MATEMATUKA И MATEMATUYECKO ОБРАЗОВАНИЕ, 2011 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2011

Proceedings of the Fortieth Jubilee Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 5–9, 2011

ON BINARY SELF-DUAL CODES OF LENGTH 62 WITH AN AUTOMORPHISM OF ORDER 7^*

Nikolay Yankov

We classify up to equivalence all optimal binary self-dual [62, 31, 12] codes having an automorphism of order 7 with 8 independent cycles. Using a method for constructing self-dual codes via an automorphism of odd prime order, we prove that there are exactly 8 inequivalent such codes. Three of the obtained codes have weight enumerator, previously unknown to exist.

1. Introduction. Let \mathbb{F}_q be a finite field with $q = p^r$ elements. A linear $[n, k]_q$ code C is a k-dimensional subspace of \mathbb{F}_q^n . We call the codes binary if q = 2. The number of the nonzero coordinates of a vector in \mathbb{F}_q^n is called its weight. An $[n, k, d]_q$ code is an $[n, k]_q$ linear code with minimal nonzero weight d.

Let $(u,v) = \sum_{i=1}^{n} u_i v_i \in \mathbb{F}_2$ for $u = (u_1, \dots, u_n)$, $v = (v_1, \dots, v_n) \in \mathbb{F}_2^n$ be the inner product in \mathbb{F}_2^n . Then, if C is a binary [n,k] code, its dual $C^{\perp} = \{u \in \mathbb{F}_2^n \mid (u,v) = 0 \text{ for all } v \in C\}$ is a [n,n-k] binary code. If $C \subseteq C^{\perp}$, then the code C is termed self-orthogonal, in case of $C = C^{\perp}$, C is called self-dual. An even code is a binary code for which all codewords have even weight. All self-dual binary codes are even. In addition, some of these codes have all codewords of weight divisible by 4. These codes we call doubly-even; a self-dual code with some codeword of weight not divisible by 4 is named singly-even.

Two binary codes are equivalent if one can be obtained from the other by a permutation of the coordinate positions. The permutation $\sigma \in S_n$ is an automorphism of C, if $C = \sigma(C)$. The set of all automorphisms of a code forms a group called the automorphism group Aut (C). If a code C have an automorphism σ of odd prime order p, where σ has c independent p-cycles and f fixed points, then σ is said to be of type p-(c, f).

A duo is any set of two coordinate positions of a code. A cluster is a set of disjount duos such that any union of two duos is the support of a vector of weight 4 in the code. A d-set for a cluster is a subset of coordinates such that there is precisely one element of each duo in the d-set. A defining set for a code will consist of a cluster and a d-set provided the code is generated by the weight-4 vectors arising from the cluster and the vector whose support is the d-set.

In this report we investigate the existence of new extremal self-dual codes. We apply a method for constructing such codes, that posses an automorphism of odd prime order

^{*2000} Mathematics Subject Classification: 94B05.

Key words: self-dual codes, automorphisms, optimal codes.

This research is partially supported by Shumen University under Project No RD-05-342/12.03.2010.

developed by Huffman and Yorgov [4], [7]. In Section 2 we briefly describe the method and in Section 3 we classify all extremal singly-even [62, 31, 12] codes with an automorphism of order 7 with 8 independent cycles in its decomposition. Three of the obtained codes have new weight enumerator.

2. Construction method Let C be a binary self-dual code of length n with an automorphism σ of order 7 with exactly c independent 7-cycles and f = n - 7c fixed points in its decomposition. We may assume that

$$\sigma = (1, 2, \cdots, 7)(8, 9, \cdots, 17) \cdots (7(c-1) + 1, 7(c-1) + 2, \cdots, 7c),$$
 or that σ is of type $7 - (c, f)$.

