William Da Silva | Ellen Powell | Alex Watson

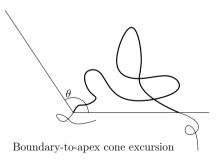
University College London

27 July 2025

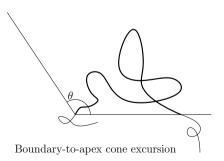
A growth-fragmentation found in the cone excursions of Brownian motion

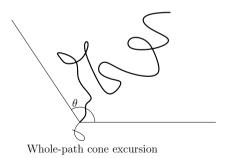
> Take a Brownian motion in the 2D plane, consider two types of 'cone excursion':

- > Take a Brownian motion in the 2D plane, consider two types of 'cone excursion':
 - Boundary-to-apex cone excursions



- > Take a Brownian motion in the 2D plane, consider two types of 'cone excursion':
 - >>> Boundary-to-apex cone excursions
 - >> Whole-path cone excursions



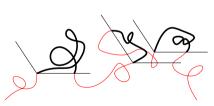


- > Take a Brownian motion in the 2D plane, consider two types of 'cone excursion':
 - >>> Boundary-to-apex cone excursions
 - >> Whole-path cone excursions
- 'Cone-free times' (between boundary-to-apex excursions) form a regenerative set

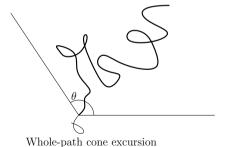
Boundary-to-apex cone-free times and cone excursions

Whole-path cone excursion

- > Take a Brownian motion in the 2D plane, consider two types of 'cone excursion':
 - >>> Boundary-to-apex cone excursions
 - >> Whole-path cone excursions
- 'Cone-free times' (between boundary-to-apex excursions) form a regenerative set
- The path is cut into cone excursions between said times

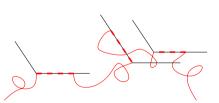


Boundary-to-apex cone-free times and cone excursions

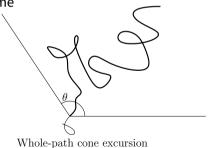


2/16

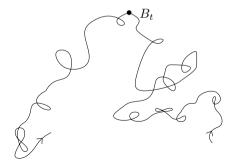
- > Take a Brownian motion in the 2D plane, consider two types of 'cone excursion':
 - >>> Boundary-to-apex cone excursions
 - >> Whole-path cone excursions
- > 'Cone-free times' (between boundary-to-apex excursions) form a regenerative set
- > The path is cut into cone excursions between said times
- \rightarrow Write τ for boundary-to-apex inverse local time



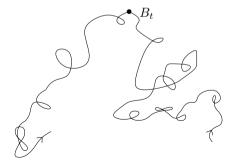
The path at boundary-to-apex cone-free times (with jumps)



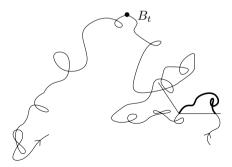
> Take Brownian path (B_s : 0 ≤ s ≤ ζ) and single out point B_t



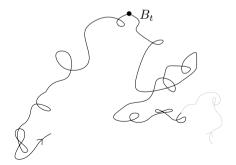
- **>** Take Brownian path (B_s : 0 ≤ s ≤ ζ) and single out point B_t
- ▶ An excursion targeting t is the largest cone excursion in $(B_s: u \le s \le \zeta)$



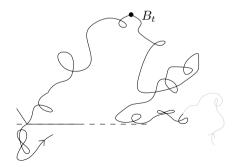
- **>** Take Brownian path (B_s : 0 ≤ s ≤ ζ) and single out point B_t
- ▶ An excursion targeting t is the largest cone excursion in $(B_s: u \le s \le \zeta)$
- > Increase u from 0 to t, so that we...
- \rightarrow ...cut out some boundary-to-apex cone excursions not containing B_t ...



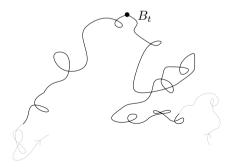
- **>** Take Brownian path (B_s : 0 ≤ s ≤ ζ) and single out point B_t
- ▶ An excursion targeting t is the largest cone excursion in $(B_s: u \le s \le \zeta)$
- > Increase u from 0 to t, so that we...
- \rightarrow ...cut out some boundary-to-apex cone excursions not containing B_t ...



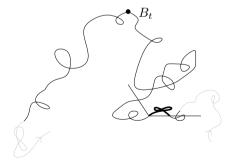
- **>** Take Brownian path (B_s : 0 ≤ s ≤ ζ) and single out point B_t
- ▶ An excursion targeting t is the largest cone excursion in $(B_s: u \le s \le \zeta)$
- > Increase u from 0 to t, so that we...
- \rightarrow ...cut out some boundary-to-apex cone excursions not containing B_t ...
- ...and chop out extra path sections at the end, making everything a cone excursion...



