Axiomatic characterisation of generalized ψ -estimators

Mátyás Barczy

HUN-REN-SZTE Analysis and Applications Research Group University of Szeged, Hungary

19th International Summer Conference on Probability and Statistics Sofia, Bulgaria

24-27 July, 2025

Joint work with Zsolt Páles (University of Debrecen, Hungary)

Supported by the project TKP2021-NVA-09.

Coauthor

Zsolt Páles Budapest, 2016

Outline of my talk

- M-estimators, ψ -estimators (also called *Z*-estimators).
- We introduce *generalized* ψ -estimators.
- Questions that we investigate:
 - 1. existence and uniqueness,
 - 2. axiomatic characterisation.
- Main tool in the proof of characterisation theorem: a separation theorem for Abelian subsemigroups.

This topic has a close connection to the *theory of means in analysis*.

M-estimators, ψ -estimators (Z-estimators)

The M-estimators were introduced by Huber (1963, 1967).

The letter M refers to "maximum likelihood-type".

Let

- (X, \mathcal{X}) be a measurable space (sample space),
- ullet Θ be a Borel subset of \mathbb{R} (parameter set),
- $\varrho: X \times \Theta \to \mathbb{R}$ be a function, measurable in its first variable, i.e., for each $t \in \Theta$, the function $X \ni x \mapsto \varrho(x, t)$ is measurable,
- $(\xi_n)_{n\in\mathbb{N}}$ be a sequence of i.i.d. random variables with values in X such that the law of ξ_1 depends on an unknown parameter $\vartheta\in\Theta$.

M-estimators, ψ -estimators (Z-estimators)

The M-estimators were introduced by Huber (1963, 1967).

The letter M refers to "maximum likelihood-type".

Let

- (X, \mathcal{X}) be a measurable space (sample space),
- ullet Θ be a Borel subset of $\mathbb R$ (parameter set),
- $\varrho: X \times \Theta \to \mathbb{R}$ be a function, measurable in its first variable, i.e., for each $t \in \Theta$, the function $X \ni x \mapsto \varrho(x, t)$ is measurable,
- $(\xi_n)_{n\in\mathbb{N}}$ be a sequence of i.i.d. random variables with values in X such that the law of ξ_1 depends on an unknown parameter $\vartheta\in\Theta$.

For each $n \in \mathbb{N}$, Huber introduced an estimator of ϑ based on the observations ξ_1, \ldots, ξ_n as a solution $\widehat{\vartheta}_n := \widehat{\vartheta}_n(\xi_1, \ldots, \xi_n)$ of the minimization problem:

$$\inf_{t\in\Theta}\sum_{i=1}^n\varrho(\xi_i,t),$$

provided that such a solution exists.

M-estimators, ψ -estimators (Z-estimators)

One calls $\widehat{\vartheta}_n$ an M-estimator of the unknown parameter $\vartheta \in \Theta$ based on the i.i.d. observations ξ_1, \ldots, ξ_n .

Under suitable regularity assumptions, this minimization problem can be solved by setting the derivative of the objective function (w.r.t the unknown parameter) equal to 0:

$$\sum_{i=1}^n \partial_2 \varrho(\xi_i, t) = 0, \qquad t \in \Theta.$$

In the statistical literature, $\partial_2 \varrho$ is often denoted by ψ , and hence, in this case, an M-estimator is often called a ψ -estimator.

While other authors call it a Z-estimator (the letter Z refers to "zero").

For a detailed exposition of M-estimators and $\,\psi\text{-estimators},$ see, e.g., Kosorok (2008) or van der Vaart (1998).

Let

- X be a nonempty set,
- ullet Θ be a nonempty open interval of \mathbb{R} ,
- $\Psi(X,\Theta)$ be the set

$$\Big\{ \psi: X imes \Theta o \mathbb{R}: ext{ for each } x \in X, ext{ there exist } t_+, t_- \in \Theta$$
 such that $t_+ < t_- ext{ and } \psi(x, t_+) > 0 > \psi(x, t_-) \Big\}.$

That is, $\psi \in \Psi(X, \Theta)$ if for each $x \in X$, the function $\Theta \ni t \mapsto \psi(x, t)$ changes sign (from positive to negative) on the interval Θ at least once.

