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Abstract

ECG/PPG signal processing is a cornerstone of modern cardiovascular diagnostics. While
artificial intelligence has already enhanced ECG analysis through accurate detection, classification,
and prediction of cardiac events, its integration into mobile platforms enables continuous, ubiquitous
monitoring. This paper introduces a novel framework that couples state-of-the-art AI methodologies
with the Digital Twin paradigm to create a personalized, real-time virtual replica of a patient’s
cardiac function. We survey deep learning and hybrid wavelet-neural approaches for QRS complex
detection, arrhythmia classification, and heartbeat segmentation, and propose methods for
incremental on-device learning to address data imbalance and inter-subject variability. Annotated
datasets such as MIT-BIH are extended with synthetic augmentation to populate and calibrate the
digital twin models, enabling generalization across heterogeneous populations. The proposed
architecture emphasizes low-latency inference, energy-aware computation, and secure data flows
suitable for mobile and wearable devices. By embedding interpretability layers and adaptive feedback
loops, the system closes the gap between passive ECG monitoring and actionable, individualized
cardiac care. Our results demonstrate that Al-driven ECG digital twins can significantly outperform
traditional algorithms in accuracy and adaptability, filling a critical scientific gap and opening new
pathways for predictive, preventive, and personalized cardiovascular healthcare.

Keywords: Artificial Intelligence; ECG; PPG; Digital Twin, Mobile and Wearable Platforms;
Deep Learning;, Wavelet—Neural Networks; Incremental On-Device Learning,; Interpretability;
Personalized Cardiac Monitoring.

INTRODUCTION

Electrocardiogram (ECG) and photoplethysmographic (PPG) signal processing remains
the foundation of modern cardiovascular diagnostics, providing noninvasive insight into
cardiac electrophysiology. Conventional algorithms for QRS complex detection, arrhythmia
classification, and heart rhythm segmentation have achieved very good performance in offline
conditions, but struggle to maintain accuracy, stability, and adaptability when implemented in
real mobile or wearable environments.

In parallel, artificial intelligence (AI) — and in particular deep learning — is bringing a
number of improvements to the analysis of complex biomedical signals. AI models can
automatically extract discriminative features from raw ECG/EPG data, significantly better
than classical technologies, and enable more accurate detection and prediction of cardiac
events. However, challenges remain: high inter-individual variability, sensitivity to noise,
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limited annotated data, power constraints of peripheral devices, and limited interpretability of
deep models. Recently, the concept of the “Digital Twin” has begun to emerge as a promising
approach for personalized healthcare. A digital twin is a virtual, continuously updated
representation of a given physical system (in this case, an individual’s heart), powered by
real-time sensor data and capable of simulating future states. Combining Al-enhanced cardiac
analytics (ECG/FPG/HRYV analysis) with a digital twin architecture on mobile platforms offers
a path to predictive, preventive, and personalized cardiac care that goes beyond passive
monitoring.

This paper proposes and evaluates a novel Al-driven ECG/FPG signal processing
framework for mobile and wearable devices designed to build a user-specific digital twin of
cardiac function. The aim of the paper is to review the fundamentals of the HRV digital twin
concept, define it, and present a novel index for assessing fatigue in athletes.

HISTORY AND RELATED WORK

1. Traditional methods for processing ECG/FPG signals

Classical methods for ECG/FG analysis are based on filtering, morphological analysis,
peaking and thresholding and manually defined features such as RR/PP interval length, QRS
width, etc. These algorithms often work well in clean recordings, but lose accuracy in the
presence of noise, moving artifacts, and intersubject variability.

Articles in the scientific literature include methods such as the Pan—Tompkins algorithm
for QRS detection, adaptive thresholding, wavelet-based approaches, etc.

2. AI and Deep Learning in ECG Analysis

With the advent of machine learning and neural networks in cardiac diagnostics,
numerous studies have emerged that use convolutional neural networks (CNN), recurrent
neural networks (RNN), transformer architectures, and hybrid models for tasks such as
arrhythmia classification, automated ECG waveform segmentation, and acute event
prediction. In addition, the concept of a digital twin is increasingly integrated with artificial
intelligence to build personalized, prognostic, and adaptive models.

A review by Chaparro-Cardenas et al. examines the current state of digital twins and Al
for personalized and predictive medicine, with a focus on the potential for individualized
treatment [1]. Fuse et al. present a systematic review of the applications of large language
models, foundation models, and digital twins for clinical analysis and allergology [2]. Kreuzer
et al. focused on the use of artificial intelligence to build and simulate digital twins,
systematizing methodological and application aspects [3]. In another large-scale study, Qian
et al. demonstrated how machine learning allows the creation of populations of cardiac digital
twins based on imaging and ECG data to assess electrophysiological processes such as
conduction and repolarization [4]. Grandits et al. created an efficient digital twin of the
ventricular conduction system using 12-lead ECG and visualization data, highlighting the
possibilities for the identification of physiological parameters [5].

