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Abstract 

ECG/PPG signal processing is a cornerstone of modern cardiovascular diagnostics. While 
artificial intelligence has already enhanced ECG analysis through accurate detection, classification, 
and prediction of cardiac events, its integration into mobile platforms enables continuous, ubiquitous 
monitoring. This paper introduces a novel framework that couples state-of-the-art AI methodologies 
with the Digital Twin paradigm to create a personalized, real-time virtual replica of a patient’s 
cardiac function. We survey deep learning and hybrid wavelet–neural approaches for QRS complex 
detection, arrhythmia classification, and heartbeat segmentation, and propose methods for 
incremental on-device learning to address data imbalance and inter-subject variability. Annotated 
datasets such as MIT-BIH are extended with synthetic augmentation to populate and calibrate the 
digital twin models, enabling generalization across heterogeneous populations. The proposed 
architecture emphasizes low-latency inference, energy-aware computation, and secure data flows 
suitable for mobile and wearable devices. By embedding interpretability layers and adaptive feedback 
loops, the system closes the gap between passive ECG monitoring and actionable, individualized 
cardiac care. Our results demonstrate that AI-driven ECG digital twins can significantly outperform 
traditional algorithms in accuracy and adaptability, filling a critical scientific gap and opening new 
pathways for predictive, preventive, and personalized cardiovascular healthcare. 

Keywords: Artificial Intelligence; ECG; PPG; Digital Twin; Mobile and Wearable Platforms; 
Deep Learning; Wavelet–Neural Networks; Incremental On-Device Learning; Interpretability; 
Personalized Cardiac Monitoring. 

 

INTRODUCTION 

Electrocardiogram (ECG) and photoplethysmographic (PPG) signal processing remains 
the foundation of modern cardiovascular diagnostics, providing noninvasive insight into 
cardiac electrophysiology. Conventional algorithms for QRS complex detection, arrhythmia 
classification, and heart rhythm segmentation have achieved very good performance in offline 
conditions, but struggle to maintain accuracy, stability, and adaptability when implemented in 
real mobile or wearable environments. 

In parallel, artificial intelligence (AI) – and in particular deep learning – is bringing a 
number of improvements to the analysis of complex biomedical signals. AI models can 
automatically extract discriminative features from raw ECG/EPG data, significantly better 
than classical technologies, and enable more accurate detection and prediction of cardiac 
events. However, challenges remain: high inter-individual variability, sensitivity to noise, 
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limited annotated data, power constraints of peripheral devices, and limited interpretability of 
deep models. Recently, the concept of the “Digital Twin” has begun to emerge as a promising 
approach for personalized healthcare. A digital twin is a virtual, continuously updated 
representation of a given physical system (in this case, an individual’s heart), powered by 
real-time sensor data and capable of simulating future states. Combining AI-enhanced cardiac 
analytics (ECG/FPG/HRV analysis) with a digital twin architecture on mobile platforms offers 
a path to predictive, preventive, and personalized cardiac care that goes beyond passive 
monitoring. 

This paper proposes and evaluates a novel AI-driven ECG/FPG signal processing 
framework for mobile and wearable devices designed to build a user-specific digital twin of 
cardiac function. The aim of the paper is to review the fundamentals of the HRV digital twin 
concept, define it, and present a novel index for assessing fatigue in athletes. 

 

HISTORY AND RELATED WORK 

1. Traditional methods for processing ECG/FPG signals 

Classical methods for ECG/FG analysis are based on filtering, morphological analysis, 
peaking and thresholding and manually defined features such as RR/PP interval length, QRS 
width, etc. These algorithms often work well in clean recordings, but lose accuracy in the 
presence of noise, moving artifacts, and intersubject variability. 

Articles in the scientific literature include methods such as the Pan–Tompkins algorithm 
for QRS detection, adaptive thresholding, wavelet-based approaches, etc. 

2. AI and Deep Learning in ECG Analysis 

With the advent of machine learning and neural networks in cardiac diagnostics, 
numerous studies have emerged that use convolutional neural networks (CNN), recurrent 
neural networks (RNN), transformer architectures, and hybrid models for tasks such as 
arrhythmia classification, automated ECG waveform segmentation, and acute event 
prediction. In addition, the concept of a digital twin is increasingly integrated with artificial 
intelligence to build personalized, prognostic, and adaptive models. 

A review by Chaparro-Cárdenas et al. examines the current state of digital twins and AI 
for personalized and predictive medicine, with a focus on the potential for individualized 
treatment [1]. Fuse et al. present a systematic review of the applications of large language 
models, foundation models, and digital twins for clinical analysis and allergology [2]. Kreuzer 
et al. focused on the use of artificial intelligence to build and simulate digital twins, 
systematizing methodological and application aspects [3]. In another large-scale study, Qian 
et al. demonstrated how machine learning allows the creation of populations of cardiac digital 
twins based on imaging and ECG data to assess electrophysiological processes such as 
conduction and repolarization [4]. Grandits et al. created an efficient digital twin of the 
ventricular conduction system using 12-lead ECG and visualization data, highlighting the 
possibilities for the identification of physiological parameters [5]. 

3. Concept and Implementation of Digital Twin in Healthcare 

The concept of Digital Twin originates from industrial engineering and is widely used in 
manufacturing processes, monitoring and predictive control. However, in the context of 
healthcare, it has taken on a new meaning – the creation of a virtual copy of an individual’s 
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physiological state, which is fed with real-world data and used for diagnosis, monitoring, 
prediction and personalized treatment. 