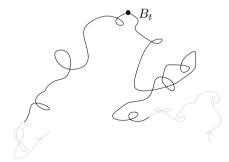
- **>** Take Brownian path (B_s : 0 ≤ s ≤ ζ) and single out point B_t
- ▶ An excursion targeting t is the largest cone excursion in $(B_s: u \le s \le \zeta)$
- > Increase *u* from 0 to *t*, so that we...
- \rightarrow ...cut out some boundary-to-apex cone excursions not containing B_t ...
- ...and chop out extra path sections at the end, making everything a cone excursion...



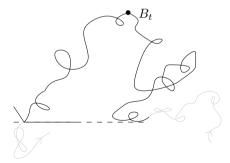
- **>** Take Brownian path (B_s : 0 ≤ s ≤ ζ) and single out point B_t
- ▶ An excursion targeting t is the largest cone excursion in $(B_s: u \le s \le \zeta)$
- > Increase u from 0 to t, so that we...
- \rightarrow ...cut out some boundary-to-apex cone excursions not containing B_t ...
- ...and chop out extra path sections at the end, making everything a cone excursion...
- > ...and so on.



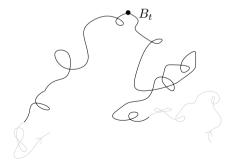
- **>** Take Brownian path (B_s : 0 ≤ s ≤ ζ) and single out point B_t
- ▶ An excursion targeting t is the largest cone excursion in $(B_s: u \le s \le \zeta)$
- > Increase u from 0 to t, so that we...
- \rightarrow ...cut out some boundary-to-apex cone excursions not containing B_t ...
- ...and chop out extra path sections at the end, making everything a cone excursion...
- ...and so on.



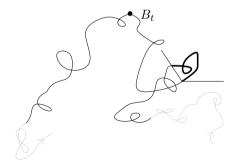
- **>** Take Brownian path (B_s : 0 ≤ s ≤ ζ) and single out point B_t
- ▶ An excursion targeting t is the largest cone excursion in $(B_s: u \le s \le \zeta)$
- > Increase u from 0 to t, so that we...
- \rightarrow ...cut out some boundary-to-apex cone excursions not containing B_t ...
- ...and chop out extra path sections at the end, making everything a cone excursion...
- > ...and so on.



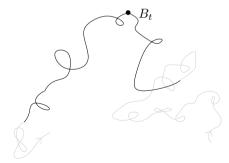
- **>** Take Brownian path (B_s : 0 ≤ s ≤ ζ) and single out point B_t
- ▶ An excursion targeting t is the largest cone excursion in $(B_s: u \le s \le \zeta)$
- > Increase u from 0 to t, so that we...
- \rightarrow ...cut out some boundary-to-apex cone excursions not containing B_t ...
- ...and chop out extra path sections at the end, making everything a cone excursion...
- ...and so on.



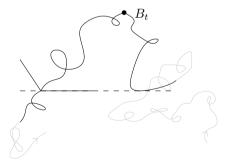
- **>** Take Brownian path (B_s : 0 ≤ s ≤ ζ) and single out point B_t
- ▶ An excursion targeting t is the largest cone excursion in $(B_s: u \le s \le \zeta)$
- > Increase u from 0 to t, so that we...
- \rightarrow ...cut out some boundary-to-apex cone excursions not containing B_t ...
- ...and chop out extra path sections at the end, making everything a cone excursion...
- ...and so on.



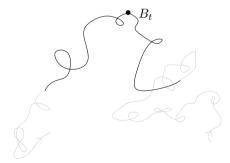
- **>** Take Brownian path (B_s : 0 ≤ s ≤ ζ) and single out point B_t
- ▶ An excursion targeting t is the largest cone excursion in $(B_s: u \le s \le \zeta)$
- > Increase u from 0 to t, so that we...
- \rightarrow ...cut out some boundary-to-apex cone excursions not containing B_t ...
- ...and chop out extra path sections at the end, making everything a cone excursion...
- ...and so on.



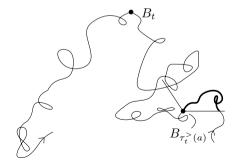
- **>** Take Brownian path (B_s : 0 ≤ s ≤ ζ) and single out point B_t
- ▶ An excursion targeting t is the largest cone excursion in $(B_s: u \le s \le \zeta)$
- > Increase u from 0 to t, so that we...
- \rightarrow ...cut out some boundary-to-apex cone excursions not containing B_t ...
- ...and chop out extra path sections at the end, making everything a cone excursion...
- ...and so on.



