

www.math.univ-toulouse.fr

Reinforced Galton-Watson processes: Malthusian growth, survival and distribution of the population

Bastien Mallein joint works with Jean Bertoin

IMT - Université de Toulouse
bastien.mallein@math.univ-toulouse.fr

19th International Summer Conference on Probability and Statistics

1 Malthusian growth, survival and distribution of a (regular) Galton-Watson process

2 The reinforced Galton-Watson process

Statement of the results

Galton-Watson trees and processes

Let ν be a probability distribution on \mathbb{Z}_+ .

Definition

A ν -Galton-Watson tree (or GW(ν)) is a population model in which each individual, independently from every other, gives birth to a random number of children distributed according to the law ν . The tree starts from an initial individual called the root.

Notation

For all $n \in \mathbb{N}$, we write Z_n the number of individuals alive at generation n. The process $(Z_n, n \ge 1)$ is a Markov process called the ν -Galton-Watson process.

Galton-Watson trees and processes

Let ν be a probability distribution on \mathbb{Z}_+ .

Definition

A ν -Galton-Watson tree (or GW(ν)) is a population model in which each individual, independently from every other, gives birth to a random number of children distributed according to the law ν . The tree starts from an initial individual called the root.

Notation

For all $n \in \mathbb{N}$, we write Z_n the number of individuals alive at generation n. The process $(Z_n, n \ge 1)$ is a Markov process called the ν -Galton-Watson process.

Galton-Watson trees and processes

Let ν be a probability distribution on \mathbb{Z}_+ .

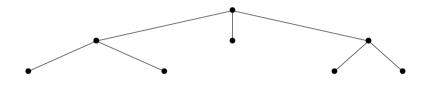
Definition

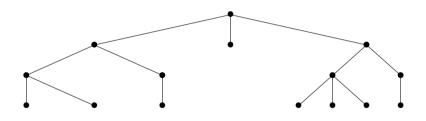
A ν -Galton-Watson tree (or GW(ν)) is a population model in which each individual, independently from every other, gives birth to a random number of children distributed according to the law ν . The tree starts from an initial individual called the root.

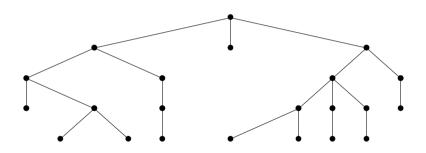
Notation

For all $n \in \mathbb{N}$, we write Z_n the number of individuals alive at generation n. The process $(Z_n, n \ge 1)$ is a Markov process called the ν -Galton-Watson process.

•







Malthusian growth and survival of the Galton-Watson process

Mean number of children

We write $m = \mathbf{E}(Z_1) = \sum_{j=0}^n j \nu(j)$.

Theorem (Bienaymé 1845, Galton-Watson 1870)

We have $\mathbf{E}(Z_n) = m^n$. Moreover

$$\mathbb{P}(\forall n \in \mathbb{N}, Z_n > 0) > 0 \iff m > 1 \quad or \quad \nu = \delta_1$$

Propositio

The martingale (Z_n/m^n) converges a.s. to a non-negative limit W. Moreover,

$$\mathbb{P}(W > 0) = \mathbb{P}(\forall n \in \mathbb{N} \mid Z_n > 0)$$

Malthusian growth and survival of the Galton-Watson process

Mean number of children

We write $m = \mathbf{E}(Z_1) = \sum_{j=0}^n j \nu(j)$.

Theorem (Bienaymé 1845, Galton-Watson 1870)

We have $\mathbf{E}(Z_n) = m^n$. Moreover,

$$\mathbb{P}\big(\forall n\in\mathbb{N}, Z_n>0\big)>0\iff m>1\quad\text{or}\quad \nu=\delta_1.$$

Propositio

The martingale (Z_n/m^n) converges a.s. to a non-negative limit W. Moreover

$$\mathbb{P}(W>0)=\mathbb{P}(\forall n\in\mathbb{N},Z_n>0).$$

Malthusian growth and survival of the Galton-Watson process

Mean number of children

We write $m = \mathbf{E}(Z_1) = \sum_{j=0}^n j \nu(j)$.