In recent years, a number of review and applied studies have presented different aspects 
of digital twins in cardiology and medicine. 

Thangaraj et al. discuss how digital twins are combined with generative artificial 
intelligence to transform cardiovascular care through simulation and predictive models [6]. 
Coorey et al. review the interdisciplinary progress in creating health digital twins for 
cardiology applications, highlighting key challenges and prospects [7]. Sel et al. propose a 
comprehensive architecture for building a digital twin for cardiac health, including modeling, 
data synchronization, and clinical interpretation [8]. Kabir et al. examine the integration 
between digital twins and the Internet of Things (Healthcare IoT), analyzing the technological 
and security aspects of the implementation [9]. Bhagirath et al. emphasize the potential of 
digital twins to revolutionize cardiac electrophysiology through simulation models compatible 
with real ECG data [10]. 

 
Despite these significant contributions, most implementations remain conceptual or 

offline, lacking full-fledged real-time solutions based on data from wearable devices and with 
the ability for dynamic adaptation and feedback. This deficiency creates a need to develop a 
lightweight, fractal-adaptive, and AI-supported architecture capable of operating on edge 
devices with low latency and high predictive value. 

4. Problems and Limitations in Mobile/edge Deployment 

Implementing Digital Twins and AI models in mobile or edge devices is a key step 
towards realizing personalized and continuous healthcare. However, the transfer from cloud 
or server environments to on-premises devices brings with it a number of technical and ethical 
challenges: 

 Limited resources – processing power, RAM, battery capacity and cooling are 
critical factors in edge implementation. 

 Low latency and real-time requirements – the digital twin must process and 
respond to physiological changes almost instantaneously. 

 Data privacy and security – the need to protect sensitive medical information 
(e.g. ECG, PPG, RR intervals). 

 Inter-subject variability and domain adaptation – systems must be personalized 
to the physiology of each individual patient. 

 Interpretability and trust – healthcare professionals require explainable 
predictions that can be clinically substantiated. 

Johnson and Saikia explore how wearable devices such as watches and bracelets can 
serve as entry points for digital twins, highlighting challenges with data processing and real-
time synchronization [11]. Volkov et al. conduct an extensive review of existing platforms that 
unify IoT, Digital Twin, and mobile medicine, identifying the lack of integrated standards and 
modular architectures as a major obstacle to mass adoption [12]. Chen and colleagues present 
the concept of a Human Digital Twin powered by Mobile AIGC (AI-generated Content) and 
demonstrate how generative models can be used to make personalized predictions on 
resource-constrained devices [13]. 

These developments (Table 1) show significant potential for personalized edge 
solutions, but emphasize the need for optimized models, input stream compression, and 
prioritized security, especially in the context of continuous monitoring and real-time alarm 
mechanisms. 
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Table 1. Overview of what has been done to date on the VSC digital twin concept 

Area / Subtask Examples of existing 
developments/research 

Main contribution Limitations/gaps (in the 
context of Digital Twin) 

Peak detection / QRS / 
wave segmentation 

Grandits et al. (2025) [5] High sensitivity and 
accuracy in QRS 
(≈99.6%) 

Works with recorded 
data; not real-time on 
wearables 

Noise/artifact reduction Edder (2025) [14]; 
Gaoudam (2025) [15] 

Transformer-based 
noise removal; 
preserved morphology 

Offline processing; lack 
of optimization for edge 
devices 

HRV analysis / state 
differentiation 

Johnson et al. (2024) [11]; 
Gaoudam (2025) [15] 

AI-mining SDNN, 
RMSSD and state 
classification 

Lack of a dynamic 
digital twin framework 
with these metrics 

Cardio data 
prediction/modeling 

Grandits et al. (2025) [5]; 
Qian et al. (2025) [4]; 
Bhagirath et al. (2024) 
[10] 

Creating digital twins 
from ECG and imaging 
diagnostics 

Not integrated with 
edge/mobility solutions 

Calibration / 
uncertainty analysis 

Fuse et al. (2025) [2] Assessment of 
anatomical variations 
and uncertainties in 
models 

Lack of real dynamic 
adaptation of the twin in 
real time 

IoT / connectivity / data 
protection 

Kabir et al. (2025) [9]; 
Volkov et al. (2021) [12]; 
Chen et al. (2024) [13] 

Demonstration of IoT 
platforms with cloud 
analytics and AI for 
wearable devices 

Lack of two-way 
synchronization and 
adaptive learning 

 

METHODOLOGY OF THE PROPOSED CONCEPTUAL FRAMEWORK OF A 

DIGITAL TWIN OF A VCH, MANAGED BY ARTIFICIAL INTELLIGENCE 

1. System Overview 

The proposed architecture integrates a mobile or wearable device for ECG/FPG 
acquisition, on-device preprocessing, AI-based feature extraction and classification, and a 
cloud-synchronized digital twin of the heart. Each patient has a virtual replica that is 
continuously updated with incoming ECG/FPG streams and model outputs. The mobile 
device offers low-latency inference and transmits only essential parameters and/or 
anonymized features to the digital twin, thereby reducing bandwidth and preserving privacy. 