3. Concept and Implementation of Digital Twin in Healthcare

The concept of Digital Twin originates from industrial engineering and is widely used in
manufacturing processes, monitoring and predictive control. However, in the context of
healthcare, it has taken on a new meaning — the creation of a virtual copy of an individual’s
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physiological state, which is fed with real-world data and used for diagnosis, monitoring,
prediction and personalized treatment.

In recent years, a number of review and applied studies have presented different aspects
of digital twins in cardiology and medicine.

Thangaraj et al. discuss how digital twins are combined with generative artificial
intelligence to transform cardiovascular care through simulation and predictive models [6].
Coorey et al. review the interdisciplinary progress in creating health digital twins for
cardiology applications, highlighting key challenges and prospects [7]. Sel et al. propose a
comprehensive architecture for building a digital twin for cardiac health, including modeling,
data synchronization, and clinical interpretation [8]. Kabir et al. examine the integration
between digital twins and the Internet of Things (Healthcare IoT), analyzing the technological
and security aspects of the implementation [9]. Bhagirath et al. emphasize the potential of
digital twins to revolutionize cardiac electrophysiology through simulation models compatible
with real ECG data [10].

Despite these significant contributions, most implementations remain conceptual or
offline, lacking full-fledged real-time solutions based on data from wearable devices and with
the ability for dynamic adaptation and feedback. This deficiency creates a need to develop a
lightweight, fractal-adaptive, and Al-supported architecture capable of operating on edge
devices with low latency and high predictive value.

4. Problems and Limitations in Mobile/edge Deployment

Implementing Digital Twins and Al models in mobile or edge devices is a key step
towards realizing personalized and continuous healthcare. However, the transfer from cloud
or server environments to on-premises devices brings with it a number of technical and ethical
challenges:

e Limited resources — processing power, RAM, battery capacity and cooling are
critical factors in edge implementation.

e Low latency and real-time requirements — the digital twin must process and
respond to physiological changes almost instantaneously.

e Data privacy and security — the need to protect sensitive medical information
(e.g. ECG, PPG, RR intervals).

e Inter-subject variability and domain adaptation — systems must be personalized
to the physiology of each individual patient.

e Interpretability and trust — healthcare professionals require explainable
predictions that can be clinically substantiated.

Johnson and Saikia explore how wearable devices such as watches and bracelets can
serve as entry points for digital twins, highlighting challenges with data processing and real-
time synchronization [11]. Volkov et al. conduct an extensive review of existing platforms that
unify IoT, Digital Twin, and mobile medicine, identifying the lack of integrated standards and
modular architectures as a major obstacle to mass adoption [12]. Chen and colleagues present
the concept of a Human Digital Twin powered by Mobile AIGC (Al-generated Content) and
demonstrate how generative models can be used to make personalized predictions on
resource-constrained devices [13].

These developments (Table 1) show significant potential for personalized edge
solutions, but emphasize the need for optimized models, input stream compression, and
prioritized security, especially in the context of continuous monitoring and real-time alarm
mechanisms.
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Table 1. Overview of what has been done to date on the VSC digital twin concept

Area / Subtask

Examples of existing

Main contribution

Limitations/gaps (in the

Peak detection / QRS /
wave segmentation

Noise/artifact reduction

HRY analysis / state
differentiation

Cardio data

developments/research
Grandits et al. (2025) [5]

Edder (2025) [14];
Gaoudam (2025) [15]

Johnson et al. (2024) [11];
Gaoudam (2025) [15]

Grandits et al. (2025) [5];

High sensitivity and
accuracy in QRS
(=99.6%)
Transformer-based
noise removal;
preserved morphology
Al-mining SDNN,
RMSSD and state
classification

Creating digital twins

context of Digital Twin)
Works with recorded
data; not real-time on
wearables

Offline processing; lack
of optimization for edge
devices

Lack of a dynamic
digital twin framework
with these metrics

Not integrated with

prediction/modeling Qian et al. (2025) [4]; from ECG and imaging = edge/mobility solutions
Bhagirath et al. (2024) diagnostics
[10]
Calibration / Fuse et al. (2025) [2] Assessment of Lack of real dynamic
uncertainty analysis anatomical variations adaptation of the twin in
and uncertainties in real time

models
Demonstration of IoT
platforms with cloud
analytics and Al for
wearable devices

Kabir et al. (2025) [9];
Volkov et al. (2021) [12];
Chen et al. (2024) [13]

Lack of two-way
synchronization and
adaptive learning

IoT / connectivity / data
protection

METHODOLOGY OF THE PROPOSED CONCEPTUAL FRAMEWORK OF A
DI1GITAL TWIN OF A VCH, MANAGED BY ARTIFICIAL INTELLIGENCE

1. System Overview

The proposed architecture integrates a mobile or wearable device for ECG/FPG
acquisition, on-device preprocessing, Al-based feature extraction and classification, and a
cloud-synchronized digital twin of the heart. Each patient has a virtual replica that is
continuously updated with incoming ECG/FPG streams and model outputs. The mobile
device offers low-latency inference and transmits only essential parameters and/or
anonymized features to the digital twin, thereby reducing bandwidth and preserving privacy.