Theorem (Bienaymé 1845, Galton-Watson 1870)

We have $\mathbf{E}(Z_n) = m^n$. Moreover,

$$\mathbb{P}(\forall n \in \mathbb{N}, Z_n > 0) > 0 \iff m > 1 \quad \text{or} \quad \nu = \delta_1.$$

Proposition

The martingale (Z_n/m^n) converges a.s. to a non-negative limit W. Moreover,

$$\mathbb{P}(W>0)=\mathbb{P}(\forall n\in\mathbb{N},Z_n>0).$$

Some definitions

Definition

For u an individual of a tree T, we denote by $L_u = \frac{1}{|u|} \sum_{i=0}^{|u|-1} \delta_{N(u_i)}$ the empirical distribution of the number of children along the ancestral line of this individual.

Definition

Let T be a (deterministic or random) tree. A probability distribution a is called

- **1** evanescent if there exists a neighbourhood G of ρ such that $\#\{u \in T : L_u \in G\} < \infty$;
- ② weakly persistent if for all neighbourhood G of ρ , we have $\#\{u \in T : L_u \in G\} = \infty$
- **3** strongly persistent if there exists an infinite spine (v_n) in T such that $\lim_{n\to\infty} L_{v_n} = \rho$

Ancestral distribution of the population

Some definitions

Definition

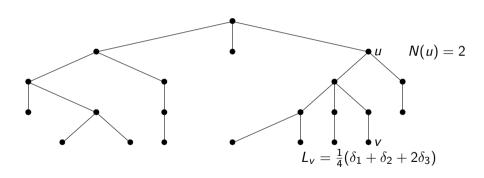
For u an individual of a tree T, we denote by $L_u = \frac{1}{|u|} \sum_{i=0}^{|u|-1} \delta_{N(u_i)}$ the empirical distribution of the number of children along the ancestral line of this individual.

Definition

Let T be a (deterministic or random) tree. A probability distribution ρ is called

- **①** evanescent if there exists a neighbourhood G of ρ such that $\#\{u \in T : L_u \in G\} < \infty$;
- **2** weakly persistent if for all neighbourhood G of ρ , we have $\#\{u \in T : L_u \in G\} = \infty$;
- 3 strongly persistent if there exists an infinite spine (v_n) in T such that $\lim_{n\to\infty} L_{v_n} = \rho$.

Illustrations



Ancestral distribution of the population

Concentration of the population

We write $\langle \rho, f \rangle = \sum_{k \geq 0} \rho(k) f(k)$. In particular, $\langle \rho, \ln \rangle = \sum_{k \geq 0} \rho(k) \ln(k)$ is $-\infty$ if $\rho(0) > 0$, non-negative otherwise. We also write $H(\mu|\rho) = \sum_{k \geq 0} \mu(j) \log \frac{\mu(j)}{\rho(j)}$.

Theorem (..., Azaïs-Henry ('25), Bertoin-M. ('25+))

Let ν be a probability measure, that we assume to have finite support. Set $\bar{\nu}(k) = \frac{k\nu(k)}{m}$ the size-biased distribution of ν . Let T be a ν -GW. We have :

• for all neighbourhood G of $\bar{\nu}$, there exists $\varepsilon > 0$ such that

$$\mathbf{E}\left(\#\{|u|=n:L_u\not\in G\}\right)\leq e^{-\varepsilon n}\mathbf{E}\left(Z_n\right);$$

- a law ρ is evanescent almost surely if $\langle \rho, \ln \rangle < H(\rho|\bar{\nu})$;
- a law ρ is strongly persistent with positive probability if $\langle \rho, \ln \rangle \geq H(\rho|\bar{\nu})$.