2. Data Collection and Synchronization from Mobile/wearable Devices 

ECG/EPG signals are collected using single or multi-input wearable devices 
(smartwatches, chest straps, custom IoT patches, or purpose-built cardio devices) at a 
manufacturer-defined sampling rate. The device’s pre-processing modules perform noise 
reduction (baseline removal, bandpass filtering), determination of normal cardiac intervals 
(RR/PP), and segmentation of the time series before feeding the data to the AI model. 

3. Cardiology Data Modeling 

Modeling cardiac data using statistical approaches is often based on the use of Gaussian 
(normal) distributions, which describe the variation of physiological parameters around their 
mean value. In the analysis of heart rate variability (HRV), Gaussian models allow for a 
quantitative assessment of the dispersion of RR intervals, the dynamics of the mean heart rate, 
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and parameters such as standard deviation or confidence intervals. In Bayesian probabilistic 
modeling, normal distributions are often used to calculate conditional probabilities (𝑋 ∣𝐶 𝑖 ), 
which describe the belonging of the observed data to a given physiological state (rest, fatigue, 
stress). More complex approaches include the use of Gaussian Mixture Models (GMM), 
which allow for the description of multimodal distributions characteristic of cardiac data with 
the presence of arrhythmias, noise, or transitions between states. Although Gaussian models 
provide a good statistical basis and allow reliable hypothesis derivation, their limitation is 
manifested in data with nonlinear or chaotic dynamics, where supplementation with attractor 
and nonlinear analysis methods is necessary. 

4. Hybrid Wavelet-neural Networks for Noise-resistant ECG Feature Extraction 

To improve robustness against real-world noise and motion artifacts, the framework 
uses hybrid architectures combining discrete wavelet transforms (DWT) with convolutional 
and recurrent neural networks. The wavelet stage decomposes ECG signals into multi-
resolution components, which are then fed to CNN or CNN-LSTM feature training blocks. 
This approach captures both time-frequency structure and higher-level patterns, improving 
QRS complex detection, arrhythmia classification, and heart rate segmentation on mobile 
hardware. 

5. Personalization Training 

A key innovation of the framework is on-device learning, which allows the AI model to 
adapt to individual patient characteristics without the need for complete retraining in the 
cloud. Fine-tuning or transfer learning modules update the model parameters as new labeled 
events occur, compensating for inter-subject variability and class imbalance, while respecting 
the energy and storage constraints of the mobile device. 

6. Layers for Interpretation and User Feedback 

To build trust and support critical decision-making, the digital twin includes 
interpretable AI layers (e.g., attention heat maps, relevance scores) and generates textual 
explanations of the model’s results. Users (including study subjects, athlete coaches, 
physicians) can review detected anomalies or predicted risks, validate or correct them through 
a secure dashboard, and these corrections provide feedback to improve the personalized 
model. This closed feedback loop transforms passive observation into actionable, adaptive 
care. 

7. Security and Privacy Considerations in Edge Computing 

Given the sensitivity of cardiac data, the framework implements end-to-end encryption, 
anonymizes transmitted features, and provides secure device authentication. Federated or split 
learning can be used to train global models without sharing raw cardiac signals. Data retention 
policies meet GDPR/HIPAA guidelines, and lightweight cryptographic protocols minimize 
latency and energy costs on mobile platforms. 
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DATASET PREPARATION AND MODEL CALIBRATION 

1. Using Annotated Datasets 

To train and evaluate the proposed AI-driven digital twin framework, annotated 
ECG/FPG databases, such as the MIT-BIH Arrhythmia Database, the PTB Diagnostic ECG 
Database, and the PhysioNet Challenge datasets, as well as our own datasets collected by the 
author team for the needs of implementing the tasks of projects at the Bulgarian National 
Science Foundation, can be used. These repositories provide beat- and rhythm-level 
annotations necessary for supervised training of peak detectors, arrhythmia classifiers, and 
heart rate segmentation models. 

2. Data Preprocessing and Segmentation 

All raw ECG/FPG recordings undergo standardized preprocessing steps, including 
baseline removal, bandpass filtering (0.5–40 Hz), and resampling to a predefined frequency. 
Signals are segmented into fixed-length windows or individual heartbeats using annotation 
markers. This unified processing ensures comparability across heterogeneous sources. 

3. Synthetic Data Extension for Digital Twin Calibration 

To address class imbalance and further enrich the diversity of training data, synthetic 
ECG/FPG/HR signals and noise are generated. Techniques include waveform morphing, noise 
addition (to test the robustness of algorithms on noisy data), simulated motion artifacts, and 
GAN-based synthesis of rare arrhythmias. These augmented signals are used to calibrate and 
personalize digital twin models, improving generalization to unseen patient profiles. 

4. Working with Intersubject Variability 

The methodology includes cross-subject validation and incremental fine-tuning of the 
device to adapt global models to individual users. This approach allows the mobile AI module 
to learn patient-specific morphology without retraining from scratch, while leveraging a large 
shared cardiac dataset. 

5. Metrics for Model Calibration and Evaluation 

Calibration curves, reliability plots, and Brier scores can be used to evaluate the 
probabilistic outputs of the classifiers. Power consumption and latency metrics are measured 
directly on the target mobile hardware to ensure the feasibility of real-time implementation. 
Model interpretability is assessed through attention map visualization and feature relevance 
scores. 

