MATEMATUKA И MATEMATUYECKO ОБРАЗОВАНИЕ, 2012 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2012

Proceedings of the Forty First Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 9–12, 2012

ABOUT HOMOGENEOUS SPACES AND THE BAIRE PROPERTY IN REMAINDERS*

Alexander Arhangel'skii, Mitrofan Choban#, Ekaterina Mihaylova#

In this paper we continue the study of the notions of o-homogeneous space, lo-homogeneous space, do-homogeneous space and co-homogeneous space. Theorem 5.1 affirms that a co-homogeneous space X is a Moscow space provided it contains a G_{δ} -dense Moscow subspace Y.

1. Introduction. By a space we understand a Tychonoff topological space. We follow the terminology given in [15]. The present paper is a continuation of the article [1], which contains the definitions of o-homogeneous space, fan-complete space, q-complete space, sieve-complete space, lo-homogeneous space and co-homogeneous space. A remainder of a space X is the subspace $Y \setminus X$ of a Tychonoff extension Y of X. The space Y is an extension of X if X is a dense subspace of Y. In this article we investigate what kind of remainders a space can have.

Problem A. Let \mathcal{P} be a property and Y be an extension of a space X. Under which conditions the remainder $Y \setminus X$ has the property \mathcal{P} ?

In [2, 3, 4, 5, 6, 7] Problem A was studied for topological groups. Some results for rectifiable spaces were obtained in [11].

2. On o-homogeneous spaces and Moscow spaces. A space X is called a Moscow space [8] if for each open subset U of X the closure cl_XU of U in X is the union of a family of G_{δ} -subsets of X.

The following fact for d-homogeneous spaces was proved in [9].

Theorem 2.1. Let Y be a G_{δ} -dense subspace of a co-homogeneous space X. If Y is a Moscow space, then X is a Moscow space and Y is C-embedded in X.

Proof. First we prove the next statement.

Claim 1. If U is an open subset of X and $y \in Y \cap cl_X U$, then there exists a G_{δ} -subset H of X such that $y \in H \subseteq cl_X U$.

Indeed, since Y is a Moscow space, there exists a G_{δ} -subset H of X such that $y \in H \cap Y = cl_Y(U \cap Y) \subseteq cl_XU$. We affirm that $H \subseteq cl_XU$. Indeed, assume the contrary. Then, $P = H \setminus cl_XU$ is a non-empty G_{δ} -subset of the space X and $P \cap Y = \emptyset$. Since Y is G_{δ} -dense in X, we have $P \cap Y \neq \emptyset$, a contradiction. The Claim 1 is proved.

^{*2000} Mathematics Subject Classification: 54A35, 63E35, 54D50.

Key words: homogeneous space, dissentive space, extension, Baire property, Moscow space.

[#]Partially supported by a contract of Sofia University of 2012.

Now we fix an open subset V of the space X. Fix a point $b \in Y$. Let $a \in cl_X V$. Fix two open subsets U_1, U_2 of X and an open continuous mapping $h: X \longrightarrow X$ such that $b \in U_1, a \in U_2, h(b) = a$ and the set $cl_X h^{-1}(x)$ is countably compact for each $x \in U_2$. We put $W = V \cap U_2$ and $U = h^{-1}(W)$. By construction, $a \in cl_X W$ and $b \in cl_X U$. By virtue of Claim 1, there exists a G_δ -subset H of X such that $b \in H \subseteq cl_X U$. Fix a sequence $\{V_n : n \in \mathbb{N}\}$ of open subsets of X such that $cl_X V_{n+1} \subseteq V_n \cap U_1$ for each $n \in \mathbb{N}$ and $b \in \cap \{V_n : n \in \mathbb{N}\} \subseteq H$. Then, $P = \cap \{h(V_n) : n \in \mathbb{N}\} = h(\cap \{V_n : n \in \mathbb{N}\})$ and $a \in P \subseteq cl_X W$. Hence, $cl_X U$ is the union of a family of G_δ -subsets of X.