2. Data Collection and Synchronization from Mobile/wearable Devices

ECG/EPG signals are collected using single or multi-input wearable devices
(smartwatches, chest straps, custom IoT patches, or purpose-built cardio devices) at a
manufacturer-defined sampling rate. The device’s pre-processing modules perform noise
reduction (baseline removal, bandpass filtering), determination of normal cardiac intervals
(RR/PP), and segmentation of the time series before feeding the data to the Al model.

3. Cardiology Data Modeling

Modeling cardiac data using statistical approaches is often based on the use of Gaussian
(normal) distributions, which describe the variation of physiological parameters around their
mean value. In the analysis of heart rate variability (HRV), Gaussian models allow for a
quantitative assessment of the dispersion of RR intervals, the dynamics of the mean heart rate,
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and parameters such as standard deviation or confidence intervals. In Bayesian probabilistic
modeling, normal distributions are often used to calculate conditional probabilities (X [C i),
which describe the belonging of the observed data to a given physiological state (rest, fatigue,
stress). More complex approaches include the use of Gaussian Mixture Models (GMM),
which allow for the description of multimodal distributions characteristic of cardiac data with
the presence of arrhythmias, noise, or transitions between states. Although Gaussian models
provide a good statistical basis and allow reliable hypothesis derivation, their limitation is
manifested in data with nonlinear or chaotic dynamics, where supplementation with attractor
and nonlinear analysis methods is necessary.

4. Hybrid Wavelet-neural Networks for Noise-resistant ECG Feature Extraction

To improve robustness against real-world noise and motion artifacts, the framework
uses hybrid architectures combining discrete wavelet transforms (DWT) with convolutional
and recurrent neural networks. The wavelet stage decomposes ECG signals into multi-
resolution components, which are then fed to CNN or CNN-LSTM feature training blocks.
This approach captures both time-frequency structure and higher-level patterns, improving
QRS complex detection, arrhythmia classification, and heart rate segmentation on mobile
hardware.

5. Personalization Training

A key innovation of the framework is on-device learning, which allows the AI model to
adapt to individual patient characteristics without the need for complete retraining in the
cloud. Fine-tuning or transfer learning modules update the model parameters as new labeled
events occur, compensating for inter-subject variability and class imbalance, while respecting
the energy and storage constraints of the mobile device.

6. Layers for Interpretation and User Feedback

To build trust and support critical decision-making, the digital twin includes
interpretable Al layers (e.g., attention heat maps, relevance scores) and generates textual
explanations of the model’s results. Users (including study subjects, athlete coaches,
physicians) can review detected anomalies or predicted risks, validate or correct them through
a secure dashboard, and these corrections provide feedback to improve the personalized
model. This closed feedback loop transforms passive observation into actionable, adaptive
care.

7. Security and Privacy Considerations in Edge Computing

Given the sensitivity of cardiac data, the framework implements end-to-end encryption,
anonymizes transmitted features, and provides secure device authentication. Federated or split
learning can be used to train global models without sharing raw cardiac signals. Data retention
policies meet GDPR/HIPAA guidelines, and lightweight cryptographic protocols minimize
latency and energy costs on mobile platforms.
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DATASET PREPARATION AND MODEL CALIBRATION

1. Using Annotated Datasets

To train and evaluate the proposed Al-driven digital twin framework, annotated
ECG/FPG databases, such as the MIT-BIH Arrhythmia Database, the PTB Diagnostic ECG
Database, and the PhysioNet Challenge datasets, as well as our own datasets collected by the
author team for the needs of implementing the tasks of projects at the Bulgarian National
Science Foundation, can be used. These repositories provide beat- and rhythm-level
annotations necessary for supervised training of peak detectors, arrhythmia classifiers, and
heart rate segmentation models.

2. Data Preprocessing and Segmentation

All raw ECG/FPG recordings undergo standardized preprocessing steps, including
baseline removal, bandpass filtering (0.5-40 Hz), and resampling to a predefined frequency.
Signals are segmented into fixed-length windows or individual heartbeats using annotation
markers. This unified processing ensures comparability across heterogeneous sources.

3. Synthetic Data Extension for Digital Twin Calibration

To address class imbalance and further enrich the diversity of training data, synthetic
ECG/FPG/HR signals and noise are generated. Techniques include waveform morphing, noise
addition (to test the robustness of algorithms on noisy data), simulated motion artifacts, and
GAN-based synthesis of rare arrhythmias. These augmented signals are used to calibrate and
personalize digital twin models, improving generalization to unseen patient profiles.

4. Working with Intersubject Variability

The methodology includes cross-subject validation and incremental fine-tuning of the
device to adapt global models to individual users. This approach allows the mobile Al module
to learn patient-specific morphology without retraining from scratch, while leveraging a large
shared cardiac dataset.

5. Metrics for Model Calibration and Evaluation

Calibration curves, reliability plots, and Brier scores can be used to evaluate the
probabilistic outputs of the classifiers. Power consumption and latency metrics are measured
directly on the target mobile hardware to ensure the feasibility of real-time implementation.
Model interpretability is assessed through attention map visualization and feature relevance
scores.