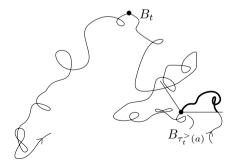
- **>** Take Brownian path (B_s : 0 ≤ s ≤ ζ) and single out point B_t
- ▶ An excursion targeting t is the largest cone excursion in $(B_s: u \le s \le \zeta)$
- > Increase u from 0 to t, so that we...
- \rightarrow ...cut out some boundary-to-apex cone excursions not containing B_t ...
- ...and chop out extra path sections at the end, making everything a cone excursion...
- ...and so on.



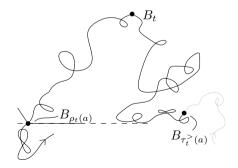
▶ Fix t > 0, write $\tau_t^>$ for boundary-to-apex inverse local time of $(B_s: s \le t)$



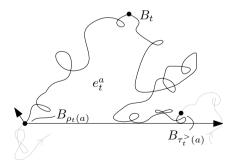
- ▶ Fix t > 0, write $\tau_t^>$ for boundary-to-apex inverse local time of $(B_s: s \le t)$
- ➤ Then fix $a \ge 0$, and...



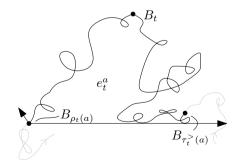
- ▶ Fix t > 0, write $\tau_t^>$ for boundary-to-apex inverse local time of (B_s : $s \le t$)
- > Then fix $a \ge 0$, and...
- ...let $\rho_t(a)$ be the smallest time making $B[\tau_t^{>}(a), \rho_t(a)]$ a cone excursion



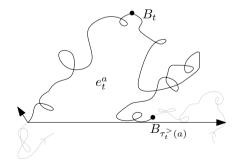
- Fix t > 0, write $\tau_t^>$ for boundary-to-apex inverse local time of $(B_s: s \le t)$
- Then fix $a \ge 0$, and...
- \rightarrow ...let $\rho_t(a)$ be the smallest time making $B[\tau_t^>(a), \rho_t(a)]$ a cone excursion
- ...and let $e_t^a(s) = B_{s+\tau_t^{>}(a)} B_{\rho_t(a)}$.



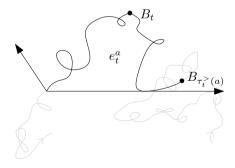
- Fix t > 0, write $\tau_t^>$ for boundary-to-apex inverse local time of (B_s: s ≤ t)
- ▶ Then fix $a \ge 0$, and...
- \rightarrow ...let $\rho_t(a)$ be the smallest time making $B[\tau_t^>(a), \rho_t(a)]$ a cone excursion
- ...and let $e_t^a(s) = B_{s+\tau_*}(a) B_{\rho_t(a)}$.
- \rightarrow Call e_t^a the excursion targeting t (at level a)



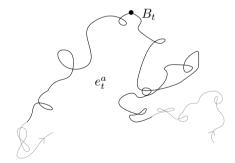
- ▶ Fix t > 0, write $\tau_t^>$ for boundary-to-apex inverse local time of $(B_s: s \le t)$
- ➤ Then fix $a \ge 0$, and...
- \rightarrow ...let $\rho_t(a)$ be the smallest time making $B[\tau_t^>(a), \rho_t(a)]$ a cone excursion
- ...and let $e_t^a(s) = B_{s+\tau_*}(a) B_{\rho_t(a)}$.
- ightharpoonup Call e_t^a the excursion targeting t (at level a)



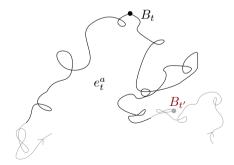
- Fix t > 0, write $\tau_t^>$ for boundary-to-apex inverse local time of $(B_s: s \le t)$
- ➤ Then fix $a \ge 0$, and...
- \rightarrow ...let $\rho_t(a)$ be the smallest time making $B[\tau_t^>(a), \rho_t(a)]$ a cone excursion
- ...and let $e_t^a(s) = B_{s+\tau_*}(a) B_{\rho_t(a)}$.
- > Call e_t^a the excursion targeting t (at level a)



> We have the excursion targeting t

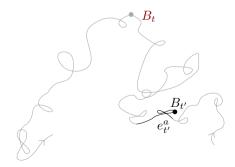


- > We have the excursion targeting t
- ➤ What if we target some other t'?