An important lemma

The many-to-one lemma

Lemma

Let T be a (deterministic) rooted tree, we write $h=(h_0,h_1,\ldots)$ an harmonic line of descent so that $h_0=\emptyset$ and for all $k\geq 0$, h_{k+1} is a uniformly sampled child of h_k . Let $(x_0,\ldots,x_{n-1})\in\mathbb{N}^n$, setting $\mu=\frac{1}{n}\sum_{i=0}^{n-1}\delta_{x_i}$ we have

$$\#\{|v|=n:N(v_j)=x_j,0\leq j\leq n-1\}=\mathbb{P}(N(h_j)=x_j,0\leq j\leq n-1)\exp(n\langle\mu,\ln\rangle).$$

Corollary

For a $GW(\nu)$ tree T, we have

$$\mathbf{E}(\#\{|v|=n:L_v=\mu\}) = \mathbb{P}(\frac{1}{n}\sum_{i=0}^{n-1}\delta_{X_i}=\mu)\exp(n\langle\mu,\ln\rangle)$$

where (X_i) are i.i.d. random variables with law ν .

An important lemma

The many-to-one lemma

Lemma

Let T be a (deterministic) rooted tree, we write $h=(h_0,h_1,\ldots)$ an harmonic line of descent so that $h_0=\emptyset$ and for all $k\geq 0$, h_{k+1} is a uniformly sampled child of h_k . Let $(x_0,\ldots,x_{n-1})\in\mathbb{N}^n$, setting $\mu=\frac{1}{n}\sum_{i=0}^{n-1}\delta_{x_i}$ we have

$$\#\{|v|=n: N(v_j)=x_j, 0 \le j \le n-1\} = \mathbb{P}(N(h_j)=x_j, 0 \le j \le n-1) \exp(n\langle \mu, \ln \rangle).$$

Corollary

For a $GW(\nu)$ tree T, we have

$$\mathbf{E}(\#\{|v|=n:L_v=\mu\}) = \mathbb{P}(\frac{1}{n}\sum_{i=0}^{n-1}\delta_{X_i}=\mu)\exp(n\langle\mu,\ln\rangle)$$

where (X_i) are i.i.d. random variables with law ν .

- The GW process can survive with positive probability iff m > 1.
- We have $\mathbf{E}(Z_n) \sim_{n \to \infty} m^n$.
- We have $Z_n = W\mathbf{E}(Z_n)(1 + o(1))$ a.s. as $n \to \infty$.
- ullet Most individuals have an ancestral lineage close to ar
 u
- ullet Every law ho is either a.s. evanescent or strongly persistent with positive probability.

- The GW process can survive with positive probability iff m > 1.
- We have $\mathbf{E}(Z_n) \sim_{n \to \infty} m^n$.
- We have $Z_n = W\mathbf{E}(Z_n)(1 + o(1))$ a.s. as $n \to \infty$.
- ullet Most individuals have an ancestral lineage close to ar
 u
- \bullet Every law ρ is either a.s. evanescent or strongly persistent with positive probability.

- The GW process can survive with positive probability iff m > 1.
- We have $\mathbf{E}(Z_n) \sim_{n \to \infty} m^n$.
- We have $Z_n = W\mathbf{E}(Z_n)(1 + o(1))$ a.s. as $n \to \infty$.
- ullet Most individuals have an ancestral lineage close to ar
 u
- \bullet Every law ρ is either a.s. evanescent or strongly persistent with positive probability.

- The GW process can survive with positive probability iff m > 1.
- We have $\mathbf{E}(Z_n) \sim_{n \to \infty} m^n$.
- We have $Z_n = W\mathbf{E}(Z_n)(1 + o(1))$ a.s. as $n \to \infty$.
- ullet Most individuals have an ancestral lineage close to $ar{
 u}$
- ullet Every law ho is either a.s. evanescent or strongly persistent with positive probability.

- The GW process can survive with positive probability iff m > 1.
- We have $\mathbf{E}(Z_n) \sim_{n \to \infty} m^n$.
- We have $Z_n = W\mathbf{E}(Z_n)(1 + o(1))$ a.s. as $n \to \infty$.
- Most individuals have an ancestral lineage close to $\bar{\nu}.$
- ullet Every law ho is either a.s. evanescent or strongly persistent with positive probability.