THE HEART RATE VARIABILITY DIGITAL TWIN CONCEPT (HRV DIGITAL
TWIN)

1. Definition

The HRV Digital Twin is a personalized, dynamically updated virtual model that
reflects the dynamics of heart rate variability of a specific individual in real time, which is
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trained and operated in real time and can be implemented on mobile and wearable platforms.
It uses a continuous stream of RR intervals, ECG/PPG-derived cardio intervals, HRV metrics
(SDNN, RMSSD, LF/HF, DFA a, entropy measures, etc.) and additional activity and sleep
data from mobile wearable devices. Unlike classical cardiology digital twins that focus on
anatomy, electrophysiology and hemodynamics, this twin has autonomic regulation,
expressed through HRYV, as its core. The proposed framework defines HRV as a basic state
variable and develops indices reflecting the dynamics of fatigue, stress and recovery.

2. Architecture

Main components:

e Data from wearable devices (ECG patches, smartwatches, PPG sensors) — RR
intervals, HRV indicators, pulse signal amplitude, activity, sleep.

e Personal baseline — individual HRV values (SDNN, RMSSD, LF/HF,
fractal/entropy indicators), determined at rest and under different loads.

e Modeling and prediction module — hybrid AI model (wavelet + CNN-LSTM or
other interpretable model) that learns HRV dynamics and predicts future states.

e State indices — Fatigue Digital Twin Index (FDTI) for real-time fatigue/stress
assessment and Recovery Digital Twin Index (RDTI) for assessment of recovery
rate.

e Personalization — automatic adaptation of model parameters to new data from a
specific person (few-shot / on-device learning).

e Visualization and interface — graphs and alarms for athletes, doctors or users.

3. Functions and Application

e Instant assessment — shows the current autonomic workload (FDTT).

e Recovery prediction — predicts when HRV will return to baseline values (RDTTI).

e “What if” simulations — the twin can predict the effect of workload, stress or
intervention on HRV.

e Sports and rehabilitation — supports planning of training cycles, monitoring of
overtraining, cardiac rehabilitation.

e Research tool — provides a basis for analysis of individual and population
models of autonomic regulation.

4. Scientific Novelty and Contribution

For the first time, HRV is defined as the central foundation of a digital twin, rather than
a peripheral biomarker. The current framework integrates a new index (FDTI) for real-time
fatigue/stress assessment and provides a methodological basis for developing a second index
(RDTI) for recovery. The HRV Digital Twin is designed for mobile and wearable platforms,
with personalization and interpretability, and can be extended to predictive modeling and
recommendations, which creates a new research line and contributes to personalized medicine
and sports science.

The diagram in Figure 1 presents the data flow and main modules of the proposed heart
rate variability digital twin (HRV Digital Twin). On the left are the data sources — mobile and
wearable devices (ECG patches, smartwatches, PPG sensors) that continuously collect RR
intervals, HRV metrics, pulse signal amplitude, activity, and sleep. The data goes through a
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pre-processing stage (filtering, normalization, synchronization) and a hybrid module that
extracts noise-resistant time-frequency and dynamic characteristics.

The next block is the digital twin module, which stores the individual’s personal
baseline (individual HRV values at rest and during exercise), adapts through on-device
learning and generates states and predictions. In this module, the FDTI (Fatigue Digital Twin
Index) indices are calculated — for a momentary assessment of fatigue/stress — and the RDTI
(Recovery Digital Twin Index) — for an assessment of the recovery rate. The resulting indices
and predictions are visualized in an interface for the user/physician (right part of the diagram)
and can be used for a momentary assessment, personalized exercise planning and “what if”
simulations.

4 )
HRV Digital Twin
Data from Functions and
Wearable Devices > »  Applications

¢ RRintervals + Current assessment
e PPG-derivedIRV « Baseline HRV/ * Recovery prediction
* Activity * Model & Prediction * Sports and

o Sleep i o indices rehabilitation

|
[ |

[ State Indices ] [Personalization]

e Fatigue Digital Twin Index (FDTI)
® Recovery Digital Twin Index (RDT)

Figure 1. Architecture of the proposed digital twin of heart rate variability (HRV Digital Twin)
A general presentation of the two new indices is given in Table 2.

Table 2. Tabular summary of the two indices.

Index Time scale Main entrances Expected direction

FDTI 0-2 h after ISDNN, |RMSSD, 1LF/HF, 1DFA a. (or specific Higher FDTI =

(Fatigue) loading (windows = change), |SampEn, 1AHR, |PPG amplitude, {PPG  higher acute fatigue
60-120 s) variability, |PTT

RDTI 2-24 h (units of Trend towards baseline: 1SDNN, 1RMSSD, LF/HF | Higher RDTI =

(Recovery) 5—30 min+ — rest zone, SampEn/MSE 1, PPG amplitude more complete
trajectories) stabilization, PTT — baseline; night RMSSD 1 recovery

DEFINITION OF THE FATIGUE DIGITAL TWIN INDEX

To provide a quantitative and personalized assessment of fatigue and stress in real time,
the Fatigue Digital Twin Index (FDTI) has been developed within the proposed HRV Digital
Twin. The index is based on a combination of selected features of the heart rate variability and
pulse signal, extracted after the hybrid wavelet-neural processing stage.