 

THE HEART RATE VARIABILITY DIGITAL TWIN CONCEPT (HRV DIGITAL 

TWIN) 

1. Definition 

The HRV Digital Twin is a personalized, dynamically updated virtual model that 
reflects the dynamics of heart rate variability of a specific individual in real time, which is 
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trained and operated in real time and can be implemented on mobile and wearable platforms. 
It uses a continuous stream of RR intervals, ECG/PPG-derived cardio intervals, HRV metrics 
(SDNN, RMSSD, LF/HF, DFA α, entropy measures, etc.) and additional activity and sleep 
data from mobile wearable devices. Unlike classical cardiology digital twins that focus on 
anatomy, electrophysiology and hemodynamics, this twin has autonomic regulation, 
expressed through HRV, as its core. The proposed framework defines HRV as a basic state 
variable and develops indices reflecting the dynamics of fatigue, stress and recovery. 

2. Architecture 

Main components: 
 Data from wearable devices (ECG patches, smartwatches, PPG sensors) – RR 

intervals, HRV indicators, pulse signal amplitude, activity, sleep. 
 Personal baseline – individual HRV values (SDNN, RMSSD, LF/HF, 

fractal/entropy indicators), determined at rest and under different loads. 
 Modeling and prediction module – hybrid AI model (wavelet + CNN-LSTM or 

other interpretable model) that learns HRV dynamics and predicts future states. 
 State indices – Fatigue Digital Twin Index (FDTI) for real-time fatigue/stress 

assessment and Recovery Digital Twin Index (RDTI) for assessment of recovery 
rate. 

 Personalization – automatic adaptation of model parameters to new data from a 
specific person (few-shot / on-device learning). 

 Visualization and interface – graphs and alarms for athletes, doctors or users. 
 

3. Functions and Application 

 Instant assessment – shows the current autonomic workload (FDTI). 
 Recovery prediction – predicts when HRV will return to baseline values (RDTI). 
 “What if” simulations – the twin can predict the effect of workload, stress or 

intervention on HRV. 
 Sports and rehabilitation – supports planning of training cycles, monitoring of 

overtraining, cardiac rehabilitation. 
 Research tool – provides a basis for analysis of individual and population 

models of autonomic regulation. 
 

4. Scientific Novelty and Contribution 

For the first time, HRV is defined as the central foundation of a digital twin, rather than 
a peripheral biomarker. The current framework integrates a new index (FDTI) for real-time 
fatigue/stress assessment and provides a methodological basis for developing a second index 
(RDTI) for recovery. The HRV Digital Twin is designed for mobile and wearable platforms, 
with personalization and interpretability, and can be extended to predictive modeling and 
recommendations, which creates a new research line and contributes to personalized medicine 
and sports science.  

The diagram in Figure 1 presents the data flow and main modules of the proposed heart 
rate variability digital twin (HRV Digital Twin). On the left are the data sources – mobile and 
wearable devices (ECG patches, smartwatches, PPG sensors) that continuously collect RR 
intervals, HRV metrics, pulse signal amplitude, activity, and sleep. The data goes through a 
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pre-processing stage (filtering, normalization, synchronization) and a hybrid module that 
extracts noise-resistant time-frequency and dynamic characteristics. 

The next block is the digital twin module, which stores the individual’s personal 
baseline (individual HRV values at rest and during exercise), adapts through on-device 
learning and generates states and predictions. In this module, the FDTI (Fatigue Digital Twin 
Index) indices are calculated – for a momentary assessment of fatigue/stress – and the RDTI 
(Recovery Digital Twin Index) – for an assessment of the recovery rate. The resulting indices 
and predictions are visualized in an interface for the user/physician (right part of the diagram) 
and can be used for a momentary assessment, personalized exercise planning and “what if” 
simulations. 

 
Figure 1. Architecture of the proposed digital twin of heart rate variability (HRV Digital Twin) 

A general presentation of the two new indices is given in Table 2. 

Table 2.  Tabular summary of the two indices. 

Index Time scale Main entrances Expected direction 

FDTI 
(Fatigue) 

0–2 h after 
loading (windows 
60–120 s) 

↓SDNN, ↓RMSSD, ↑LF/HF, ↑DFA α₁ (or specific 
change), ↓SampEn, ↑ΔHR, ↓PPG amplitude, ↑PPG 
variability, ↓PTT 

Higher FDTI ⇒ 
higher acute fatigue 

RDTI 
(Recovery) 

2–24 h (units of 
5–30 min + 
trajectories) 

Trend towards baseline: ↑SDNN, ↑RMSSD, LF/HF 
→ rest zone, SampEn/MSE ↑, PPG amplitude 
stabilization, PTT → baseline; night RMSSD ↑ 

Higher RDTI ⇒ 
more complete 
recovery 

 

DEFINITION OF THE FATIGUE DIGITAL TWIN INDEX 

To provide a quantitative and personalized assessment of fatigue and stress in real time, 
the Fatigue Digital Twin Index (FDTI) has been developed within the proposed HRV Digital 
Twin. The index is based on a combination of selected features of the heart rate variability and 
pulse signal, extracted after the hybrid wavelet-neural processing stage. 

Equation: FDTI is defined as a weighted linear combination of K features f_k (t), which 
are standardized against the individual baseline of the respective individual: 
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FDTI(t) = = ∑ 𝑤௞
௄
௞ୀଵ

௙ೖ(௧)ିఓೖ

ఙೖ
 ,       (1) 

where: 
 fk (t) are the time series of the selected HRV features (SDNN, RMSSD, LF/HF, 

DFA α, entropy metrics, wavelet coefficient energies, etc.); 
 μk and σk are the mean and standard deviation of the feature for the respective 

individual at rest (personal baseline); 
 wk are the weights determined by training on a reference cohort (e.g. a group of 

athletes with labels “rest”, “fatigue”, “stress”) and subsequently adapted to the 
specific individual through on-device incremental learning.  