- The GW process can survive with positive probability iff m > 1.
- We have $\mathbf{E}(Z_n) \sim_{n \to \infty} m^n$.
- We have $Z_n = W\mathbf{E}(Z_n)(1 + o(1))$ a.s. as $n \to \infty$.
- ullet Most individuals have an ancestral lineage close to ar
 u.
- \bullet Every law ρ is either a.s. evanescent or strongly persistent with positive probability.

Malthusian growth, survival and distribution of a (regular) Galton-Watson process

2 The reinforced Galton-Watson process

Statement of the results

24/07/2025

11 / 26

Let $q \in (0,1)$ and ν a probability distribution on \mathbb{Z}_+ .

Definition

A (q, ν) -reinforced Galton-Watson tree (or rGW (q, ν)) is a population model evolving as follows. At each generation, each individual reproduces as follows :

- with probability 1-q, they give birth to a random number of children distributed according to the law ν .
- with probability q, they create the same number of children as one of their ancestors, selected uniformly at random.

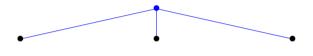
Let $q \in (0,1)$ and ν a probability distribution on \mathbb{Z}_+ .

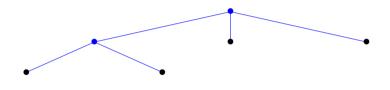
Definition

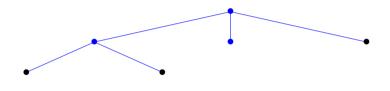
A (q, ν) -reinforced Galton-Watson tree (or rGW (q, ν)) is a population model evolving as follows. At each generation, each individual reproduces as follows :

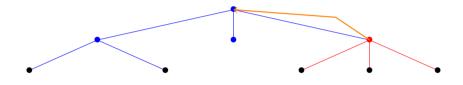
- with probability 1-q, they give birth to a random number of children distributed according to the law ν .
- with probability q, they create the same number of children as one of their ancestors, selected uniformly at random.

13 / 26

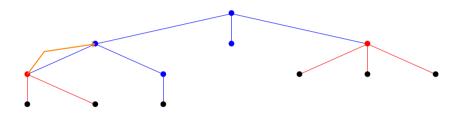




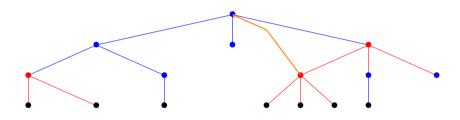




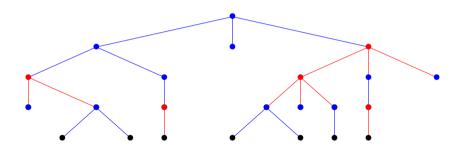
13 / 26



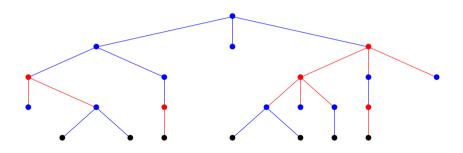
A reinforced Galton-Watson process



A reinforced Galton-Watson process



A reinforced Galton-Watson process



13 / 26

Preliminary remarks

- Natural model for inheritance of fitness traits.
- A rGW(ν , 0) is a GW(ν). A rGW(ν , 1) is with probability $\nu(k)$ a k-ary tree.
- An individual reproducing the offspring of an ancestor always make at least one child.
- All the usual properties of GW trees, such as branching, or the Markov property of (Z_n) , are lost.

- Natural model for inheritance of fitness traits.
- A rGW(ν , 0) is a GW(ν). A rGW(ν , 1) is with probability $\nu(k)$ a k-ary tree.
- An individual reproducing the offspring of an ancestor always make at least one child.
- All the usual properties of GW trees, such as branching, or the Markov property of (Z_n) , are lost.

- Natural model for inheritance of fitness traits.
- A rGW(ν , 0) is a GW(ν). A rGW(ν , 1) is with probability $\nu(k)$ a k-ary tree.
- An individual reproducing the offspring of an ancestor always make at least one child.
- All the usual properties of GW trees, such as branching, or the Markov property of (Z_n) , are lost.