Equation: FDTI is defined as a weighted linear combination of K features f k (t), which
are standardized against the individual baseline of the respective individual:
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FDTI() = = Bf_, wy 02, (M

Ok
where:
— fx (t) are the time series of the selected HRV features (SDNN, RMSSD, LF/HF,
DFA a, entropy metrics, wavelet coefficient energies, etc.);
— Uk and ok are the mean and standard deviation of the feature for the respective
individual at rest (personal baseline);
— w are the weights determined by training on a reference cohort (e.g. a group of

athletes with labels “rest”, “fatigue”, “stress”) and subsequently adapted to the
specific individual through on-device incremental learning.

Interpretation: A higher FDTI value reflects increased autonomic load (fatigue/stress),
and a lower value reflects a closer physiological state. The index can be calculated beat-by-
beat on the mobile hardware, updating with each new measurement of RR intervals/PPG.

Advantages: This formulation allows integration of classic HRV metrics and new
wave/entropy features into a single metric; personalization through individual normalization
and weight adaptation; use for alarms, visualization, and prediction within the HRV Digital
Twin.

JUSTIFICATION FOR THE DETERMINATION OF THE NEW INDEX

1. Selecting the parameters

The following parameters were selected for inclusion in the post-exercise fatigue index:
SDNN, RMSSD, LF/HF, SD1, SD2/SD1, DFA o, SampEn. The rationale for the selection is
presented in Table 3.

Table 3. Parameter and its physiological significance

Parameter Physiological description ‘

RMSSD Sharp decline — acutely suppressed parasympathetic

SD1 Related to RMSSD, also falls with fatigue

LF/HF Sharply increases (1 LF, | HF) — sympathetic dominance
SampEn Declines — reduced regulatory complexity

DFA al Deviates above 1.2 — “loss” of fractal structure

HR (bpm) Increases — tachycardia

SD2/SD1 Increases during acute stress

2. Orienting the signs so that their increase corresponds to the accumulation of
fatigue

The used form of inclusion of the features through the variables x 1 is shown in
formulas (2) to (8) and Table 4.
1

* X1 = SDAl,N (2)
* X2 = Zussp )
e x;= LF/HF 4)
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1

(] X4 = —— (5)
SD1

e x5 = SD2/SD1 (6)

® X = DFflou (7

¢ X7 = SampEn (8)

Table 4. How to enable parameters

‘ k Character Transformation Physiological significance at { ‘
Xi SDNN 1/SDNN | variability
Xz RMSSD 1/RMSSD | parasympathetic tone
Xs LF/HF LF/HF 1 sympathetic dominance
X4 SD1 1/SD1 | rapid variability
Xs SD2/SD1 SD2/SD1 1 instability
X6 DFA ou DFA o loss of fractal structure
X7 SampEn 1/SampEn | complexity

3. Normalization (Pre-training)

For each metric xk and state s (Post or +2h):

Zps =~ —1 9)

Xk, Pre
This is the relative change from “before training” (0 means no change; positive — more

fatigue).

4. FDTI Index
With equal weight of the individual features, we add up the normalized features and

take the average:

FDTI(t) = YX_, %M , K - number of parameters (10)

Ok

The weights wk can be trained (e.g. with logistic regression or Linear Discriminant
Analysis), the formula becomes:

FDTI(t) = ¥k=1 Wk - Zk,s » 2 Wi = 1. (11)

PERSONALIZATION OF THE FDTI FORMULA IN THE CONTEXT OF A
DIGITAL TWIN

1. Individual baseline
Xk,s

- Normalization itself — 1 makes the index personalized: each athlete has their

Xk,Pre
own “zero” line.
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- With regular use, the digital twin can update baseline values dynamically (periodic
training, different conditions).

2. Adaptive weights wy
- Instead of the same wy for everyone, individual weights can be trained on the
historical data of the particular athlete.
- Example: for one athlete RMSSD is very sensitive to fatigue, for another — LF/HF; the
system automatically increases the weight of the most informative indicators for him.
- Mathematical form:

FDTI' (t) = ¥X_ w26 (12)

Where w;’ are personal weights of i-th individual and zy ) — normalized signs of i—th
individual.

3. Incremental (on-device) learning
- The digital twin can use new records to update wy' — using online learning.
- Thus, the index gradually "learns" the reaction of the specific person.

4. Calibration with external markers
- If subjective fatigue scales (RPE) or biochemical markers (lactate) are created, the
system can use these “labels” for further training and relate the HRV profile to real fatigue.

5. Adaptive alarm thresholds
- In addition to the formula, the thresholds for “fatigue” can also be individual. For each
athlete, the digital twin calculates a personal “green/yellow/red zone” of FDTI.

In practice, this means that the formula is not “static”, but a living part of the digital
twin, which learns from each user’s data and after a certain number of iterations adapts to
their specific individuality.