Denote the cycles of σ by $\Omega_1, \Omega_2, \ldots, \Omega_c$, and the fixed points by $\Omega_{c+1}, \ldots, \Omega_{c+f}$. Let $F_{\sigma}(C) = \{v \in C \mid v\sigma = v\}$ and $E_{\sigma}(C) = \{v \in C \mid wt(v|\Omega_i) \equiv 0 \pmod{2}, i = 1, \cdots, c+f\}$, where $v|\Omega_i$ is the restriction of v on Ω_i .

Theorem 1 [4]. Assume C is a self-dual code. The code C is a direct sum of the subcodes $F_{\sigma}(C)$ and $E_{\sigma}(C)$. $F_{\sigma}(C)$ and $E_{\sigma}(C)$ are subspaces of dimensions $\frac{c+f}{2}$ and $\frac{c(p-1)}{2}$, respectively.

Clearly $v \in F_{\sigma}(C)$ iff $v \in C$ and v is constant on each cycle. Let $\pi : F_{\sigma}(C) \to \mathbb{F}_2^{c+f}$ be the projection map where if $v \in F_{\sigma}(C)$, then $(v\pi)_i = v_j$ for some $j \in \Omega_i, i = 1, 2, \ldots, c+f$.

Theorem 2 [4]. $\pi(F_{\sigma}(C))$ is a binary [c+f,(c+f)/2] self-dual code.

Denote by $E_{\sigma}(C)^*$ the code $E_{\sigma}(C)$ with the last f coordinates deleted. So $E_{\sigma}(C)^*$ is a self-orthogonal binary code of length 7c. For v in $E_{\sigma}(C)^*$ we let $v|\Omega_i=(v_0,v_1,\cdots,v_6)$ correspond to the polynomial $v_0+v_1x+v_6x^6$ from P, where P is the set of even-weight polynomials in $\mathbb{F}_2[x]/(x^7-1)$. Thus we obtain the map $\varphi: E_{\sigma}(C)^* \to P^c$. P is a cyclic code of length 7 with generator polynomial x+1 and check polynomial x+1 and check polynomial x+1 and check polynomial x+1.

It is known [4], [8] that $\varphi(E_{\sigma}(C)^*)$ is a P-module and for each $u, v \in \varphi(E_{\sigma}(C)^*)$ it holds

(1)
$$u_1(x)v_1(x^{-1}) + u_2(x)v_2(x^{-1}) + \dots + u_c(x)v_c(x^{-1}) = 0.$$

Denote $h_1(x)=x^3+x+1$ and $h_2(x)=x^3+x^2+1$. As $x^6+x^5+\cdots+x+1=h_1(x)h_2(x)$, we have $P=I_1\oplus I_2$, where I_j is an irreducible cyclic code of length 7 with parity-check polynomial $h_j(x), j=1,2$. Thus $M_j=\{u_i\in \varphi(E_\sigma(C)^*)\mid u_i\in I_j, i=1,2\}$ is code over the field $I_j, j=1,2$. It is known [8] that $\varphi(E_\sigma(C)^*)=M_1\oplus M_2$ and $\dim_{I_1}M_1+\dim_{I_2}M_2=c$. The polynomials $e_1(x)=x^4+x^2+x+1$ and $e_2(x)=x^6+x^5+x^3+1$ generate the ideals I_1 and I_2 defined above. Any nonzero element of $I_j=\{0,e_j,xe_j\dots,x^6e_j\}, j=1,2$ generates a binary cyclic [7,3,4] code. Since the minimal weight of the code C is 12, every vector of $\varphi(E_\sigma(C)^*)$ must contain at least 3 nonzero coordinates.

The following result is a particular case of Theorem 3 from [7]:

Theorem 3. Let the permutation σ be an automorphism of the self-dual codes C and C'. A sufficient condition for equivalence of C and C' is that C' can be obtained from C by application of a product of some of the following transformations:

- a) a substitution $x \to x^t$ for $t = 1, 2, \dots, 6$ in $\varphi(E_{\sigma}(C)^*)$;
- b) a multiplication of the j-th coordinate of $\varphi(E_{\sigma}(C)^*)$ by x^{t_j} where t_j , is an integer, $0 \le t_j \le 6$, for $j = 1, 2, \dots, c$;

- c) a permutation of the first c cycles of C;
- d) a permutation of the last f coordinates of C.