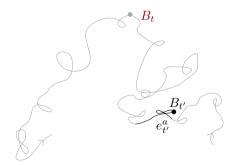
Targeting multiple times

- ➤ We have the excursion targeting t
- \triangleright What if we target some other t'?
- > Every piece cut out while targeting t is one which is included in the excursion targeting some other t'



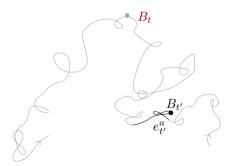
Targeting multiple times

- > We have the excursion targeting t
- ➤ What if we target some other t'?
- Every piece cut out while targeting t is one which is included in the excursion targeting some other t'
- > Consider targeting every time simultaneously



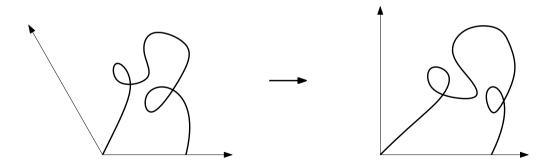
Targeting multiple times

- We have the excursion targeting t
- \triangleright What if we target some other t'?
- Every piece cut out while targeting t is one which is included in the excursion targeting some other t'
- Consider targeting every time simultaneously
- > There is some kind of branching process for us to capture



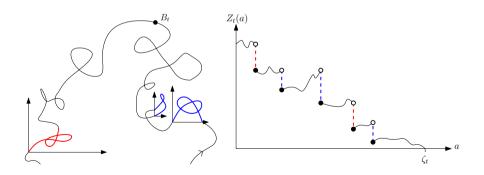
Summarising the path targeting \boldsymbol{t}

Map the cone with apex angle θ to the positive quadrant \mathbb{R}^2_+ ; standard Brownian motion becomes correlated



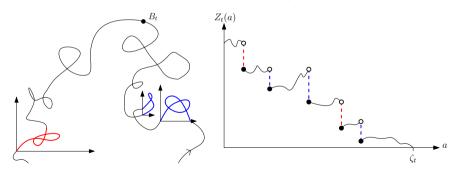
Summarising the path targeting t

- Map the cone with apex angle θ to the positive quadrant \mathbb{R}^2_+ ; standard Brownian motion becomes correlated
- ▶ The initial displacement of the excursion targeting t at local time a: $e_t^a(0) \in \mathbb{R}^2_+$



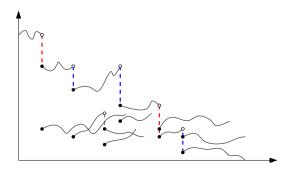
Summarising the path targeting t

- Map the cone with apex angle θ to the positive quadrant \mathbb{R}^2_+ ; standard Brownian motion becomes correlated
- ▶ The initial displacement of the excursion targeting t at local time a: $e_t^a(0) \in \mathbb{R}^2_+$
- In the case $\theta = 2\pi/3$ look at its ℓ^1 -norm: $Z_t(a) = ||e_t^a(0)||_1$

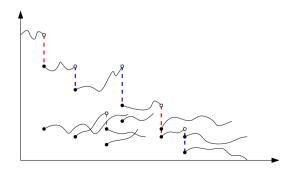


A growth-fragmentation is:

➤ a system of particles (excursions targeting each time t)...

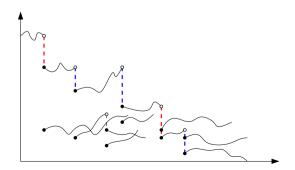


- > a system of particles (excursions targeting each time t)...
- \rightarrow ...each summarised by a trait (ℓ^1 -norm of its initial displacement)...

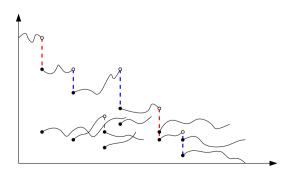


Growth-fragmentations

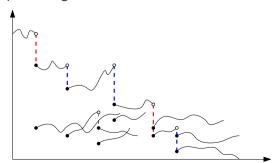
- > a system of particles (excursions targeting each time t)...
- ...each summarised by a trait (ℓ^1 -norm of its initial displacement)...
- ...each of which is a Markov process when viewed on its own...



- > a system of particles (excursions targeting each time t)...
- \rightarrow ...each summarised by a trait (ℓ^1 -norm of its initial displacement)...
- ...each of which is a Markov process when viewed on its own...
- > ...whose path only jumps down...



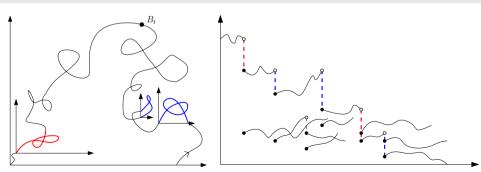
- > a system of particles (excursions targeting each time t)...
- \rightarrow ...each summarised by a trait (ℓ^1 -norm of its initial displacement)...
- ...each of which is a Markov process when viewed on its own...
- ...whose path only jumps down...
- ...and each jump of which is accompanied by the birth of another particle, conditionally independent given initial trait value



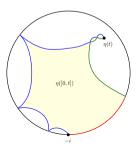
We do all this starting with B given by a boundary-to-apex excursion with fixed initial value $B_0 = z \in \partial \mathbb{R}^2$.