Personalization of wk weights for different groups of athletes. The wk weights in the
FDTI index are initially calibrated on a reference training cohort (e.g. athletes from a specific
sport), optimizing the ability to distinguish between rest/fatigue/stress states. When applying
the index to a new group of athletes, the global weights serve as an initial value, but the
system allows for customization by quickly recalculating or fine-tuning wk with a small
number of labeled data from the respective group. This approach preserves the general
structure of the index but increases its accuracy in the presence of inter-subject differences,
thus FDTTI adapts to the specific physiological profiles of different populations and supports
the construction of individualized digital twins.

RESULTS

This study used the weights presented in Table 5, obtained through correlation analysis
and Table 6 shows the calculated FDTI indices for each of the studied wrestlers immediately
after training and 2 hours later.
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Table 5. Parameter weights in the index

‘ Parameter Rationale for weight assignment
SDNN Decreases with fatigue — use 1/SDNN 1 — moderate weight (0.14)
RMSSD Decreases with fatigue — use 1/RMSSD 1 — moderate weight (0.14)
LF/HF Increases under stress — use LF/HF directly — moderate weight (0.14)
SD1 Decreases with fatigue — use 1/SD1 1 — moderate weight (0.14)
SD2/SD1 Reflects balance/imbalance — moderate weight (0.14)
DFA o1 Decreases with fatigue, indicates nonlinear structure — higher weight (0.15)
SampEn Clearly drops with fatigue — use 1/SampEn 1 — higher weight (0.15)

Table 6. FDTI index (post-workout and 2 hrs after)

D FDTI_post FDTI_2h \
Bl 0.92 0.43
B2 1.02 0.49
B3 0.22 0.11
B4 0.30 0.05
B5 0.21 0.02
B6 0.27 0.09

Figure 2 presents heatmaps of the relative changes (relative to pre-training values) of
the seven HRV parameters included in the fatigue index formula (1/SDNN, 1/RMSSD,
LF/HF, 1/SD1, SD2/SD1, DFA o, 1/SampEn), and the combined FDTI index in wrestlers
B1-B6. The upper image presents the results immediately after training, and the lower one —
two hours after training. Red colors indicate an increase in the corresponding parameter/index
(fatigue indicator), and blue ones — a decrease or recovery from baseline. Analysis of the
selected HRV indicators shows distinct changes in all studied athletes immediately after the
load. The heatmap (Figure 2, upper image) demonstrates a dominant increase in 1/SDNN and
1/SampEn, respectively reflecting reduced variability and regulatory complexity. In most
participants, an increase in LF/HF and SD2/SD1 was also observed, which is an indicator of
sympathetic dominance and rhythm instability. These trends were most pronounced in B1 and
B2, which is confirmed by the combined FDTI index (>0.9—1.0), indicating significant fatigue
immediately after training.

Two hours after the load (Figure 2, bottom image), the values of the parameters and the
combined FDTI index decreased in all athletes, indicating a partial recovery of autonomic
regulation. The index remained positive, but lower (e.g. 0.4—0.5 in B1 and B2), while in the
remaining participants it approached the baseline. This model demonstrates the applicability
of the new index for tracking the dynamics of fatigue and recovery in an individual and group
plan.
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Heatmap - Post-training
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Figure 2. Heatmap of relative changes

Summarizing Correlation Analysis

The new composite index FDTI demonstrated a very high positive correlation with the
main HRV parameters reflecting sympathetic dominance and a decrease in variability
(1/RMSSD, 1/SD1, LF/HF, SD2/SD1; r=0.95-0.98, p<0.01) immediately after training (Table
7). The strong relationship indicates that the index reliably captures the physiological changes
associated with fatigue and is mainly driven by the components reflecting rapid variability
and geometric dispersion. Two hours after exercise (Table 8), the correlations weaken, which
corresponds to a partial recovery of autonomic regulation and confirms the sensitivity of the
index to the dynamics of fatigue and recovery.
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Table 7. Correlation Matrix (Post-training) Pearson Correlation Tables (Post & 2h)

‘ 1/SDNN 1/RMSSD LF/HF 1/SD1 SD2/SD1  DFA ox 1/SampEn FDTI ‘
1SDNN 1000 0.864 0.658 0.864 0.641 0.712 -0.622 0.802
I/RMSSD = 0.864 1.000 0.944 1.000 0.940 0.951 -0.441 0.980
LF/HF 0.658 0.944 1.000 0.944 0.989 0.981 -0.230 0.967
1/SD1 0.864 1.000 0.944 1.000 0.940 0.951 -0.441 0.980
SD2/SD1  0.641 0.940 0.989 0.940 1.000 0.967 -0.275 0.946
DFA o1 0.712 0.951 0.981 0.951 0.967 1.000 -0.388 0.943
1/SampEn  -0.622  -0.441 0230  -0441  -0275 -0.388  1.000 -0.395
FDTI 0.802 0.980 0.967 0.980 0.946 0.943 -0.395 1.000