In addition, every G_{δ} -dense subspace Y of a Moscow space X is C-embedded in X [16]. The proof is complete. \square

3. The Baire property in remainders of spaces. Let X be a space. We put $lc(X) = \bigcup \{U : cl_X U \text{ is a compact subspace}\}$ and $b(X) = \bigcup \{U : U \text{ is an open subspace with the Baire property}\}$. Obviously, $lc(X) \subseteq b(X)$. If $rb(X) = X \setminus b(X)$, then rb(X) is a subset of the first category, b(X) is a subspace with the Bare property and $X = b(X) \cup rb(X)$. A space X is without the Baire property if and only if $rb(X) \neq \emptyset$.

Proposition 3.1. Let Y be an extension of a space X and the space $Z = Y \setminus X$ be without Baire property. Then, there exist an open non-empty subset U of X and a G_{δ} -subset S of Y such that $S \subseteq U \subseteq cl_X S$.

Proof. If $lc(X) \neq \emptyset$, then U = S = lc(X) is an open non-empty subset of the spaces X and Y. In this case the assertions of Proposition 3.1 are obvious.

Suppose that $lc(X) = \emptyset$, i.e. the space X is nowhere locally compact.

Let $V = X \setminus cl_Y(Y \setminus X)$. If $V \neq \emptyset$, then we can assume that U = S = V. In this case the assertions of Proposition 3.1 are obvious too.

Suppose now that $V = \emptyset$ and $rb(Z) \neq \emptyset$. In this case the space Z is dense in Y. There exists a sequence $\{Z_n : n \in \omega = \{1, 2, ...\}\}$ of closed nowhere dense subsets of the space Z such that $rb(Z) = \bigcup \{Z_n : n \in \omega\}$. Fix an open non-empty subset W of Y such that $W \cap Z = Z \setminus cl_Y b(Z)$. Any set $F_n = cl_Y Z_n$ is nowhere dense in Y. We put $U = W \cap X$ and $S = W \setminus \bigcup \{F_n : n \in \omega\}$. The proof is complete. \square

It is well known that a dense G_{δ} -subspace of a densely fan-complete space is a densely fan-complete space, a G_{δ} -subspace of a densely q-complete space is a densely q-complete space, a space is densely fan-complete if and only if it contains a dense fan-complete subspace and a space is densely sieve-complete if and only if it contains a dense paracompact Čech-complete subspace (see [10, 11, 12]).

Thus from Proposition 3.1 it follows.

Corollary 3.2. Let Y be a densely fan-complete extension of a space X. Then, either the remainder $Z = Y \setminus X$ has the Baire property, or there exist an open non-empty subset U of X and a G_{δ} -subset S of Y such that $S \subseteq U \subseteq cl_X S$ and S is a fan-complete subspace.

Corollary 3.3. Let Y be a densely q-complete extension of a space X. Then, either the remainder $Z = Y \setminus X$ has the Baire property, or there exists an open non-empty subset U of X such that U is a densely q-complete subspace.

Corollary 3.4. Let Y be a densely sieve-complete extension of a space X. Then, either the remainder $Z = Y \setminus X$ has the Baire property, or there exist an open non-empty

subset U of X and a G_{δ} -subset S of Y such that $S \subseteq U \subseteq cl_X S$ and S is a paracompact Čech-complete subspace.

- **4. On dissentive spaces.** A dissentive operation (a dissentor) on a space X (see [11]) is a continuous mapping $\mu: X^3 \to X$ satisfying the following conditions:
 - $-\mu(x, x, y) = y \text{ for all } x, y \in X;$
- for every open set U of X and all $b,c\in X$, the set $\mu(U,b,c)=\{\mu(x,b,c):x\in U\}$ is open in X.

A space is *dissentive* if it admits a dissentive operation. A dissentive operation μ is a Mal'cev dissentive operation if $\mu(x, y, y) = x$ for all $x, y \in X$.

A rectification on a space X is a homeomorphism $\varphi:X\times X\to X\times X$ with the following two properties:

- $-\varphi(\lbrace x\rbrace \times X) = (\lbrace x\rbrace \times X), \text{ for every } x \in X;$
- there exists $e \in X$ such that $\varphi(x,x) = (x,e)$ for every point $x \in X$.