Theorem (Da Silva-Powell-W, vague version)

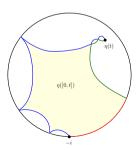
The particles t with traits $(Z_t(a): 0 \le a \le \zeta_t)$ (the ℓ^1 -norm summary of initial displacements of excursions targeting t) form a growth-fragmentation process whose law we can characterise.



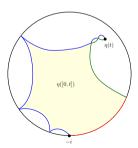
The quantum disc is a ball of radius 1 in the complex plane, loosely speaking endowed with a Riemannian metric $e^{\gamma h(z)}(dx^2 + dy^2)$ at z = x + iy, where h is a Gaussian free field



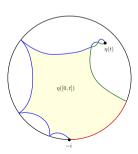
- The quantum disc is a ball of radius 1 in the complex plane, loosely speaking endowed with a Riemannian metric $e^{\gamma h(z)}(dx^2 + dy^2)$ at z = x + iy, where h is a Gaussian free field
- Take $y = \sqrt{8/3}$ and mark the point -i on the boundary



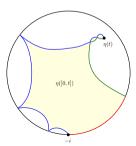
- The quantum disc is a ball of radius 1 in the complex plane, loosely speaking endowed with a Riemannian metric $e^{\gamma h(z)}(dx^2 + dy^2)$ at z = x + iy, where h is a Gaussian free field
- Take $y = \sqrt{8/3}$ and mark the point -i on the boundary
- ightharpoonup Draw counterclockwise space-filling SLE₆ curve started at -i, targeting the same point



- The quantum disc is a ball of radius 1 in the complex plane, loosely speaking endowed with a Riemannian metric $e^{\gamma h(z)}(dx^2 + dy^2)$ at z = x + iy, where h is a Gaussian free field
- Take $y = \sqrt{8/3}$ and mark the point -i on the boundary
- ightharpoonup Draw counterclockwise space-filling SLE₆ curve started at -i, targeting the same point
- As the curve fills space targeting a particular point, it cuts out 'bubbles' not containing the point (which are explored by another branch)



- The quantum disc is a ball of radius 1 in the complex plane, loosely speaking endowed with a Riemannian metric $e^{\gamma h(z)}(dx^2 + dy^2)$ at z = x + iy, where h is a Gaussian free field
- Take $y = \sqrt{8/3}$ and mark the point -i on the boundary
- ightharpoonup Draw counterclockwise space-filling SLE₆ curve started at -i, targeting the same point
- As the curve fills space targeting a particular point, it cuts out 'bubbles' not containing the point (which are explored by another branch)
- Our growth-fragmentation describes the total (left and right) boundary length of the branches



> Cone excursions: Le Gall (1987) and Duplantier, Miller and Sheffield (2021)

- > Cone excursions: Le Gall (1987) and Duplantier, Miller and Sheffield (2021)
- > Another growth-fragmentation in planar excursions: Aïdékon and Da Silva (2022)

- > Cone excursions: Le Gall (1987) and Duplantier, Miller and Sheffield (2021)
- > Another growth-fragmentation in planar excursions: Aïdékon and Da Silva (2022)
- ➤ Relationship with the quantum disc: the 'mating of trees', Duplantier, Miller and Sheffield (2021) and Ang and Gwynne (2021)

- > Cone excursions: Le Gall (1987) and Duplantier, Miller and Sheffield (2021)
- > Another growth-fragmentation in planar excursions: Aïdékon and Da Silva (2022)
- Relationship with the quantum disc: the 'mating of trees', Duplantier, Miller and Sheffield (2021) and Ang and Gwynne (2021)
- Other growth-fragmentations in statistical physics models: Miller, Sheffield and Werner (2020), Le Gall and Riera (2020) and Bertoin, (Budd,) Curien and Kortchemski (2018)

▶ Take a uniform time T ∈ (0, ζ)

- **>** Take a uniform time T ∈ (0, ζ)
- ▶ Consider the excursion targeting T, corresponding to the process $(Z_T(a): 0 \le a \le \zeta_T)$

- ▶ Take a uniform time $T ∈ (0, \zeta)$
- ▶ Consider the excursion targeting T, corresponding to the process $(Z_T(a): 0 \le a \le \zeta_T)$
- > Time-reverse it to get $S(a) = Z_T((\zeta_T a)^-), 0 \le a \le \zeta_T$