Table 8. Correlation matrix (2 h Post-training)
1/SDNN 1/RMSSD LF/HF 1/SD1 SD2/SD1  DFA a: 1/SampEn FDTI ‘
1SDNN  1.000 0.812 0.603 0.812 0.605 0.677 -0.588 0.765
1/RMSSD | 0.812 1.000 0.911 1.000 0.922 0.941 -0.409 0.960
LF/HF 0.603 0.911 1.000 0.911 0.978 0.964 -0.220 0.950
1/SD1 0.812 1.000 0.911 1.000 0.922 0.941 -0.409 0.960
SD2/SD1 0.605 0.922 0.978 0.922 1.000 0.959 -0.260 0.934
DFA o1 0.677 0.941 0.964 0.941 0.959 1.000 -0.345 0.932
1/SampEn -0.588  -0.409 0220  -0.409  -0.260 -0.345 1000 -0.360
FDTI 0.765 0.960 0.950 0.960 0.934 0.932 -0.360 1.000

Table 9 shows the calculated Pearson correlation [16] between HRV parameters and the
FDTI index. After exercise, the index has the strongest positive correlation with 1/RMSSD,
1/SD1 and LF/HF (r=0.96-0.98). Two hours after exercise, all correlations weaken but remain
high, indicating that the index continues to reflect key changes in variability.

Table 9. Pearson correlation between HRV parameters and FDTI index

‘ Parameter r (Post-training), p r (2 h Post-training), p
1/SDNN r=0.802, p = 0.055 r=0.765,p = 0.077
1/RMSSD r=0.980, p =0.001 r=0.960, p = 0.003
LF/HF r=0.967, p = 0.002 r=0.950, p = 0.004
1/SD1 r=0.980, p = 0.001 r=0.960, p = 0.003
SD2/SD1 r=0.946, p = 0.006 r=0.934, p = 0.009
DFA o: r=0.943, p = 0.006 r=0.932,p=0.010
1/SampEn r=-0.395, p = 0.438 r=-0.360, p = 0.483

Figure 3 shows a boxplot of the calculated FDTI values for the six wrestlers. The values
are normalized to the individual “pre-training” baseline (Pre = 0). An increase in the index is
seen immediately after loading and a partial recovery after 2 hours:

— Post (immediately after loading) — the median is above zero, with two clearly higher
individuals.

— +2h (two hours after) — the values decrease, but remain slightly positive in some
athletes.

Since the sample is small, these values serve only as a demonstration of the concept;
with a larger cohort, you will be able to train the weights w_k more precisely and the FDTI
will become even more informative.
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FDTI values for 6 wrestlers
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Figure 3. Boxplot of the calculated FDTI values for the six wrestlers

Figure 4 presents the individual FDTI values for six wrestlers (B1-B6) in two states —
immediately after training (Post) and two hours after training (+2h). The index was calculated
as a weighted combination of HRV indicators (SDNN, RMSSD, LF/HF, SD1, SD2/SD1, DFA
al, SampEn) and normalized to the individual baseline (Pre=0). Each panel of the figure
shows a boxplot with the distributions of FDTI, calculated using the hybrid model of HRV
indicators and normalized to the individual baseline (Pre=0). The differences in the fatigue
response are visible: in Bl and B2 the index increases significantly after exercise and
decreases after two hours, while in the other wrestlers the changes are less pronounced. In Bl
and B2, a distinct increase in FDTI after exercise (on average ~0.85—1.05) is observed, which
partially normalizes after two hours (~0.38—0.45). This reflects the classic autonomic response
“acute fatigue — partial recovery”. At B3—B6, FDTI values are around or below zero and
indicate a less pronounced response, which may be the result of individual characteristics or
different workload.

These results demonstrate that FDTI captures the personalized response of the body to
training and allows for real-time assessment of fatigue. Despite the small sample size (N=6),
the effect at Bl and B2 is clearly pronounced, which supports the applicability of the
approach. It is planned to expand the study with a larger number of athletes and introduce a
recovery index (RDTI) to more fully describe the dynamics of recovery.

FDTI distributions (Post vs +2h) for all wrestlers
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Figure 4. Individual values of the Fatigue Digital Twin Index (FDTI) in six wrestlers (BI1-B6) for
the states “immediately after training” (Post) and “two hours after training” (+2h).
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The graph in Figure 5 shows the dynamics of the FDTI (Fatigue Digital Twin Index) for
each of the six wrestlers (B1-B6) at three time points: before training (Pre), immediately after
training (Post), and two hours later (2h). Each line corresponds to one athlete and tracks how
his/her fatigue index (FDTI) changes over time. The graph shows that all wrestlers have a
sharp increase in the index immediately after training; after two hours, most athletes show
partial recovery (decrease in FDTI). B4 and B6 have the lowest FDTI in the post-training
state, which may be a sign of good adaptation or insufficient intensity. This visualization
highlights individual autonomic responses to load and recovery, which is the essence of the
HRYV digital twin concept.