Since the transformation $x \to x^3$ from Theorem 3 a) interchanges $e_1(x)$ into $e_2(x)$ and vice versa, then we can assume, without loss of generality, that dim $M_1 \le \dim M_2$. Once chosen, the code M_1 determines M_2 and the whole $\varphi(E_{\sigma}(C)^*)$. Thus we can examine only M_1 .

All possible weight enumerators of extremal self-dual codes of lengths 38 to 72 are known [2]. For the singly-even self-dual [62, 31, 12] code there are two possibilities:

```
W_{62,1} = 1 + 2308y^{12} + 23767y^{14} + 279405y^{16} + 1622724y^{18} + \cdots,
W_{62,2} = 1 + (1860 + 32\beta)y^{12} + (28055 - 160\beta)y^{14} + (255533 + 96\beta)y^{16} + \cdots,
where 0 \le \beta \le 93. Thus far only codes with weight enumerator W_{62,2} where \beta = 0, 9, 10, 15 are known [2], [5].
```

3. Codes with an automorphism of type 7-(8,6). Let C be a binary self-dual [62,31,12] code having an automorphism of type 7-(8,6). According to Theorem 1, $\dim \varphi(E_{\sigma}(C)^*) = \dim M_1 + \dim M_2 = 8$, and $\varphi(E_{\sigma}(C)^*)$ is a code of length 8. All inequivalent self-orthogonal [8,8,3] codes over the set of all even-weight polynomials P in $\mathbb{F}_2[x]/(x^7-1)$ under the inner product (1) are constructed in [6]. There are exactly 271 codes when $\dim M_1 = 3$, and 1446 codes when $\dim M_1 = 4$. Denote by H_j , $j = 1, \ldots, 1717$ the self-orthogonal codes of length 8 constructed in [6].

According to Theorem 2 the code $\pi(F_{\sigma}(C))$ is a binary $[14,7,\geq 2]$ self-dual code. There are four such codes, namely $7i_2$, $3i_2 \oplus e_8$, $i_2 \oplus d_{12}$, and $2e_7$ (see [3]).

Let X_c and X_f be the coordinates of the cycle and fixed positions, respectively. Since d=12, every 2-weight vector in $\pi(F_{\sigma}(C))$ must have a support contained entirely in X_c . Thus the case $7i_2$ is obviously impossible. In the case $3i_2 \oplus e_8$ the three 2-weight vectors from $3i_2$ should take six out of the eight positions in X_c . We have to choose 2 cycle positions and 6 fixed points of the e_8 component, whereas the automorphism group of e_8 is 3-transitive, so taking a 4-weight vector v we can fix 3 out of the 4 elements of its support in X_c and then we have $wt(\pi^{-1}(v)) = 7.1 + 3 = 10 - a$ contradiction.

Consider the case $\pi(F_{\sigma}(C)) \cong 2e_7$. This code have two clusters $Q_1 = \{\{1,2\},\{3,4\},\{5,6\}\}, Q_2 = \{\{8,9\},\{10,11\},\{12,13\}\},$ and two d-sets, $d_1 = \{1,3,5,7\}, d_2 = \{8,10,12,14\},$ that form a defining set. We have to arrange eight of the coordinate positions $\{1,\ldots,14\}$ to be cycle positions X_c and six to be fixed positions X_f . Since we are looking for a code with minimum distance d=12, every vector with weight 4 in C_{π} must have at least two elements of its support in X_c . The cluster Q_1 and the d-set d_1 generates e_7 , so there are 7 codewords of weight 4 with supports $\{1,2,3,4\},\{1,2,5,6\},\{1,3,5,7\},\{1,4,6,7\},\{2,3,6,7\},\{2,4,5,7\},$ and $\{3,4,5,6\}$. The automorphism group of e_7 is 2-transitive, so w.l.g. we can assume $1,2 \in X_c$. But the vector of weight 4 with support $\{3,4,5,6\}$ has at least two cycle coordinates. So we can choose $\{1,2,3,4\} \subset X_c$, $\{5,6,7\} \subset X_f$. After computing all $\binom{7}{3}$ possible choices for the remaining 3 fixed points, it turns out that all codes $F_{\sigma}(C)$ have minimal weight 10.

