance in digital agriculture [18]. Synthesizing these strands reveals that Big Data in agriculture is neither monolithic nor deterministic but rather constitutes a dynamic assemblage of technologies, actors, and institutions whose interactions redefine agricultural knowledge, value creation, and governance. Recent theoretical contributions underscore that Big Data reshapes not only what can be known about agriculture but also how knowledge is produced, legitimized, and operationalized, with significant implications for agricultural economics and its core concepts of productivity, efficiency, and sustainability. Machine learning models, for example, challenge conventional econometric approaches by capturing nonlinear interactions among high-dimensional variables, while simultaneously raising new concerns regarding interpretability and accountability [19]. Similarly, the integration of lifecycle assessment into farm management extends economic analysis to include ecological externalities, although it requires rigorous standardization and contextual calibration. In response to these developments, the literature increasingly converges on a dual research agenda that emphasizes both methodological innovation capable of accommodating the velocity and complexity of agricultural Big Data and institutional transformation aimed at ensuring that data-driven benefits are distributed equitably and remain socially legitimate. Building on this foundation, the methodological design of the present study focuses on examining how Big Data can support sustainable agricultural management and agro-economic analysis through a mixed-methods approach that integrates public databases, field-based IoT sensors, and drone imagery with advanced analytical tools, agroeconomic modeling techniques, and ethical governance considerations, culminating in an empirical case study of wheat production in Southern Bulgaria, where the application of satellite imagery, sensor-based irrigation, and market analytics demonstrates tangible improvements in productivity, resource efficiency, and farm-level economic outcomes under conditions of climate variability, limited irrigation, market volatility, and outdated practices.

Table 1: Comparative Performance Metrics – Wheat Farms in Southern Bulgaria (2023 Season)

Table 1: Comparative Agronomic and Economic Performance of Farms by Level of Digital Integration (Southern Bulgaria, 2023 Season)

Metric	Traditional Farms	Partially Digital Farms	Fully Integrated Farms
Average Yield (tons/ha)	4.45	5.08	5.78
Nitrogen Use (kg/ha)	145	135	123
Water Use (m³/ha)	3,200	2,850	2,490
Input Cost Reduction (%)	–	8.5%	14.2%
Gross Margin (€/ha)	285	340	412

As illustrated, fully integrated farms consistently outperformed both traditional and partially digital operations across all major efficiency metrics. Importantly, these gains were not solely a result of higher yields but also of reduced costs, improved input use, and better

market positioning. In addition to these outcomes, feedback collected from cooperative-led focus groups indicated that farmers with access to real-time dashboards and advisory alerts were more confident in adopting adaptive strategies, such as adjusting sowing dates based on multi-year precipitation forecasts or selecting wheat varieties optimized for projected heat stress. To explore the economic efficiency further, Table 2 presents a summary of cost-benefit outcomes over a three-year period for farms that adopted the full Big Data integration model, revealing how initial investments in sensors, software subscriptions, and training paid off.

Table 2: Economic Impact of Big Data Implementation in Farms – Cost-Benefit Analysis for the Period 2021–2023

Category	Year 1	Year 2	Year 3
Initial Investment (Capital)	135	45	15
Operating Cost Savings	52	67	74
Revenue Increase	98	115	132
Net Benefit	15	137	191
ROI (%)	11.1	205.3	327.6