Preliminary remarks

- Natural model for inheritance of fitness traits.
- A rGW(ν , 0) is a GW(ν). A rGW(ν , 1) is with probability $\nu(k)$ a k-ary tree.
- An individual reproducing the offspring of an ancestor always make at least one child.
- All the usual properties of GW trees, such as branching, or the Markov property of (Z_n) , are lost.

- Natural model for inheritance of fitness traits.
- A rGW(ν , 0) is a GW(ν). A rGW(ν , 1) is with probability $\nu(k)$ a k-ary tree.
- An individual reproducing the offspring of an ancestor always make at least one child.
- All the usual properties of GW trees, such as branching, or the Markov property of (Z_n) , are lost.

- Natural model for inheritance of fitness traits.
- A rGW(ν , 0) is a GW(ν). A rGW(ν , 1) is with probability $\nu(k)$ a k-ary tree.
- An individual reproducing the offspring of an ancestor always make at least one child.
- All the usual properties of GW trees, such as branching, or the Markov property of (Z_n) , are lost.

A simple case

Regular tree

Write $\nu = p\delta_k + (1-p)\delta_0$. Children in the rGW(ν, q) have k children with probability (1-q)p+q.

$$\mathbb{P}_q(\forall n \in \mathbb{N}, Z_n > 0) > 0 \iff ((1-q)p + q)k > 1.$$

- In this situation, the rGW(q, ν) can survive even if the GW(ν) does not.
- We expect the reinforcement to help the process to survive.

A simple case

Regular tree

Write $\nu = p\delta_k + (1-p)\delta_0$. Children in the rGW(ν, q) have k children with probability (1-q)p+q.

$$\mathbb{P}_q(\forall n \in \mathbb{N}, Z_n > 0) > 0 \iff ((1-q)p + q)k > 1.$$

- In this situation, the rGW(q, ν) can survive even if the GW(ν) does not.
- We expect the reinforcement to help the process to survive.

A simple case

Regular tree

Write $\nu = p\delta_k + (1-p)\delta_0$. Children in the rGW(ν, q) have k children with probability (1-q)p+q.

$$\mathbb{P}_q(\forall n \in \mathbb{N}, Z_n > 0) > 0 \iff ((1-q)p + q)k > 1.$$

- In this situation, the $rGW(q, \nu)$ can survive even if the $GW(\nu)$ does not.
- We expect the reinforcement to help the process to survive.

Another simple case

Large support

Assume that there exists $k \in \mathbb{Z}_+$ such that $\nu(k) > 0$ and $((1-q)\nu(k)+q)k > 1$. Then the subtree consisting of individuals with exactly k children survives with positive probability.

$$\exists k \in \mathbb{Z}_+ : \nu(k) > 0 \text{ and } ((1-q)\nu(k)+q)k > 1 \Rightarrow \mathbb{P}(\forall n \in \mathbb{N}, Z_n > 0) > 0.$$

In particular, if q>0 and ν has unbounded support, then the reinforced Galton-Watson process survives with positive probability.

Notation

From now on, we always assume that ν has finite support, and we denote by k_{\star} the largest integer such that $\nu(k_{\star}) > 0$.

Another simple case

Large support

Assume that there exists $k \in \mathbb{Z}_+$ such that $\nu(k) > 0$ and $((1-q)\nu(k)+q)k > 1$. Then the subtree consisting of individuals with exactly k children survives with positive probability.

$$\exists k \in \mathbb{Z}_+ : \nu(k) > 0 \text{ and } ((1-q)\nu(k)+q)k > 1 \Rightarrow \mathbb{P}(\forall n \in \mathbb{N}, Z_n > 0) > 0.$$

In particular, if q>0 and ν has unbounded support, then the reinforced Galton-Watson process survives with positive probability.

Notation

From now on, we always assume that ν has finite support, and we denote by k_{\star} the largest integer such that $\nu(k_{\star}) > 0$.

Another simple case

Large support

Assume that there exists $k \in \mathbb{Z}_+$ such that $\nu(k) > 0$ and $((1-q)\nu(k)+q)k > 1$. Then the subtree consisting of individuals with exactly k children survives with positive probability.

$$\exists k \in \mathbb{Z}_+ : \nu(k) > 0 \text{ and } ((1-q)\nu(k)+q)k > 1 \Rightarrow \mathbb{P}(\forall n \in \mathbb{N}, Z_n > 0) > 0.$$

In particular, if q>0 and ν has unbounded support, then the reinforced Galton-Watson process survives with positive probability.