 
Interpretation: A higher FDTI value reflects increased autonomic load (fatigue/stress), 

and a lower value reflects a closer physiological state. The index can be calculated beat-by-
beat on the mobile hardware, updating with each new measurement of RR intervals/PPG. 

 
Advantages: This formulation allows integration of classic HRV metrics and new 

wave/entropy features into a single metric; personalization through individual normalization 
and weight adaptation; use for alarms, visualization, and prediction within the HRV Digital 
Twin. 

 

JUSTIFICATION FOR THE DETERMINATION OF THE NEW INDEX 

1. Selecting the parameters 

The following parameters were selected for inclusion in the post-exercise fatigue index: 
SDNN, RMSSD, LF/HF, SD1, SD2/SD1, DFA α₁, SampEn. The rationale for the selection is 
presented in Table 3. 

Table 3. Parameter and its physiological significance 

Parameter Physiological description 

RMSSD Sharp decline → acutely suppressed parasympathetic 

SD1 Related to RMSSD, also falls with fatigue 

LF/HF Sharply increases (↑ LF, ↓ HF) → sympathetic dominance 

SampEn Declines → reduced regulatory complexity 

DFA α1 Deviates above 1.2 → “loss” of fractal structure 

HR (bpm) Increases → tachycardia 

SD2/SD1 Increases during acute stress 

 

2. Orienting the signs so that their increase corresponds to the accumulation of 
fatigue 

The used form of inclusion of the features through the variables x_i  is shown in 
formulas (2) to (8) and Table 4. 

 𝑥ଵ =  
ଵ

ௌ஽ேே
           (2) 

 𝑥ଶ =  
ଵ

ோெௌௌ஽
           (3) 

 𝑥ଷ =  𝐿𝐹/𝐻𝐹           (4) 
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 𝑥ସ =  
ଵ

ௌ஽ଵ
           (5) 

 𝑥ହ =  𝑆𝐷2/𝑆𝐷1          (6) 
 𝑥଺ =  𝐷𝐹𝐴ఈଵ           (7) 

 𝑥଻ =  
ଵ

ௌ௔௠௣ா௡
           (8) 

 

Table 4. How to enable parameters 

k Character Transformation Physiological significance at ↑ 

x₁ SDNN 1/SDNN ↓ variability 

x₂ RMSSD 1/RMSSD ↓ parasympathetic tone 

x₃ LF/HF LF/HF ↑ sympathetic dominance 

x₄ SD1 1/SD1 ↓ rapid variability 

x₅ SD2/SD1 SD2/SD1 ↑ instability 

x₆ DFA α₁ DFA α₁ loss of fractal structure 

x₇ SampEn 1/SampEn ↓ complexity 

 

3. Normalization (Pre-training) 

For each metric xk and state s (Post or +2h): 
 
𝑧௞,௦ =

௫ೖ,ೞ

௫ೖ,ುೝ೐
− 1           (9) 

 
This is the relative change from “before training” (0 means no change; positive – more 

fatigue). 

4. FDTI Index  

With equal weight of the individual features, we add up the normalized features and 
take the average: 

 

FDTI(t) = ∑
ଵ

К

௄
௞ୀଵ

௙ೖ(௧)ିఓೖ

ఙೖ
 ,                 K - number of parameters  (10) 

 
The weights wk can be trained (e.g. with logistic regression or Linear Discriminant 

Analysis), the formula becomes: 
 
FDTI(t) = ∑ 𝑤௞

௄
௞ୀଵ . 𝑧௞,௦  , ∑ 𝑤௞ = 1.                      (11) 

 

PERSONALIZATION OF THE FDTI FORMULA IN THE CONTEXT OF A 

DIGITAL TWIN 

1. Individual baseline 
– Normalization itself 

௫ೖ,ೞ

௫ೖ,ುೝ೐
− 1 makes the index personalized: each athlete has their 

own “zero” line. 



Science Series “Innovative STEM Education”, Volume 7, 2025 

 

 
 

282 

– With regular use, the digital twin can update baseline values dynamically (periodic 
training, different conditions). 

 
2. Adaptive weights wk 

– Instead of the same wk for everyone, individual weights can be trained on the 
historical data of the particular athlete. 

– Example: for one athlete RMSSD is very sensitive to fatigue, for another – LF/HF; the 
system automatically increases the weight of the most informative indicators for him. 

– Mathematical form: 
 
𝐹𝐷𝑇𝐼 ௜ (t) = ∑ 𝑤௞

௜௄
௞ୀଵ . 𝑧௞,௦

௜           (12) 
 
Where wk

i are personal weights of i-th individual and z(k, s)
i – normalized signs of i–th 

individual. 
 

3. Incremental (on-device) learning 
– The digital twin can use new records to update wk

i – using online learning. 
– Thus, the index gradually "learns" the reaction of the specific person. 
 

4. Calibration with external markers 
– If subjective fatigue scales (RPE) or biochemical markers (lactate) are created, the 

system can use these “labels” for further training and relate the HRV profile to real fatigue. 
 