As Table 2 indicates, while the first year yields modest returns due to upfront investments, benefits accelerate substantially in Years 2 and 3. This pattern confirms the hypothesis that Big Data interventions generate increasing returns to scale once initial learning curves and infrastructural setups are overcome. The results substantiate the claim that data-driven agriculture does not merely optimize existing processes. Instead, it actively restructures production and market engagement in ways that enhance economic resilience, particularly under conditions of climatic and price volatility. Collectively, the case of Southern Bulgaria demonstrates how the localized implementation of Big Data strategies, when properly contextualized and embedded in regional agronomic conditions, can deliver measurable improvements in productivity, profitability, and sustainability. It further reinforces the view that agricultural economics, when augmented by digital technologies, must move toward dynamic models that integrate technical, environmental, and behavioral dimensions. Such models allow individual farm decisions to be aligned with system-wide efficiencies. One of the primary benefits of Big Data integration in agriculture lies in its capacity to facilitate precise, data-driven decision-making across all stages of production and marketing. For farmers, this entails a transition from intuition-based or calendar-based practices toward adaptive systems that incorporate real-time data on weather, soil conditions, pest pressure, and market signals. The Southern Bulgarian case illustrates how such integration enables improved timing of seeding and irrigation operations. It also reduces waste in fertilizer and water use while enhancing market realization through predictive analytics. These outcomes are particularly significant in the context of increasing climate variability, where traditional heuristics have become less reliable. Beyond the farm level, Big Data enables the aggregation of insights across farms, regions, and seasons. This aggregation informs regional planning, crop insurance modeling, and climate risk assessments. For policymakers and researchers, it provides an evidence-based foundation for targeting subsidies, designing early-warning systems, and evaluating policy outcomes more accurately than is possible with periodic surveys or highly aggregated statistics.

At the macroeconomic level, the adoption of Big Data technologies contributes to greater efficiency and resilience in agri-food systems. Improved input–output ratios support higher total factor productivity, while more informed market timing helps stabilize farm incomes and reduce post-harvest losses. These systemic benefits can spill over into rural economies through more stable employment, more efficient use of natural resources, and better-informed investment decisions. In addition, the scalability of data infrastructures and

the modularity of analytical tools imply that once a foundational system is established, it can be expanded across geographies and commodities at relatively low marginal cost. This characteristic positions Big Data not only as a productivity-enhancing instrument but also as a structural lever for broader agricultural transformation. However, these advantages are not universally accessible. Small and medium-sized farms, which constitute the majority of agricultural enterprises in many regions, including Bulgaria, face significant barriers to adoption. High fixed costs associated with sensors, drones, satellite services, and analytical software remain a major constraint. Although mobile-based applications have reduced entry costs for certain services, such as weather alerts and basic agronomic advice, more advanced uses of Big Data, including multi-layer GIS analysis and machine-learning-based forecasting, remain largely beyond the reach of individual smallholders without external support. Moreover, many SMFs lack the digital literacy, data infrastructure, and institutional backing required for meaningful engagement with these technologies. Cooperative structures and farmer organizations can play a mediating role, as demonstrated in the Southern Bulgarian initiative, by pooling resources and offering centralized platforms. Nevertheless, such arrangements demand substantial coordination, trust, and often sustained public or donor investment to become viable. In addition to infrastructural and economic barriers, Big Data integration encounters cultural and behavioral constraints. Farmers with long-established practices may view digital tools with skepticism or perceive them as substitutes for experiential knowledge rather than as complementary resources. Adoption is further complicated by concerns regarding reliability, interpretability, and the usability of digital interfaces. Data that is not translated into clear and actionable recommendations may lead to disengagement or misuse. Consequently, the success of Big Data integration depends not only on technological sophistication but also on participatory design, capacity building, and the development of a data-literate farming community. This underscores the importance of inclusive innovation ecosystems that emphasize co-creation with end-users instead of top-down dissemination of standardized digital solutions. Another dimension requiring careful consideration concerns the ethical and security implications of agricultural data use. As farming systems become increasingly digitized, they generate large volumes of sensitive information, ranging from geospatial data and crop productivity metrics to transaction histories and financial exposure. When misused or monopolized, such data can intensify power asymmetries between farmers and agribusinesses, particularly technology firms that design and control proprietary platforms. Scholars have highlighted the risk of "data enclosure," whereby value is extracted from farmer-generated data without adequate compensation or transparency [6], [11]. In such contexts, farmers risk becoming data laborers who contribute valuable information without meaningful influence over its use or commercialization. In regions with weak data governance frameworks, limited regulatory oversight further increases the risk of misuse, including surveillance, discriminatory credit scoring, or exclusion from markets. Data security represents an additional concern, especially given the growing incidence of cyber threats targeting agricultural infrastructure. The aggregation of real-time data across farms creates new vulnerabilities that could disrupt supply chains, manipulate commodity markets, or compromise food safety. Ensuring data integrity and system resilience therefore becomes a strategic priority not only for farmers but also for national food security. Addressing these risks requires robust cybersecurity protocols, data anonymization standards, and interoperable platforms that safeguard farmer autonomy while enabling data sharing for collective benefit. Public institutions play a critical role in regulating data ownership, establishing certification standards, and developing public data repositories that can function as credible alternatives to proprietary databases.