- **>** Take a uniform time $T ∈ (0, \zeta)$
- ▶ Consider the excursion targeting T, corresponding to the process $(Z_T(a): 0 \le a \le Z_T)$
- Time-reverse it to get $S(a) = Z_T((ζ_T a)^-)$, 0 ≤ a ≤ ζ_T

Theorem

S has the law of a 3/2-stable process conditioned to stay positive (and this characterises the *arowth-fraamentation*)

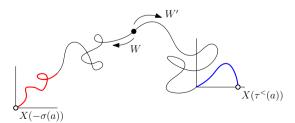
- ▶ Take a uniform time $T \in (0, \zeta)$
- ▶ Consider the excursion targeting T, corresponding to the process $(Z_T(a): 0 \le a \le \zeta_T)$
- ➤ Time-reverse it to get $S(a) = Z_T((\zeta_T a)^-), 0 \le a \le \zeta_T$

Theorem

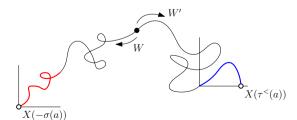
S has the law of a 3/2-stable process conditioned to stay positive (and this characterises the growth-fragmentation)

(S is a positive stochastic process with jump kernel $J(x, x + dy) = \frac{x+y}{x}y^{-5/2} dy; x > 0, y > 0.$)

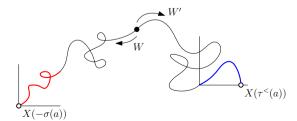
Everything here is in reverse time!



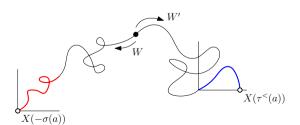
- Everything here is in reverse time!
- ▶ Let W, W' be independent (correlated) Brownian motions, X(t) = W'(t) for $t \ge 0$ and X(t) = W(-t) for $t \le 0$



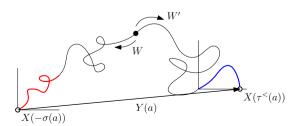
- > Everything here is in reverse time!
- ▶ Let W, W' be independent (correlated) Brownian motions, X(t) = W'(t) for $t \ge 0$ and X(t) = W(-t) for $t \le 0$
- \blacktriangleright Write τ for the inverse local time of apex-to-boundary excursions of W'



- > Everything here is in reverse time!
- ▶ Let W, W' be independent (correlated) Brownian motions, X(t) = W'(t) for $t \ge 0$ and X(t) = W(-t) for $t \le 0$
- \rightarrow Write $\tau^{<}$ for the inverse local time of apex-to-boundary excursions of W'
- Let $\sigma(a)$ be the first time (for W) the displaced quadrant $W(\sigma(a)) + \mathbb{R}^2_+$ contains $X[-\sigma(a), \tau^{<}(a)].$



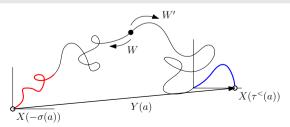
- Everything here is in reverse time!
- ▶ Let W, W' be independent (correlated) Brownian motions, X(t) = W'(t) for $t \ge 0$ and X(t) = W(-t) for $t \le 0$
- \rightarrow Write $\tau^{<}$ for the inverse local time of apex-to-boundary excursions of W'
- Let $\sigma(a)$ be the first time (for W) the displaced quadrant $W(\sigma(a)) + \mathbb{R}^2_+$ contains $X[-\sigma(a), \tau^{<}(a)]$.
- Write $S(a) = ||X(\tau^{<}(a)) X(-\sigma(a))||_1$



- Everything here is in reverse time!
- ▶ Let W, W' be independent (correlated) Brownian motions, X(t) = W'(t) for $t \ge 0$ and X(t) = W(-t) for $t \le 0$
- \rightarrow Write $\tau^{<}$ for the inverse local time of apex-to-boundary excursions of W'
- ▶ Let $\sigma(a)$ be the first time (for W) the displaced quadrant $W(\sigma(a)) + \mathbb{R}^2_+$ contains $X[-\sigma(a), \tau^{<}(a)]$.
- Write $S(a) = ||X(\tau^{<}(a)) X(-\sigma(a))||_1$

Theorem

S is a 3/2-stable process, with only positive jumps, conditioned to stay positive.