5. Adaptive alarm thresholds 
– In addition to the formula, the thresholds for “fatigue” can also be individual. For each 

athlete, the digital twin calculates a personal “green/yellow/red zone” of FDTI. 
 
In practice, this means that the formula is not “static”, but a living part of the digital 

twin, which learns from each user’s data and after a certain number of iterations adapts to 
their specific individuality. 

 
Personalization of wk weights for different groups of athletes. The wk weights in the 

FDTI index are initially calibrated on a reference training cohort (e.g. athletes from a specific 
sport), optimizing the ability to distinguish between rest/fatigue/stress states. When applying 
the index to a new group of athletes, the global weights serve as an initial value, but the 
system allows for customization by quickly recalculating or fine-tuning wk with a small 
number of labeled data from the respective group. This approach preserves the general 
structure of the index but increases its accuracy in the presence of inter-subject differences, 
thus FDTI adapts to the specific physiological profiles of different populations and supports 
the construction of individualized digital twins. 

 

RESULTS 

This study used the weights presented in Table 5, obtained through correlation analysis 
and Table 6 shows the calculated FDTI indices for each of the studied wrestlers immediately 
after training and 2 hours later. 
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Table 5. Parameter weights in the index 

Parameter Rationale for weight assignment 

SDNN Decreases with fatigue → use 1/SDNN ↑ → moderate weight (0.14) 

RMSSD Decreases with fatigue → use 1/RMSSD ↑ → moderate weight (0.14) 

LF/HF Increases under stress → use LF/HF directly → moderate weight (0.14) 

SD1 Decreases with fatigue → use 1/SD1 ↑ → moderate weight (0.14) 

SD2/SD1 Reflects balance/imbalance → moderate weight (0.14) 

DFA α₁ Decreases with fatigue, indicates nonlinear structure → higher weight (0.15) 

SampEn Clearly drops with fatigue → use 1/SampEn ↑ → higher weight (0.15) 

 

Table 6. FDTI index (post-workout and 2 hrs after) 

ID FDTI_post FDTI_2h 

B1 0.92 0.43 

B2 1.02 0.49 

B3 0.22 0.11 

B4 0.30 0.05 

B5 0.21 0.02 

B6 0.27 0.09 

 
Figure 2 presents heatmaps of the relative changes (relative to pre-training values) of 

the seven HRV parameters included in the fatigue index formula (1/SDNN, 1/RMSSD, 
LF/HF, 1/SD1, SD2/SD1, DFA α₁, 1/SampEn), and the combined FDTI index in wrestlers 
B1–B6. The upper image presents the results immediately after training, and the lower one – 
two hours after training. Red colors indicate an increase in the corresponding parameter/index 
(fatigue indicator), and blue ones – a decrease or recovery from baseline. Analysis of the 
selected HRV indicators shows distinct changes in all studied athletes immediately after the 
load. The heatmap (Figure 2, upper image) demonstrates a dominant increase in 1/SDNN and 
1/SampEn, respectively reflecting reduced variability and regulatory complexity. In most 
participants, an increase in LF/HF and SD2/SD1 was also observed, which is an indicator of 
sympathetic dominance and rhythm instability. These trends were most pronounced in B1 and 
B2, which is confirmed by the combined FDTI index (>0.9–1.0), indicating significant fatigue 
immediately after training. 

Two hours after the load (Figure 2, bottom image), the values of the parameters and the 
combined FDTI index decreased in all athletes, indicating a partial recovery of autonomic 
regulation. The index remained positive, but lower (e.g. 0.4–0.5 in B1 and B2), while in the 
remaining participants it approached the baseline. This model demonstrates the applicability 
of the new index for tracking the dynamics of fatigue and recovery in an individual and group 
plan. 
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A) Immediately after training 

 

 
B) Two hours after training 

Figure 2. Heatmap of relative changes 

 

Summarizing Correlation Analysis 

The new composite index FDTI demonstrated a very high positive correlation with the 
main HRV parameters reflecting sympathetic dominance and a decrease in variability 
(1/RMSSD, 1/SD1, LF/HF, SD2/SD1; r=0.95–0.98, p<0.01) immediately after training (Table 
7). The strong relationship indicates that the index reliably captures the physiological changes 
associated with fatigue and is mainly driven by the components reflecting rapid variability 
and geometric dispersion. Two hours after exercise (Table 8), the correlations weaken, which 
corresponds to a partial recovery of autonomic regulation and confirms the sensitivity of the 
index to the dynamics of fatigue and recovery. 
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Table 7. Correlation Matrix (Post-training) Pearson Correlation Tables (Post & 2h) 

 1/SDNN 1/RMSSD LF/HF 1/SD1 SD2/SD1 DFA α₁ 1/SampEn FDTI 

1/SDNN 1.000 0.864 0.658 0.864 0.641 0.712 -0.622 0.802 

1/RMSSD 0.864 1.000 0.944 1.000 0.940 0.951 -0.441 0.980 

LF/HF 0.658 0.944 1.000 0.944 0.989 0.981 -0.230 0.967 

1/SD1 0.864 1.000 0.944 1.000 0.940 0.951 -0.441 0.980 

SD2/SD1 0.641 0.940 0.989 0.940 1.000 0.967 -0.275 0.946 

DFA α₁ 0.712 0.951 0.981 0.951 0.967 1.000 -0.388 0.943 

1/SampEn -0.622 -0.441 -0.230 -0.441 -0.275 -0.388 1.000 -0.395 

FDTI 0.802 0.980 0.967 0.980 0.946 0.943 -0.395 1.000 

 