Notation

From now on, we always assume that ν has finite support, and we denote by k_{\star} the largest integer such that $\nu(k_{\star}) > 0$.

- ① What is the asymptotic growth rate of $\mathbf{E}_q(Z_n)$, i.e. $\lim_{n\to\infty} \mathbf{E}_q(Z_n)^{1/n}$?
- ② Under which conditions on (ν, q) does (Z_n) survives with positive probability?
- What is the a.s. growth rate of (Z_n) , conditionally on survival?
- What is the typical ancestral line of an individual at a large generation

- **1** What is the asymptotic growth rate of $\mathbf{E}_q(Z_n)$, i.e. $\lim_{n\to\infty} \mathbf{E}_q(Z_n)^{1/n}$?
- ② Under which conditions on (ν, q) does (Z_n) survives with positive probability?
- What is the a.s. growth rate of (Z_n) , conditionally on survival?
- What is the typical ancestral line of an individual at a large generation

- **1** What is the asymptotic growth rate of $\mathbf{E}_q(Z_n)$, i.e. $\lim_{n\to\infty} \mathbf{E}_q(Z_n)^{1/n}$?
- **②** Under which conditions on (ν, q) does (Z_n) survives with positive probability?
- **1** What is the a.s. growth rate of (Z_n) , conditionally on survival?
- What is the typical ancestral line of an individual at a large generation?

- What is the asymptotic growth rate of $\mathbf{E}_q(Z_n)$, i.e. $\lim_{n\to\infty} \mathbf{E}_q(Z_n)^{1/n}$?
- **②** Under which conditions on (ν, q) does (Z_n) survives with positive probability?
- **3** What is the a.s. growth rate of (Z_n) , conditionally on survival?
- What is the typical ancestral line of an individual at a large generation?

- What is the asymptotic growth rate of $\mathbf{E}_q(Z_n)$, i.e. $\lim_{n\to\infty} \mathbf{E}_q(Z_n)^{1/n}$?
- **②** Under which conditions on (ν, q) does (Z_n) survives with positive probability?
- **3** What is the a.s. growth rate of (Z_n) , conditionally on survival?
- What is the typical ancestral line of an individual at a large generation?

- What is the asymptotic growth rate of $\mathbf{E}_q(Z_n)$, i.e. $\lim_{n\to\infty} \mathbf{E}_q(Z_n)^{1/n}$?
- **②** Under which conditions on (ν, q) does (Z_n) survives with positive probability?
- **3** What is the a.s. growth rate of (Z_n) , conditionally on survival?
- What is the typical ancestral line of an individual at a large generation?

1 Malthusian growth, survival and distribution of a (regular) Galton-Watson process

The reinforced Galton-Watson process

Statement of the results

Growth rate of the mean of a reinforced Galton-Watson

For $n \in \mathbb{N}$, denote by Z_n the number of individuals at generation n in a rGW (ν,q) .

For
$$t<1/k_\star$$
, set $\Pi(t)=\prod_{j=1}^{k_\star}(1-tj)^{\frac{(1-q)\nu(j)}{q}}$ and $m_{\nu,q}:=rac{q}{\int_0^{1/k_\star}\Pi(t)\mathrm{d}t}.$

Theorem (Bertoin-M. '24)

For all $q\in(0,1)$ and ν probability measure on \mathbb{Z}_+ with finite support, there exists $m_{\nu,q}>0$ such that

$$\lim_{n\to\infty} \mathbf{E}_q(Z_n)^{1/n} = m_{\nu,q}.$$

Much more precisely, we have $\mathbf{E}_q(Z_n) \sim \frac{\nu(k_*)}{q+\nu(k_*)(1-q)} m_{\nu,q}^n$ as $n \to \infty$.