Let

- X be a nonempty set,
- ullet Θ be a nonempty open interval of \mathbb{R} ,
- $\Psi(X,\Theta)$ be the set

$$\Big\{ \psi: X imes \Theta o \mathbb{R}: ext{ for each } x \in X, ext{ there exist } t_+, t_- \in \Theta$$
 such that $t_+ < t_- ext{ and } \psi(x, t_+) > 0 > \psi(x, t_-) \Big\}.$

That is, $\psi \in \Psi(X, \Theta)$ if for each $x \in X$, the function $\Theta \ni t \mapsto \psi(x, t)$ changes sign (from positive to negative) on the interval Θ at least once.

Given a function $\psi \in \Psi(X, \Theta)$, $n \in \mathbb{N}$, and $\mathbf{x} = (x_1, \dots, x_n) \in X^n$, let us consider the equation:

$$\psi_{\mathbf{x}}(t) := \sum_{i=1}^{n} \psi(x_i, t) = 0, \qquad t \in \Theta.$$

Task: find necessary as well as sufficient conditions for the unique solvability of this equation.

In a broader context, find necessary as well as sufficient conditions for the existence of a point of sign change for the function $\psi_{\mathbf{X}}$.

Point of sign change

Given a nonempty open interval Θ of $\mathbb R$ and a function $f:\Theta\to\mathbb R$, we say that $\vartheta\in\Theta$ is a point of sign change (of decreasing type) for f if

$$f(t) > 0$$
 for $t < \vartheta$, and $f(t) < 0$ for $t > \vartheta$.

Task: find necessary as well as sufficient conditions for the unique solvability of this equation.

In a broader context, find necessary as well as sufficient conditions for the existence of a point of sign change for the function $\psi_{\mathbf{x}}$.

Point of sign change

Given a nonempty open interval Θ of $\mathbb R$ and a function $f:\Theta\to\mathbb R$, we say that $\vartheta\in\Theta$ is a point of sign change (of decreasing type) for f if

$$f(t) > 0$$
 for $t < \vartheta$, and $f(t) < 0$ for $t > \vartheta$.

Remark.

- (i) There can exist at most one point of sign change for f.
- (ii) If f is continuous and $\vartheta \in \Theta$ is a point of sign change for f, then ϑ is the unique zero of f.

.

Generalized ψ -estimator

We say that a function $\psi \in \Psi(X,\Theta)$ possesses the property $[T_n]$ (briefly, ψ is a T_n -function) for some $n \in \mathbb{N}$ if there exists a mapping $\vartheta_{n,\psi}: X^n \to \Theta$ such that, for all $\mathbf{x} = (x_1, \dots, x_n) \in X^n$ and $t \in \Theta$,

$$\psi_{\mathbf{x}}(t) = \sum_{i=1}^{n} \psi(\mathbf{x}_i, t) \begin{cases} > 0 & \text{if } t < \vartheta_{n, \psi}(\mathbf{x}), \\ < 0 & \text{if } t > \vartheta_{n, \psi}(\mathbf{x}). \end{cases}$$

Generalized ψ -estimator

We say that a function $\psi \in \Psi(X,\Theta)$ possesses the property $[T_n]$ (briefly, ψ is a T_n -function) for some $n \in \mathbb{N}$ if there exists a mapping $\vartheta_{n,\psi}: X^n \to \Theta$ such that, for all $\mathbf{x} = (x_1, \dots, x_n) \in X^n$ and $t \in \Theta$,

$$\psi_{\mathbf{x}}(t) = \sum_{i=1}^{n} \psi(\mathbf{x}_i, t) \begin{cases} > 0 & \text{if } t < \vartheta_{n, \psi}(\mathbf{x}), \\ < 0 & \text{if } t > \vartheta_{n, \psi}(\mathbf{x}). \end{cases}$$

In other words, for each $\mathbf{x} \in X^n$, the value $\vartheta_{n,\psi}(\mathbf{x})$ is a point of sign change for the function $\psi_{\mathbf{x}}$.

We call $\vartheta_{n,\psi}(\mathbf{x})$ as a generalized ψ -estimator for some unknown parameter in Θ based on the realization $\mathbf{x} = (x_1, \dots, x_n) \in X^n$.