Summary

> Isolating excursions targeting a given time (by cutting out excursions targeting others) gives rise to a growth-fragmentation with law connected to a stable process

Cone excursions

- Isolating excursions targeting a given time (by cutting out excursions targeting others) gives rise to a growth-fragmentation with law connected to a stable process
- > Along the way we found:

Summary

- Isolating excursions targeting a given time (by cutting out excursions targeting others) gives rise to a growth-fragmentation with law connected to a stable process
- > Along the way we found:
 - >> a new construction of conditioned 3/2-stable processes

Summary

- > Isolating excursions targeting a given time (by cutting out excursions targeting others) gives rise to a growth-fragmentation with law connected to a stable process
- > Along the way we found:
 - >> a new construction of conditioned 3/2-stable processes
 - >> the law of initial displacement of the whole-path cone excursion (in case $\theta = 2\pi/3$)

Alex Watson

Summary

- > Isolating excursions targeting a given time (by cutting out excursions targeting others) gives rise to a growth-fragmentation with law connected to a stable process
- > Along the way we found:
 - >> a new construction of conditioned 3/2-stable processes
 - >> the law of initial displacement of the whole-path cone excursion (in case $\theta = 2\pi/3$)
- > We also obtain the law of the 'locally largest' particle (whose trait changes the least at each branch point)...

- > Isolating excursions targeting a given time (by cutting out excursions targeting others) gives rise to a growth-fragmentation with law connected to a stable process
- > Along the way we found:
 - >> a new construction of conditioned 3/2-stable processes
 - >> the law of initial displacement of the whole-path cone excursion (in case $\theta = 2\pi/3$)
- > We also obtain the law of the 'locally largest' particle (whose trait changes the least at each branch point)...
- ...and find a special martingale whose limit law is that of the lifetime of a typical excursion (recovering a result about the volume of Boltzmann triangulations)

➤ The growth-fragmentation is the same one found in the Brownian disc (Le Gall and Riera) and Boltzmann triangulations (Bertoin, Curien and Kortchemski)

- > The growth-fragmentation is the same one found in the Brownian disc (Le Gall and Riera) and Boltzmann triangulations (Bertoin, Curien and Kortchemski)
- ➤ It is in the same class as the one found in percolation of CLE carpets (Miller, Sheffield and Werner) and metric exploration of random planar maps (Bertoin, Budd, Curien and Kortchemski)

- > The growth-fragmentation is the same one found in the Brownian disc (Le Gall and Riera) and Boltzmann triangulations (Bertoin, Curien and Kortchemski)
- It is in the same class as the one found in percolation of CLE carpets (Miller, Sheffield and Werner) and metric exploration of random planar maps (Bertoin, Budd, Curien and Kortchemski)
- > It may be possible to derive our results with quantum gravity arguments, but we use nothing but an analysis of Brownian motion

Is there a typed version, to distinguish whether a 'particle' corresponds to a boundary-to-apex or interior-to-apex (whole-path) excursion?

- > Is there a typed version, to distinguish whether a 'particle' corresponds to a boundary-to-apex or interior-to-apex (whole-path) excursion?
- ▶ What about $\theta \neq 2\pi/3$? (cf. half plane excursions, planar maps, CLE carpet)

- > Is there a typed version, to distinguish whether a 'particle' corresponds to a boundary-to-apex or interior-to-apex (whole-path) excursion?
- ▶ What about $\theta \neq 2\pi/3$? (cf. half plane excursions, planar maps, CLE carpet)
- > Connected to that: are there other nice constructions of conditioned stable processes that should appear?

- > Is there a typed version, to distinguish whether a 'particle' corresponds to a boundary-to-apex or interior-to-apex (whole-path) excursion?
- > What about $9 \neq 2\pi/3$? (cf. half plane excursions, planar maps, CLE carpet)
- Connected to that: are there other nice constructions of conditioned stable processes that should appear?
- Can we start things at zero?

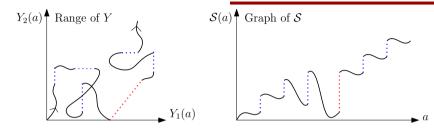
W. Da Silva, E. Powell and A. R. Watson

Growth-fragmentations, Brownian cone excursions and SLE_6 explorations of a quantum disc arXiv:2501.03010 [math.PR]

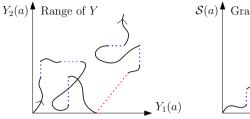
W. Da Silva, E. Powell and A. R. Watson

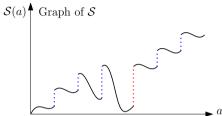
Growth-fragmentations, Brownian cone excursions and SLE_6 explorations of a quantum disc arXiv:2501.03010 [math.PR]

Thank you!