Consider the case $\pi(F_{\sigma}(C)) \cong i_2 \oplus d_{12}$. Every vector of weight two in this code has support in the cycle positions, so the positions corresponding to direct summand i_2 must be cycle. Also d_{12} has a cluster $Q = \{\{1,2\},\{3,4\},\{5,6\},\{7,8\},\{9,10\},\{11,12\}\}\}$ and d-set $\{1,3,5,7,9,11\}$ so the six fixed coordinates X_f cannot contain two duos or one duo and two points from disjoint duos. Thus X_f contains six coordinates from all six different

Table 1. All binary self-dual [6]	[62, 31, 12] codes with	automorphism of	type $7 - ($	(8,6)
-----------------------------------	-------------------------	-----------------	--------------	-------

β	code	$\varphi(E_{\sigma}(C))$	u_1, \dots	au	Aut(C)	A_{12}	A_{14}
2	H_{11}	$B_{1,3}$	0111202	(132)	42	1924	27735
2	H_{172}	$B_{1,3}$	1222467	(132)	42	1924	27735
2	H_{278}	$B_{1,4}^{e_1}$	00100244	(28)	42	1924	27735
2	H_{1098}	$B_{1,4}^{e_1}$	00224750	(23)	42	1924	27735
2	H_{1690}	$B_{1,4}^{e_1}$	02313564	(17)(28)	42	1924	27735
16	H_{1270}	$B_{1,4}^{e_1}$	01214555	(23)	14	2372	25495
16	H_{1309}	$B_{1,4}^{e_{1}^{\prime}}$	01222052	(13)(25)	14	2372	25495
16	H_{1412}	$B_{1,4}^{e_1}$	01223226	(15)(26)	42	2372	25495

duos. By a direct computer check we obtain that all 64 cases lead to two inequivalent codes, only one of which generates a subcode $F_{\sigma}(C)$ with distance d=12. Thus we have proved the following

Proposition 1. Up to equivalence there is only one possible generator matrix

$$G = \left(\begin{array}{c|cc} 11000000 & 000000 \\ 00010100 & 110000 \\ 00000101 & 011000 \\ 00001001 & 001100 \\ 00101000 & 000110 \\ 00100010 & 000011 \\ 00000010 & 111110 \end{array}\right)$$

for $\pi(F_{\sigma}(C))$ in an optimal binary self-dual [62, 31, 12] code having an automorphism of type 7 - (8, 6).

Although we have constructed the two direct summands for the code C, we have to attach them together. Let the subcode $F_{\sigma}(C)$ is fixed as generated by the matrix G from Proposition 1. We have to consider all even equivalent possibilities for the second subcode $E_{\sigma}(C)$.

Let G' be the subgroup of symmetric group S_8 consisting of all permutations on the first eight coordinates, which are induced by an automorphism of the code generated by G. Let S = Stab(G') be the stabilizer of G' on the set of the fixed points. We have that $S = \langle (12), (34), (45), (56), (68), (38)(67) \rangle$. Let $\tau \in S_8$ be a permutation. Denote by C_j^τ , $j = 1, \ldots, 1717$ the [62, 31] self-dual code determined by the matrix G as a generator for $F_{\sigma}(C)$ and H_j with columns permuted by τ as a generator matrix for $E_{\sigma}(C)^*$. It is easy to see that if τ_1 and τ_2 belong to one and the same left coset of S_8 to S, then the codes $C_j^{\tau_1}$ and $C_j^{\tau_2}$ are equivalent. The set $T = \{(2j)(1i) \mid 1 \leq i < j \leq 8\}$ is a left transversal of S_8 with respect to S. After calculating all codes C_j^{τ} , $j = 1, \ldots, 1717$, $\tau \in T$ we summarize the results as follows:

Theorem 4. There are exactly 8 inequivalent binary [62, 31, 12] codes having an automorphism of type 7 - (8, 6). The exist at least three codes with weight enumerator $W_{62,2}$ for $\beta = 16$.