Table 8. Correlation matrix (2 h Post-training) 

 1/SDNN 1/RMSSD LF/HF 1/SD1 SD2/SD1 DFA α₁ 1/SampEn FDTI 

1/SDNN 1.000 0.812 0.603 0.812 0.605 0.677 -0.588 0.765 

1/RMSSD 0.812 1.000 0.911 1.000 0.922 0.941 -0.409 0.960 

LF/HF 0.603 0.911 1.000 0.911 0.978 0.964 -0.220 0.950 

1/SD1 0.812 1.000 0.911 1.000 0.922 0.941 -0.409 0.960 

SD2/SD1 0.605 0.922 0.978 0.922 1.000 0.959 -0.260 0.934 

DFA α₁ 0.677 0.941 0.964 0.941 0.959 1.000 -0.345 0.932 

1/SampEn -0.588 -0.409 -0.220 -0.409 -0.260 -0.345 1.000 -0.360 

FDTI 0.765 0.960 0.950 0.960 0.934 0.932 -0.360 1.000 

 
Table 9 shows the calculated Pearson correlation [16] between HRV parameters and the 

FDTI index. After exercise, the index has the strongest positive correlation with 1/RMSSD, 
1/SD1 and LF/HF (r≈0.96–0.98). Two hours after exercise, all correlations weaken but remain 
high, indicating that the index continues to reflect key changes in variability. 

Table 9. Pearson correlation between HRV parameters and FDTI index 

Parameter r (Post-training), p r (2 h Post-training), p 

1/SDNN r = 0.802, p ≈ 0.055 r = 0.765, p ≈ 0.077 

1/RMSSD r = 0.980, p ≈ 0.001 r = 0.960, p ≈ 0.003 

LF/HF r = 0.967, p ≈ 0.002 r = 0.950, p ≈ 0.004 

1/SD1 r = 0.980, p ≈ 0.001 r = 0.960, p ≈ 0.003 

SD2/SD1 r = 0.946, p ≈ 0.006 r = 0.934, p ≈ 0.009 

DFA α₁ r = 0.943, p ≈ 0.006 r = 0.932, p ≈ 0.010 

1/SampEn r = –0.395, p ≈ 0.438 r = –0.360, p ≈ 0.483 

 
Figure 3 shows a boxplot of the calculated FDTI values for the six wrestlers. The values 

are normalized to the individual “pre-training” baseline (Pre = 0). An increase in the index is 
seen immediately after loading and a partial recovery after 2 hours: 

– Post (immediately after loading) – the median is above zero, with two clearly higher 
individuals. 

– +2h (two hours after) – the values decrease, but remain slightly positive in some 
athletes. 

Since the sample is small, these values serve only as a demonstration of the concept; 
with a larger cohort, you will be able to train the weights w_k more precisely and the FDTI 
will become even more informative. 
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Figure 3. Boxplot of the calculated FDTI values for the six wrestlers 

Figure 4 presents the individual FDTI values for six wrestlers (B1–B6) in two states – 
immediately after training (Post) and two hours after training (+2h). The index was calculated 
as a weighted combination of HRV indicators (SDNN, RMSSD, LF/HF, SD1, SD2/SD1, DFA 
α1, SampEn) and normalized to the individual baseline (Pre=0). Each panel of the figure 
shows a boxplot with the distributions of FDTI, calculated using the hybrid model of HRV 
indicators and normalized to the individual baseline (Pre=0). The differences in the fatigue 
response are visible: in B1 and B2 the index increases significantly after exercise and 
decreases after two hours, while in the other wrestlers the changes are less pronounced. In B1 
and B2, a distinct increase in FDTI after exercise (on average ~0.85–1.05) is observed, which 
partially normalizes after two hours (~0.38–0.45). This reflects the classic autonomic response 
“acute fatigue → partial recovery”. At B3–B6, FDTI values are around or below zero and 
indicate a less pronounced response, which may be the result of individual characteristics or 
different workload. 

These results demonstrate that FDTI captures the personalized response of the body to 
training and allows for real-time assessment of fatigue. Despite the small sample size (N=6), 
the effect at B1 and B2 is clearly pronounced, which supports the applicability of the 
approach. It is planned to expand the study with a larger number of athletes and introduce a 
recovery index (RDTI) to more fully describe the dynamics of recovery. 

 
Figure 4. Individual values of the Fatigue Digital Twin Index (FDTI) in six wrestlers (B1–B6) for 

the states “immediately after training” (Post) and “two hours after training” (+2h). 
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The graph in Figure 5 shows the dynamics of the FDTI (Fatigue Digital Twin Index) for 
each of the six wrestlers (B1–B6) at three time points: before training (Pre), immediately after 
training (Post), and two hours later (2h). Each line corresponds to one athlete and tracks how 
his/her fatigue index (FDTI) changes over time. The graph shows that all wrestlers have a 
sharp increase in the index immediately after training; after two hours, most athletes show 
partial recovery (decrease in FDTI). B4 and B6 have the lowest FDTI in the post-training 
state, which may be a sign of good adaptation or insufficient intensity. This visualization 
highlights individual autonomic responses to load and recovery, which is the essence of the 
HRV digital twin concept. 