The point $e \in X$ is called *neutral element* of the space X. A space with a rectification is called *a rectifiable* space.

A homogeneous algebra on a space G is a pair of binary continuous operations $p,q:G\times G\to G$ such that p(x,x)=p(y,y), and p(x,q(x,y))=y, q(x,p(x,y))=y for all $x,y\in G$ (see [14], [13]). A space is rectifiable if and only if it admits a structure of the homogeneous algebra (see [14], [13]).

Every rectifiable space is dissentive. If $p, q: G \times G \to G$ is a structure of homogeneous algebra on a space G, then $\mu(x, y, z) = p(x, q(y, z))$ is a Mal'cev dissentive operation.

A space X is called weight homogeneous if there exists a cardinal number τ such that the family $\{U: w(U) = \tau, U \text{ is open in } X\}$ is a base of X.

Every dissentive space is o-homogeneous and any lo-homogeneous space is weight homogeneous.

Lemma 4.1. Let U be an open non-empty densely fan-complete subspace of an lo-homogeneous space X. Then, X is densely fan-complete.

Proof. Fix a point $a \in U$. For any point $b \in X$ we fix two open subsets V and W and an open continuous mapping $h_{ab}: V \to W$ such that $a \in V \subseteq U$, $b \in W$ and $h_{ab}(a) = b$. We put $V_b = h_{ab}(V)$. Since V_b is an open continuous image of the densely fan-complete space V, V_b is a densely fan-complete space (see [12]). Fix on X a well-ordering. We put $W_b = V_b \setminus cl_X(\cup \{V_c : c < b\})$. Any subspace W_b is densely fan-complete. Hence, $H = \cup \{V_c : c < b\}$ is an open densely fan-complete subspace. Therefore, X is a densely fan-complete space. \square

The proofs of the next two lemmas are similar.

Lemma 4.2. Let U be an open non-empty densely q-complete subspace of an lo-homogeneous space X. Then, X is densely q-complete.

Lemma 4.3. Let U be an open non-empty densely sieve-complete subspace of an lohomogeneous space X. Then, X contains some dense paracompact Čech-complete subspace.

Theorem 4.4. Let Y be a densely fan-complete extension of an lo-homogeneous space X. Then, if $Z = Y \setminus X$ is a space without the Baire property, then X is a densely fan-complete space.

Proof. Suppose that $Z = Y \setminus X$ is a space without Baire property. By virtue of Proposition 3.1, there exist an open non-empty subset U of X and a G_{δ} -subset S of Y such that $S \subseteq U \subseteq cl_X S$. By construction, S and U are densely fan-complete subspaces of the space X. Lemma 4.1 completes the proof. \square

The proof of the following theorem is similar, by using Lemma 4.2.

Theorem 4.5. Let Y be a densely q-complete extension of an lo-homogeneous space X. Then, if $Z = Y \setminus X$ is a space without the Baire property, then X is a densely q-complete space.

From Proposition 4.1 it follows

Corollary 4.6. Let Y be an extension of an lo-homogeneous space X and Y has the Baire property. Then, either the remainder $Z = Y \setminus X$ has the Baire property, or X is a space with the Baire property.

Theorem 4.7. Let Y be a densely sieve-complete extension of an lo-homogeneous space X and X is nowhere locally compact. Then, the following assertions are equivalent:

- 1. X is a space of the first category.
- 2. $Z = Y \setminus X$ is a densely sieve-complete space.

Proof. If X is a space of the first category, then there exists a sequence of open dense in Y sets $\{U_n : n \in \omega\}$ such that $L = \cap \{U_n : n \in \omega\} \subseteq Z$. Thus L and Z are densely sieve-complete spaces. The implication $1 \to 2$ is proved.

Let Z be a densely sieve-complete space. Then, Z contains some dense Čech-complete subspace L. In this case $X \supseteq Y \setminus L$ and $Y \setminus L$ is a subset of the first category in Y. The proof is complete. \square

Corollary 4.8. Let Y be a densely sieve-complete extension of an lo-homogeneous space X and X is nowhere locally compact. Then, the following assertions are equivalent:

- 1. $Z = Y \setminus X$ is a space of the first category.
- 2. X is a densely sieve-complete space.