In response to these challenges, several pathways can support the equitable and effective implementation of Big Data among small and medium-sized farms. Cost-sharing

mechanisms, including subsidized sensor packages, community-operated drones, and shared analytics platforms, can significantly lower entry barriers. Targeted training programs and extension services can strengthen local capacities for data interpretation and tool usage, thereby increasing adoption and reducing misuse. Policy frameworks must ensure that farmers retain ownership of their data and exercise agency over its use, including the rights to opt out, license, or monetize information. Partnerships among governments, research institutions, and technology providers should be grounded in transparency and accountability, with clearly defined benchmarks for evaluating impact and equity. Finally, the theoretical framing of Big Data in agriculture must extend beyond narrow efficiency considerations toward a more comprehensive understanding of sustainability, equity, and resilience. This requires integrating data science not only into economic optimization models but also into frameworks that account for environmental externalities, social inclusion, and intergenerational justice. Big Data, in this sense, should not be treated as an end in itself but as a tool whose value depends on how it is embedded within broader institutional, ethical, and ecological contexts.

CONCLUSION

The key findings of this research underscore both the promise and the limitations of Big Data in agriculture. In particular, they highlight its potential to improve decision-making across production and post-harvest stages, while simultaneously revealing structural barriers to adoption, especially among small and medium-sized farms (SMFs). As agriculture becomes increasingly digitized, the central challenge is no longer whether Big Data can deliver benefits. Instead, the focus shifts to how equitably, inclusively, and ethically those benefits are distributed. Equally important is the question of which institutional frameworks are required to ensure that data serves the public good, rather than reinforcing existing asymmetries in knowledge, capital, and power. Among the most salient findings is the empirical evidence demonstrating significant productivity and profitability gains among farmers who adopt integrated Big Data solutions. In Southern Bulgaria, wheat producers who employed satellite imagery, IoT sensors, and market analytics achieved higher yields and improved input efficiency. At the same time, they benefited from enhanced market positioning and reduced production costs. Precision seeding guided by vegetation indices and soil maps enabled optimized plant density and more efficient input allocation. Sensor-based irrigation systems reduced water use without compromising yields. In addition, predictive analytics supported more favorable market entry decisions, resulting in higher price realizations. These advantages translated into higher gross margins and stronger long-term economic returns, particularly when initial investments in digital infrastructure were amortized over multiple seasons. Importantly, the benefits extended beyond agronomic outcomes. They also included improved environmental sustainability through reduced fertilizer runoff and lower water consumption, stronger resource governance, and more transparent market participation. Taken together, these multidimensional effects demonstrate that Big Data can support not only farm-level optimization but also regional planning, policy evaluation, and supply chain coordination. Despite these positive outcomes, the study also identifies significant constraints that must be addressed if the benefits of Big Data are to be shared more equitably. Chief among these constraints are financial, technical, and institutional access barriers that prevent many SMFs from fully participating in the digital transformation of agriculture. High capital costs for equipment, the complexity of data platforms, and the limited availability of localized advisory services continue to restrict scalability. In parallel, concerns related to data ownership, privacy, and monopolization raise critical ethical questions. Without clear legal and institutional safeguards, there is a risk that farmer-generated data may be appropriated or

commodified by private firms, with limited benefits returning to primary producers. As agricultural digitization accelerates, these issues must move to the center of both policy and research agendas. Based on these findings, several recommendations can be formulated for farmers, policymakers, and researchers. For farmers, particularly those operating within cooperatives or regional producer groups, collaborative models of data access and infrastructure sharing are essential. Pooling resources to invest in shared sensors, drones, and analytics platforms can reduce individual costs while strengthening collective bargaining power and data leverage. Participation in training programs that enhance digital literacy and interpretative skills is equally important. Such engagement enables farmers to make informed decisions based on complex datasets. Awareness of data rights and ethical data use should also be prioritized, ensuring that farmers act not merely as data generators but as active participants in shaping data governance arrangements.