Average growth rate

- If $\nu=(\delta_1+\delta_2)/2$ and q=1/3, then $m_{\nu,q}=\frac{8}{5}$.
- If $\nu = (\delta_1 + \delta_2)/2$ and q = 1/5, then $m_{\nu,q} = \frac{48}{31}$.
- If $\nu = (\delta_0 + \delta_1 + \delta_2 + \delta_3)/4$ and q = 1/5, then $m_{\nu,q} = \frac{162}{95}$.

Average growth rate

- If $\nu=(\delta_1+\delta_2)/2$ and q=1/3, then $m_{\nu,q}=\frac{8}{5}$.
- If $\nu = (\delta_1 + \delta_2)/2$ and q = 1/5, then $m_{\nu,q} = \frac{48}{31}$.
- If $\nu = (\delta_0 + \delta_1 + \delta_2 + \delta_3)/4$ and q = 1/5, then $m_{\nu,q} = \frac{162}{95}$.

Average growth rate

- If $\nu=(\delta_1+\delta_2)/2$ and q=1/3, then $m_{\nu,q}=\frac{8}{5}$.
- If $\nu = (\delta_1 + \delta_2)/2$ and q = 1/5, then $m_{\nu,q} = \frac{48}{31}$.
- If $\nu = (\delta_0 + \delta_1 + \delta_2 + \delta_3)/4$ and q = 1/5, then $m_{\nu,q} = \frac{162}{95}$.

Average growth rate

- If $\nu=(\delta_1+\delta_2)/2$ and q=1/3, then $m_{\nu,q}=\frac{8}{5}$.
- If $\nu = (\delta_1 + \delta_2)/2$ and q = 1/5, then $m_{\nu,q} = \frac{48}{31}$.
- If $\nu = (\delta_0 + \delta_1 + \delta_2 + \delta_3)/4$ and q = 1/5, then $m_{\nu,q} = \frac{162}{95}$.

Theorem (Bertoin–M. '25+)

• If $qk_{\star} \geq 1$ or

$$\sum_{j=0}^{k_\star} \frac{(1-q)j\nu(j)}{1-qj} > 1$$

then $\mathbb{P}(\forall n \in \mathbb{N}, Z_n > 0) > 0$.

• If moreover $m_{*,q}=((1-q)\nu(k_{\star})+q)k_{\star}>1$, then

$$\lim_{n\to\infty}\frac{Z_n}{m_{\nu,a}^n}=\lim_{n\to\infty}\frac{Z_n^*}{m_{*,a}^n}\quad a.s.$$

where (Z_n^*) is the largest k_* -ary subtree of the reinforced Galton-Watson process.

Gap in the statements

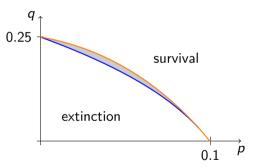


Figure – Phase diagram of a reinforced Galton-Watson process with parameter (ν_p,q) with $\nu_p=(1-4p)\delta_0+p(\delta_1+\delta_2+\delta_3+\delta_4)$, for $q\in[0,0.25]$ and $p\in[0,0.1]$. The blue line corresponds to (p,q) such that $m_{\nu_p,q}=1$, the orange one such that $\sum \frac{(1-q)j\nu_p(j)}{(1-qi)}=1$.

Population distribution

Definition

We define the *pressure function* of the $rGW(\nu,q)$ as

$$\Lambda_q:\lambda\in\mathbb{R}^{k^*}\mapsto \log q-\log\left(\int_0^\infty\prod_{i=1}^{k^*}(1-te^{\lambda(k)})_+^{
u(k)(1-q)/q}\mathrm{d}t
ight).$$

Lemma

We have

$$\lim_{n\to\infty}\frac{1}{n}\log\mathsf{E}_q\left(\sum_{|u|=n}\exp\left(\langle L_u,\lambda\rangle\right)\right)=\log m_{\nu,q}+\Lambda_q(\lambda).$$

Population distribution

Definition

We define the *pressure function* of the $rGW(\nu,q)$ as

$$\Lambda_q:\lambda\in\mathbb{R}^{k^*}\mapsto \log q-\log\left(\int_0^\infty\prod_{i=1}^{k^*}(1-te^{\lambda(k)})_+^{
u(k)(1-q)/q}\mathrm{d}t
ight).$$