Remark 1. All constructed codes have weight enumerator $W_{62,2}$. Note that the value $\beta = 16$ for $W_{62,2}$ has not occurred up until now. For every obtained code we list in Table 1 the order of the automorphism group, the weight enumerator and all constructing 226

components. The subcode $E_{\sigma}(C)$ can be obtained using the following two matrices

$$B_{1,3} = \begin{pmatrix} e_1 & e_1 & e_1 & e_1 & e_1 \\ e_1 & 0 & u_1 & u_2 & u_3 \\ e_1 & u_4 & u_5 & u_6 & u_7 \end{pmatrix}, \quad B_{1,4}^{e_1} = \begin{pmatrix} e_1 & e_1 & e_1 & e_1 \\ e_1 & v_1 & v_2 & v_3 \\ e_1 & v_4 & v_5 & v_6 \\ 0 & e_1 & v_7 & v_8 \end{pmatrix}.$$

In the column denoted by u_1, \ldots the elements $0, e_1, \ldots, x^6 e_1$ from I_1 are listed with numbers $0, 1, \ldots, 7$, respectively.

Remark 2. In the course of this research we have used Q-extensions [1] for computing minimal weight and automorphism groups. For computing the transversal we use the system for computational algebra $GAP \ v.4$.

REFERENCES

- [1] I. BOUYUKLIEV. About the code equivalence. In: Advances in Coding Theory and Cryptology (Eds T. Shaska, W. C. Huffman, D. Joyner, V. Ustimenko) Series on Coding Theory and Cryptology, World Scientific Publishing, Hackensack, NJ, 2007.
- [2] W. C. Huffman. On the classification and enumeration of self-dual codes. *Finite Fields Appl.*, **11** (2005), 451–490.
- [3] W. C. Huffman, V. Pless. Fundamentals of error correcting codes. Cambridge University Press, 2003.
- [4] W. C. Huffman. Automorphisms of codes with application to extremal doubly-even codes of length 48. *IEEE Trans. Inform. Theory*, **28** (1982), 511–521.
- [5] R. RUSSEVA, N. YANKOV. On Binary Self-Dual Codes of Lengths 60, 62, 64 and 66 having an Automorphism of Order 9. Designs, Codes and Cryptography, 45 (2007), 335–346.
- [6] N. Yankov, R. Russeva. Binary self-dual codes of lengths 52 to 60 with an automorphism of order 7 or 13. Preprint.
- [7] V. Y. YORGOV. A method for constructing inequivalent self-dual codes with applications to length 56. *IEEE Trans. Inform. Theory*, **33** (1987), 77–82.
- [8] V. Y. Yorgov. Binary self-dual codes with an automorphism of odd order. *Problems Inform. Transm.*, 4 (1983), 13–24 (in Russian).

Nikolay Ivanov Yankov University of Shumen Faculty of Mathematics and Informatics 115, Universitetska Str. 9700 Shumen, Bulgaria e-mail: jankov_niki@yahoo.com

ДВОИЧНИ САМОДУАЛНИ КОДОВЕ С ДЪЛЖИНА 62 ПРИТЕЖАВАЩИ АВТОМОРФИЗЪМ ОТ РЕД 7

Николай Янков

Класифицирани са с точност до еквивалетност всички оптимални двоични самодуални [62,31,12] кодове, които притежават автоморфизъм от ред 7 с 8 независими цикъла при разлагане на независими цикли. Използвайки метода за конструиране на самодуални кодове, притежаващи автоморфизъм от нечетен простред е доказано, че съществуват точно 8 нееквивалентни такива кода. Три от получените кодове имат тегловна функция, каквато досега не бе известно да съществува.