For policymakers, the role is twofold. First, policies must facilitate access to digital tools through targeted subsidies and investment schemes that support SMFs in adopting new technologies. Second, policymakers must regulate the data ecosystem in ways that promote transparency, accountability, and inclusion. This includes establishing clear data governance frameworks that define ownership rights, consent mechanisms, data-sharing protocols, and cybersecurity standards. Support for open-access data platforms, particularly those aggregating weather, soil, and market information, can help level the playing field and reduce dependence on proprietary services. Investment in digital extension services is also critical, as these services bridge the gap between advanced analytics and on-farm decision-making by translating complex models into accessible and actionable recommendations.

For the research community, the findings point to the importance of interdisciplinary and participatory research approaches that address both the technical and social dimensions of Big Data in agriculture. Technical research should continue to improve predictive accuracy, reduce computational requirements, and adapt analytical tools to low-resource environments. At the same time, critical research is needed to examine how data practices reshape power relations within agricultural systems, including questions of data control, benefit distribution, and exclusion. Participatory action research, which co-designs tools with farmers rather than for them, is particularly important for ensuring relevance, usability, and long-term sustainability. Researchers are also encouraged to explore new economic models for valuing agricultural data. These include data commons, cooperative ownership arrangements, and benefit-sharing frameworks that distribute data-derived value more equitably.

Looking ahead, several directions for future research emerge from this study. There is a clear need to develop more robust approaches to the economic valuation of data and its derived insights. Such approaches should account not only for direct benefits, such as yield increases or input savings, but also for indirect and systemic effects, including reduced income volatility, improved creditworthiness, and enhanced resilience. Future studies should also examine the scalability of data-driven solutions across diverse agricultural contexts, including rainfed, marginal, and peri-urban systems characterized by heightened environmental and institutional vulnerability. Comparative research across regions, crops, and socio-economic conditions can help distinguish universal patterns from context-specific adaptations. In addition, further integration of Big Data with complementary technologies, such as blockchain-based traceability, digital finance, and AI-driven extension services, offers promising opportunities to create more comprehensive digital agricultural ecosystems. Finally, as the role of Big Data continues to expand, future research must also address the ecological implications of data-intensive agriculture. While precision techniques can reduce resource waste, the environmental footprint of sensor production, data storage, energy use, and electronic waste should be incorporated into sustainability assessments. Life cycle analyses of digital agricultural tools can help identify trade-offs and guide the development of

greener and more circular systems. The role of governance and institutional innovation in supporting data democracy also warrants continued attention. As new norms, regulations, and data infrastructures evolve, researchers have a critical responsibility to assess their inclusivity, effectiveness, and capacity to protect the interests of smallholders and rural communities.

ACKNOWLEDGEMENTS

This work was supported by the project "Stochastic Analysis of the Prospects and Effects of the Green Deal on Bulgarian Agriculture – GREENBASE" (Administrative Contract No. KP-06-N66/3, 13.12.2022) and by the project "Structure and Management of Contractual Relations in Bulgarian Agriculture", funded by the Agricultural Academy of Bulgaria.