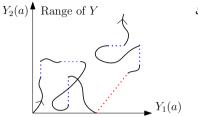


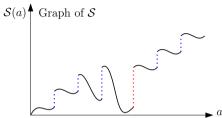
ightharpoonup Blue jumps arise from seeing new apex-to-boundary excursions (in W')



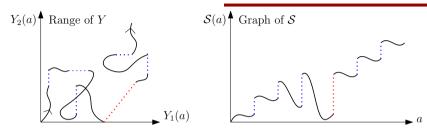


- ▶ Blue jumps arise from seeing new apex-to-boundary excursions (in W')
- > They form the jumps of a 3/2-stable process which jumps directly up or right (DMS '21)

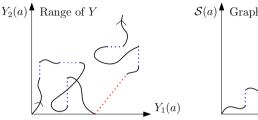


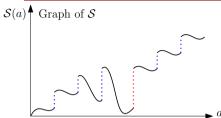


- ightharpoonup Blue jumps arise from seeing new apex-to-boundary excursions (in W')
- > They form the jumps of a 3/2-stable process which jumps directly up or right (DMS '21)
- ➤ Red jumps arise from seeing new whole-path excursions (in X)

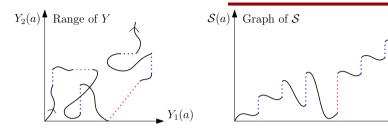


- ▶ Blue jumps arise from seeing new apex-to-boundary excursions (in W')
- > They form the jumps of a 3/2-stable process which jumps directly up or right (DMS '21)
- ➤ Red jumps arise from seeing new whole-path excursions (in X)
- These form the jumps of a 1/2-stable process of unknown jump distribution (LG '87)

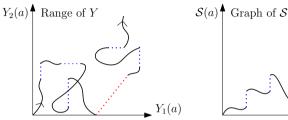


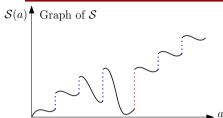


- ▶ Blue jumps arise from seeing new apex-to-boundary excursions (in W')
- > They form the jumps of a 3/2-stable process which jumps directly up or right (DMS '21)
- > Red jumps arise from seeing new whole-path excursions (in X)
- These form the jumps of a 1/2-stable process of unknown jump distribution (LG '87)
- To complete the proof:

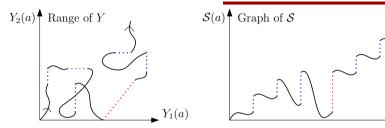


- Blue jumps arise from seeing new apex-to-boundary excursions (in W')
- > They form the jumps of a 3/2-stable process which jumps directly up or right (DMS '21)
- > Red jumps arise from seeing new whole-path excursions (in X)
- These form the jumps of a 1/2-stable process of unknown jump distribution (LG '87)
- > To complete the proof:
 - >>> Find the distribution of red jumps





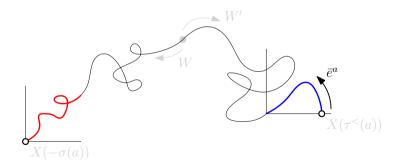
- **Blue** jumps arise from seeing new apex-to-boundary excursions (in W')
- > They form the jumps of a 3/2-stable process which jumps directly up or right (DMS '21)
- > Red jumps arise from seeing new whole-path excursions (in X)
- These form the jumps of a 1/2-stable process of unknown jump distribution (LG '87)
- > To complete the proof:
 - >> Find the distribution of red jumps
 - Show S is Markov



- ▶ Blue jumps arise from seeing new apex-to-boundary excursions (in W')
- > They form the jumps of a 3/2-stable process which jumps directly up or right (DMS '21)
- ➤ Red jumps arise from seeing new whole-path excursions (in X)
- > These form the jumps of a 1/2-stable process of unknown jump distribution (LG '87)
- > To complete the proof:
 - >>> Find the distribution of red jumps
 - Show S is Markov
 - Show that red jumps occur at rate 1/S(a)

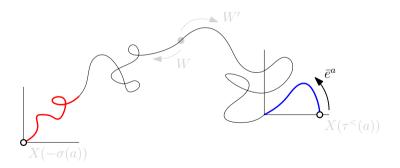
Relationship with the growth-fragmentation

Let $\bar{e}^a(b) = X((\tau^{<}(a) - b)^{-})$ for $0 \le b \le \tau^{<}(a) + \sigma(a)$ (time-reversal of stopped X)



Relationship with the growth-fragmentation

- Let $\bar{e}^a(b) = X((\tau^{<}(a) b)^{-})$ for $0 \le b \le \tau^{<}(a) + \sigma(a)$ (time-reversal of stopped X)
- Let A be 'distributed' according to Lebesgue measure on (0, ∞)



Relationship with the growth-fragmentation

- Let $\bar{e}^a(b) = X((\tau^{<}(a) b)^{-})$ for $0 \le b \le \tau^{<}(a) + \sigma(a)$ (time-reversal of stopped X)
- Let A be 'distributed' according to Lebesgue measure on (0, ∞)
- > Then (\bar{e}^A, A) has the same distribution as a generic whole-path excursion together with a time uniformly chosen within its lifetime