Lemma

We have

$$\lim_{n o \infty} rac{1}{n} \log \mathbf{E}_q \left(\sum_{|u|=n} \exp\left(\langle L_u, \lambda
angle
ight)
ight) = \log m_{
u,q} + \Lambda_q(\lambda).$$

Population distribution

Theorem (Bertoin-M. 25+)

• With $\bar{\nu}_q := \nabla \Lambda_q(\ln)$, for all neighbourhood G of $\bar{\nu}_q$, there exists $\varepsilon > 0$ such that

$$\mathbf{E}_{q}(\#\{|u|=n:L_{u}\not\in G\})\leq e^{-\varepsilon n}\mathbf{E}_{q}(Z_{n});$$

- ② Any law that satisfies $\langle \rho, \ln \rangle < \Lambda_a^*(\rho)$ is evanescent \mathbb{P}_q -a.s.
- **3** Any law that satisfies $\langle \rho, \ln \rangle > H(\rho | q\rho + (1-q)\nu)$ is strongly persistent with positive probability.

- ① State a necessary and sufficient condition, in terms of ν and q for the survival of the reinforced Galton-Watson process.
- @ Determine the asymptotic almost sure growth rate of Z_n , defined as $\lim_{n o\infty}Z_n^{1/n}$
- Find a martingale allowing to estimate the size of the population at large times
- ① Give a probabilistic interpretation of the growth rate of $\mathbf{E}(Z_n)$
- Oharacterize the laws that are evanescent, weakly persistent or strongly persistent.

- ullet State a necessary and sufficient condition, in terms of u and q for the survival of the reinforced Galton-Watson process.
- ② Determine the asymptotic almost sure growth rate of Z_n , defined as $\lim_{n\to\infty} Z_n^{1/n}$
- Find a martingale allowing to estimate the size of the population at large times
- Give a probabilistic interpretation of the growth rate of $\mathbf{E}(Z_n)$
- Oharacterize the laws that are evanescent, weakly persistent or strongly persistent.

- ullet State a necessary and sufficient condition, in terms of u and q for the survival of the reinforced Galton-Watson process.
- ② Determine the asymptotic almost sure growth rate of Z_n , defined as $\lim_{n\to\infty} Z_n^{1/n}$.
- Find a martingale allowing to estimate the size of the population at large times
- Give a probabilistic interpretation of the growth rate of $\mathbf{E}(Z_n)$.
- Oharacterize the laws that are evanescent, weakly persistent or strongly persistent.

- ullet State a necessary and sufficient condition, in terms of u and q for the survival of the reinforced Galton-Watson process.
- ② Determine the asymptotic almost sure growth rate of Z_n , defined as $\lim_{n\to\infty} Z_n^{1/n}$.
- Find a martingale allowing to estimate the size of the population at large times.
- ① Give a probabilistic interpretation of the growth rate of $\mathbf{E}(Z_n)$
- Oharacterize the laws that are evanescent, weakly persistent or strongly persistent.

- ullet State a necessary and sufficient condition, in terms of u and q for the survival of the reinforced Galton-Watson process.
- ② Determine the asymptotic almost sure growth rate of Z_n , defined as $\lim_{n\to\infty} Z_n^{1/n}$.
- Find a martingale allowing to estimate the size of the population at large times.
- Give a probabilistic interpretation of the growth rate of $\mathbf{E}(Z_n)$.
- Oharacterize the laws that are evanescent, weakly persistent or strongly persistent.

- lacktriangled State a necessary and sufficient condition, in terms of ν and q for the survival of the reinforced Galton-Watson process.
- ② Determine the asymptotic almost sure growth rate of Z_n , defined as $\lim_{n\to\infty} Z_n^{1/n}$.
- Find a martingale allowing to estimate the size of the population at large times.
- Give a probabilistic interpretation of the growth rate of $\mathbf{E}(Z_n)$.
- Oharacterize the laws that are evanescent, weakly persistent or strongly persistent.

Thank you for your attention!