Corollary 4.9. Let Y be a densely sieve-complete extension of a lo-homogeneous space X. Then either the remainder $Z = Y \setminus X$ has the Baire property, or X is a densely sieve-complete space.

REFERENCES

- [1] A. V. Arhangel'skii, M. M. Choban, E. P. Mihaylova. About homogeneous spaces and conditions of completeness of spaces. *Math. and Education in Math.*, **41** (2012), 129–133.
- [2] A. V. Arhangel'skii. Remainders in compactifications and generalized metrizability properties. *Topology and Appl.*, **150** (2005), 79–90.
- [3] A. V. Arhangel'skii. The Baire property in remainders of topological groups and other results. *Comment. Math. Univ. Carolinae.*, **50** (2009), No 2, 273–279.
- [4] A. V. Arhangel'skii. Some connections between properties of topological groups and of their remainders. *Moscow Univ. Math. Bull.*, **54** (1999), No 3, 1–6.
- [5] A. V. Arhangel'skii. Remainders in compactifications and generalized metrizability properties. *Topology and Appl.*, **150** (2005), 79–90.

- [6] A. V. Arhangel'skii. More on remainders close to metrizable spaces. Topology and Appl., 154 (2007), 1084–1088.
- [7] A. V. Arhangel'skii. Two types of remainders of topological groups. *Comment. Math. Univ. Carolinae*, **49** (2008), 119–126.
- [8] A. V. Arhangel'skii. Functional tightness, Q-spaces, and τ -embeddings. Comment. Math. Univ. Carolinae 24 (1983), No 1, 105–120.
- [9] A. V. Arhangel'skii. Moscow spaces, Pestov-Tkachenko Problem, and C-embeddings. Comment. Math. Univ. Carolinae 41 (2000), No 3, 585–595.
- [10] A. V. Arhangel'skii, M. M. Choban. Semitopological groups and the theorems of Montgomery and Ellis. C. R. Acad. Bulgare Sci., 62 (2009), No 8, 917–922.
- [11] A. V. ARHANGEL'SKII, M. M. CHOBAN. Remainders of rectifiable spaces. Topology and Appl. 157 (2010), 789–799.
- [12] A. V. Arhangel'skii, M. M. Choban. Completeness type properties of semitopological groups, and the theorems of Montgomery and Ellis. Topology Proceedings, 2010.
- [13] M. M. Choban. On topological homogeneous algebras. *Interim Reports of the Prague Topolog. Symposium* 2 (1987), 25–26.
- [14] M. M. CHOBAN. The structure of locally compact algebras. Serdica Bulg. Math. Publ., 18 (1992), Nos 3–4, 129–137.
- [15] R. Engelking. General Topology. PWN, Warszawa, 1977.
- [16] V. V. USPENSKII. Topological groups and Dugundji spaces. Matem. Sb. 180 (1989), No 8, 1092–1118.

Alexander Arhangel'skii 33, Kutuzovskii prospekt Moscow 121165, Russia

e-mail: arhangel.alex@gmail.com

Ekaterina Mihaylova St. Kliment Ohridski University of Sofia 5, James Bourchier Blvd 1164 Sofia, Bulgaria e-mail: katiamih@fmi.uni-sofia.bg Mitrofan Choban
Department of Mathematics
Tiraspol State University
5, Iablochikin
MD 2069, Kishinev, Republic of Moldova
e-mail: mmchoban@gmail.com

ОТНОСНО ХОМОГЕННИ ПРОСТРАНСТВА И СВОЙСТВОТО НА БЕР В ПРИРАСТА

Александър В. Архангелски, Митрофан М. Чобан, Екатерина П. Михайлова

В съобщението е продължено изследването на понятията o-хомогенно пространство, lo-хомогенно пространство и co-хомогенно пространство и co-хомогенно пространство. Показано е, че ако co-хомогенното пространство X съдържа G_{δ} -гъсто Московско подпространство, тогава X е Московско пространство.