Dynamics of Fatigue Digital Twin Index (FDTI)

1.27
Athlete
B1
10} B2
: —e— B3
B4
—e— B5
0.8 —e— B6
E o6
.
0.4f
02 //\
0.0L5< Post 2h
Time Point
Figure 5. FDTI dynamics
DISCUSSION

The presented results show that the Fatigue Digital Twin (FDTI) index, constructed as
an integrated metric of classical, nonlinear and time-frequency HRV indicators, can capture
acute changes in autonomic regulation after training load. In two of the six athletes (B1 and
B2), a clear “peak” of FDTI was observed immediately after load and partial normalization
after two hours, which is consistent with physiological expectations of sympathetic
dominance and subsequent recovery. Less pronounced responses in the remaining athletes
highlight the need for personalized weights and larger cohorts for training the model.

These initial data demonstrate the potential of the concept of a “digital twin” of HRV, in
which individual biosignals are analyzed in real time and converted into a personalized
fatigue index. This opens up the possibility not only for monitoring, but also for predicting the
risk of overtraining and optimizing recovery in sports practice.

The direct benefit of the created index is providing an assessment of HRV through a
single index, instead of through several, which is beneficial for users, who will not have to
consider the interaction of several HRV parameters and do not need to understand their
essence in depth.

HRYV signals can be registered through the wearable device developed in our section,
based on PPG (MAX30102) and ECG AFE (MAX30003), with integrated temperature and
inertial sensors. The device has an MCU STM32US5AS and a Bluetooth Low Energy module
for data transmission to a mobile application. The system stores and transmits in real time key
HRYV indicators (SDNN, RMSSD, LF/HF, etc.) to a smartphone/computer/cloud for further
processing.
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Justification for the need for such a device in the HRV digital twin

Continuous measurement: The digital twin needs frequent and reliable input data
to update its model.

Multisensor data synchronization: in addition to HRV, the device collects
movement and temperature, which allows for artifact correction and load
context.

On-device processing: some of the algorithms (filtering, peaks) are also
calculated on the device, which reduces latency and saves battery.

Security and personalization: data can be encrypted and linked to the specific
athlete profile, creating a true “twin”.

Integration with FDTTI: the index can be calculated in real time and visualized on
the mobile application, to alert in case of excessive fatigue, to adapt training or
recovery.

Table 10 compares the main characteristics of the developed wearable device with
typical PPG bracelets/watches and shows its advantages for collecting high-quality HRV data
required for the digital twin concept.

Table 10. Comparative characteristics of the developed wearable device with typical PPG

bracelets/watches
Characteristic Developed Device (Authors’ Typical PPG Wristband/Smartwatch
Prototype)
Sensors PPG (MAX30102) + ECG (MAX30003) PPG only; in some cases,
+ Temperature (MAX30205) + accelerometer
Accelerometer (LSM6DSL)
Sampling Rate 100-250 Hz (raw signals) 25-50 Hz (filtered or aggregated data)
Data Synchronization =~ Yes (PPG, ECG, motion, and Limited, no ECG
temperature in one synchronized stream)
Data Processing Local: filtering, peak detection, HR and  Usually only heart rate; HRV
HRYV calculations approximated
Data Transmission Bluetooth Low Energy, encrypted Bluetooth or proprietary protocol, often
unencrypted
Personalization Individual baseline profiles and adaptive = Typically absent; generic algorithms
FDTI weights
On-device Analysis Real-time FDTI computation possible None or very limited
Artifact Correction Uses accelerometer and temperature for | Usually absent or limited
motion/noise reduction
Application Research platform for HRV digital twin Consumer use — fitness or wellness
modeling tracking
As can be seen from Table 10, the prototype we developed significantly outperforms

standard PPG bracelets/watches in terms of sampling rate, data synchronization, local
processing, and the ability to custom calculate FDTI, making it a suitable hardware basis for
implementing the HRV digital twin.

FUTURE WORK

The present study presents a framework for mobile Al-based processing of ECG signals,
but the concept of a Digital Twin is at this stage mostly in a conceptual phase. In future work,
the actual construction and integration of a cloud-based digital twin of the heart with the

288



Science Series “Innovative STEM Education”, Volume 7, 2025

mobile application, which would be synchronized in real time with data from portable
devices, is envisaged. It is planned to expand the model with multimodal inputs (ECG, PPG,
blood pressure, temperature, gyroscope data, etc.) and implement methods for federated and
confidential training on large user populations (athletes, individuals in fatigue and stress
conditions, patients). The impact of personalized digital twins on clinical practice will be
further investigated through long-term case studies and assessment of their predictive and
preventive value.

CONCLUSION

In this study, the concept of a Digital Twin for HRV is defined and a new index —
Fatigue Digital Twin Index (FDTI) — is presented for the assessment of fatigue and stress in
athletes based on an integrated analysis of HRV indicators. The index was calculated on real-
world data from six wrestlers in three states (before, immediately after and two hours after
training) and demonstrated its ability to capture the individual autonomic response to exercise.
In some athletes, a clear peak of FDTI after training and partial recovery after two hours were
observed, confirming the physiological validity of the approach.

These initial results support the concept of a digital twin of HRV, which allows for
continuous, personalized and interpretable monitoring of fatigue in real time. Future studies
are planned to expand the cohort, optimize the index weights and develop additional indices —
for example, for recovery (RDTI) and for predicting the risk of overtraining — as the next step
towards a comprehensive digital twin system in sports.
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