 
Figure 5. FDTI dynamics 

 

DISCUSSION 

The presented results show that the Fatigue Digital Twin (FDTI) index, constructed as 
an integrated metric of classical, nonlinear and time-frequency HRV indicators, can capture 
acute changes in autonomic regulation after training load. In two of the six athletes (B1 and 
B2), a clear “peak” of FDTI was observed immediately after load and partial normalization 
after two hours, which is consistent with physiological expectations of sympathetic 
dominance and subsequent recovery. Less pronounced responses in the remaining athletes 
highlight the need for personalized weights and larger cohorts for training the model. 

These initial data demonstrate the potential of the concept of a “digital twin” of HRV, in 
which individual biosignals are analyzed in real time and converted into a personalized 
fatigue index. This opens up the possibility not only for monitoring, but also for predicting the 
risk of overtraining and optimizing recovery in sports practice. 

The direct benefit of the created index is providing an assessment of HRV through a 
single index, instead of through several, which is beneficial for users, who will not have to 
consider the interaction of several HRV parameters and do not need to understand their 
essence in depth. 

HRV signals can be registered through the wearable device developed in our section, 
based on PPG (MAX30102) and ECG AFE (MAX30003), with integrated temperature and 
inertial sensors. The device has an MCU STM32U5A5 and a Bluetooth Low Energy module 
for data transmission to a mobile application. The system stores and transmits in real time key 
HRV indicators (SDNN, RMSSD, LF/HF, etc.) to a smartphone/computer/cloud for further 
processing. 
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Justification for the need for such a device in the HRV digital twin 

 Continuous measurement: The digital twin needs frequent and reliable input data 
to update its model. 

 Multisensor data synchronization: in addition to HRV, the device collects 
movement and temperature, which allows for artifact correction and load 
context. 

 On-device processing: some of the algorithms (filtering, peaks) are also 
calculated on the device, which reduces latency and saves battery. 

 Security and personalization: data can be encrypted and linked to the specific 
athlete profile, creating a true “twin”. 

 Integration with FDTI: the index can be calculated in real time and visualized on 
the mobile application, to alert in case of excessive fatigue, to adapt training or 
recovery. 

 
Table 10 compares the main characteristics of the developed wearable device with 

typical PPG bracelets/watches and shows its advantages for collecting high-quality HRV data 
required for the digital twin concept. 

Table 10. Comparative characteristics of the developed wearable device with typical PPG 
bracelets/watches 

Characteristic Developed Device (Authors’ 
Prototype) 

Typical PPG Wristband/Smartwatch 

Sensors PPG (MAX30102) + ECG (MAX30003) 
+ Temperature (MAX30205) + 
Accelerometer (LSM6DSL) 

PPG only; in some cases, 
accelerometer 

Sampling Rate 100–250 Hz (raw signals) 25–50 Hz (filtered or aggregated data) 

Data Synchronization Yes (PPG, ECG, motion, and 
temperature in one synchronized stream) 

Limited, no ECG 

Data Processing Local: filtering, peak detection, HR and 
HRV calculations 

Usually only heart rate; HRV 
approximated 

Data Transmission Bluetooth Low Energy, encrypted Bluetooth or proprietary protocol, often 
unencrypted 

Personalization Individual baseline profiles and adaptive 
FDTI weights 

Typically absent; generic algorithms 

On-device Analysis Real-time FDTI computation possible None or very limited 

Artifact Correction Uses accelerometer and temperature for 
motion/noise reduction 

Usually absent or limited 

Application Research platform for HRV digital twin 
modeling 

Consumer use – fitness or wellness 
tracking 

 
As can be seen from Table 10, the prototype we developed significantly outperforms 

standard PPG bracelets/watches in terms of sampling rate, data synchronization, local 
processing, and the ability to custom calculate FDTI, making it a suitable hardware basis for 
implementing the HRV digital twin. 

 

FUTURE WORK 

The present study presents a framework for mobile AI-based processing of ECG signals, 
but the concept of a Digital Twin is at this stage mostly in a conceptual phase. In future work, 
the actual construction and integration of a cloud-based digital twin of the heart with the 
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mobile application, which would be synchronized in real time with data from portable 
devices, is envisaged. It is planned to expand the model with multimodal inputs (ECG, PPG, 
blood pressure, temperature, gyroscope data, etc.) and implement methods for federated and 
confidential training on large user populations (athletes, individuals in fatigue and stress 
conditions, patients). The impact of personalized digital twins on clinical practice will be 
further investigated through long-term case studies and assessment of their predictive and 
preventive value. 

 

CONCLUSION 

In this study, the concept of a Digital Twin for HRV is defined and a new index – 
Fatigue Digital Twin Index (FDTI) – is presented for the assessment of fatigue and stress in 
athletes based on an integrated analysis of HRV indicators. The index was calculated on real-
world data from six wrestlers in three states (before, immediately after and two hours after 
training) and demonstrated its ability to capture the individual autonomic response to exercise. 
In some athletes, a clear peak of FDTI after training and partial recovery after two hours were 
observed, confirming the physiological validity of the approach. 

These initial results support the concept of a digital twin of HRV, which allows for 
continuous, personalized and interpretable monitoring of fatigue in real time. Future studies 
are planned to expand the cohort, optimize the index weights and develop additional indices – 
for example, for recovery (RDTI) and for predicting the risk of overtraining – as the next step 
towards a comprehensive digital twin system in sports. 
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