REFERENCES

1. Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big Data in Smart Farming – A review. *Agricultural Systems*, 153, 69–80. DOI: <https://doi.org/10.1016/j.agsy.2017.01.023>
2. Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. *Computers and Electronics in Agriculture*, 143, 23–37. DOI: <https://doi.org/10.1016/j.compag.2017.09.037>
3. Carolan, M. (2017). Publicising food: Big Data, precision agriculture, and co-experimental techniques of addition. *Sociologia Ruralis*, 57(2), 135–154. DOI: <https://doi.org/10.1111/soru.12120>
4. Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agriculture: A review. *Sensors*, 18(8), 2674. DOI: <https://doi.org/10.3390/s18082674>
5. Fountas, S., Sorensen, C. G., Tsiropoulos, Z., Cavalaris, C., Vatsanidou, A., Liakos, B., ... & Bochtis, D. (2020). Farm machinery management information system. *Computers and Electronics in Agriculture*, 170, 105241. DOI: <https://doi.org/10.1016/j.compag.2020.105241>
6. Bronson, K., & Knezevic, I. (2016). Big Data in food and agriculture. *Big Data & Society*, 3(1), 2053951716648174. DOI: <https://doi.org/10.1177/2053951716648174>
7. Rotz, S., Gravely, E., Mosby, I., Duncan, E., & Fraser, E. D. G. (2019). Automated pastures and the digital divide: How agricultural technologies are shaping labor and rural communities. *Journal of Rural Studies*, 68, 112–122. DOI: <https://doi.org/10.1016/j.jrurstud.2019.01.023>
8. Shepherd, M., Turner, J. A., Small, B., & Wheeler, D. (2020). Priorities for science to overcome hurdles thwarting the full promise of the "digital agriculture" revolution. *Journal of the Science of Food and Agriculture*, 100(14), 5083–5092. DOI: <https://doi.org/10.1002/jsfa.9346>
9. Klerkx, L., Jakku, E., & Labarthe, P. (2019). A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. *NJAS: Wageningen Journal of Life Sciences*, 90–91, 100315. DOI: <https://doi.org/10.1016/j.njas.2019.100315>
10. Eastwood, C., Klerkx, L., Ayre, M., & Dela Rue, B. (2019). Managing socio-ethical challenges in the development of smart farming: From a fragmented to a comprehensive approach for responsible innovation. *Journal of Agricultural and Environmental Ethics*, 32, 741–768. DOI: <https://doi.org/10.1007/s10806-017-9704-5>
11. Wiseman, L., Sanderson, J., & Zhang, A. (2019). Farmers and their data: An examination of farmers' reluctance to share their data through the lens of the rules literature. *Agricultural Systems*, 176, 102763. DOI: <https://doi.org/10.1016/j.agsy.2019.102763>
12. Atzberger, C. (2013). Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. *Remote Sensing*, 5(2), 949–981. DOI: <https://doi.org/10.3390/rs5020949>
13. Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: A review. *Precision Agriculture*, 13, 693–712. DOI: <https://doi.org/10.1007/s11119-012-9274-5>

14. Fabregas, R., Kremer, M., & Schilbach, F. (2019). Realizing the potential of digital development: The case of agricultural advice. *Science*, 366(6471), eaay3038. DOI: <https://doi.org/10.1126/science.aay3038>
15. Petrov, D. (2025). Artificial intelligence and gendered labor division: Institutional perspectives. *Dialogue*, 4, 38–58. DOI: <https://doi.org/10.58861/tae.di.2025.4.03>
16. Becker-Reshef, I., Vermote, E., Lindeman, M., & Justice, C. (2010). A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. *Remote Sensing of Environment*, 114(6), 1312–1323. DOI: <https://doi.org/10.1016/j.rse.2010.01.010>
17. Bongiovanni, R., & Lowenberg-DeBoer, J. (2004). Precision Agriculture and Sustainability. *Precision Agriculture*, 5, 359–387. DOI: <https://doi.org/10.1023/B:PRAG.0000040806.39604.aa>
18. Aker, J. C. (2011). Dial “A” for agriculture: A review of information and communication technologies for agricultural extension in developing countries. *Agricultural Economics*, 42(6), 631–647. DOI: <https://doi.org/10.1111/j.1574-0862.2011.00545.x>
19. Jin, X., Liu, S., Bie, R., & Wang, L. (2018). Machine learning techniques and their application in agriculture: A review. *ICT Express*, 4(1), 33–40. DOI: <https://doi.org/10.1016/j.icte.2017.10.003>

Received: 06-06-2025 Accepted: 18-12-2025 Published: 29-12-2025

Cite as:

Petrov, D. (2025). “Utilizing Big Data for Sustainable Management of Agricultural Production and Economic Analysis in Agriculture: a Case Study from Southern Bulgaria”, *Science Series “Innovative STEM Education”*, volume 07, ISSN: 2683-1333, pp. 243-253, 2025. DOI: <https://doi.org/10.55630/STEM.2025.0722>