In many cases, instead of $\vartheta_{n,\psi}$, we simply write ϑ_n .

Generalized ψ -estimator

We say that a function $\psi \in \Psi(X, \Theta)$ possesses the property $[T_n]$ (briefly, ψ is a T_n -function) for some $n \in \mathbb{N}$ if there exists a mapping $\vartheta_{n,\psi}: X^n \to \Theta$ such that, for all $\mathbf{x} = (x_1, \dots, x_n) \in X^n$ and $t \in \Theta$,

$$\psi_{\mathbf{x}}(t) = \sum_{i=1}^{n} \psi(\mathbf{x}_i, t) \begin{cases} > 0 & \text{if } t < \vartheta_{n, \psi}(\mathbf{x}), \\ < 0 & \text{if } t > \vartheta_{n, \psi}(\mathbf{x}). \end{cases}$$

In other words, for each $\mathbf{x} \in X^n$, the value $\vartheta_{n,\psi}(\mathbf{x})$ is a point of sign change for the function $\psi_{\mathbf{x}}$.

We call $\vartheta_{n,\psi}(\mathbf{x})$ as a generalized ψ -estimator for some unknown parameter in Θ based on the realization $\mathbf{x} = (x_1, \dots, x_n) \in X^n$.

In many cases, instead of $\vartheta_{n,\psi}$, we simply write ϑ_n .

Property $[Z_n]$ for some $n \in \mathbb{N}$

Property $[T_n]$ and $\sum_{i=1}^n \psi(x_i, \vartheta_n(\mathbf{x})) = 0$ for all $\mathbf{x} = (x_1, \dots, x_n) \in X^n$.

Necessary as well as sufficient conditions for $[T_n]$, $n \in \mathbb{N}$

Let X be a nonempty set, Θ be a nonempty open interval of \mathbb{R} , and $\psi \in \Psi(X, \Theta)$ be a T_1 -function.

(i) Necessity: If ψ is a T_n -function for infinitely many $n \in \mathbb{N}$, then, for each $x, y \in X$ with $\vartheta_1(x) < \vartheta_1(y)$, the auxiliary function

$$(\vartheta_1(x),\vartheta_1(y))\ni t\mapsto -\frac{\psi(x,t)}{\psi(y,t)} \tag{*}$$

is increasing.

Necessary as well as sufficient conditions for $[T_n]$, $n \in \mathbb{N}$

Let X be a nonempty set, Θ be a nonempty open interval of \mathbb{R} , and $\psi \in \Psi(X,\Theta)$ be a T_1 -function.

(i) Necessity: If ψ is a T_n -function for infinitely many $n \in \mathbb{N}$, then, for each $x, y \in X$ with $\vartheta_1(x) < \vartheta_1(y)$, the auxiliary function

$$(\vartheta_1(x),\vartheta_1(y))\ni t\mapsto -\frac{\psi(x,t)}{\psi(y,t)} \tag{*}$$

is increasing.

- (ii) Sufficiency: If
 - ψ is a Z_1 -function (i.e., $\psi(x, \vartheta_1(x)) = 0$, $x \in X$),
 - for each $x, y \in X$ with $\vartheta_1(x) < \vartheta_1(y)$, the auxiliary function (*) is *strictly* increasing,

then ψ is a T_n -function for each $n \in \mathbb{N}$.

ç

Necessary as well as sufficient conditions for $[T_n]$, $n \in \mathbb{N}$

Let X be a nonempty set, Θ be a nonempty open interval of \mathbb{R} , and $\psi \in \Psi(X, \Theta)$ be a T_1 -function.

(i) Necessity: If ψ is a T_n -function for infinitely many $n \in \mathbb{N}$, then, for each $x, y \in X$ with $\vartheta_1(x) < \vartheta_1(y)$, the auxiliary function

$$(\vartheta_1(x),\vartheta_1(y))\ni t\mapsto -\frac{\psi(x,t)}{\psi(y,t)} \tag{*}$$

is increasing.

- (ii) Sufficiency: If
 - ψ is a Z_1 -function (i.e., $\psi(x, \vartheta_1(x)) = 0$, $x \in X$),
 - for each $x, y \in X$ with $\vartheta_1(x) < \vartheta_1(y)$, the auxiliary function (*) is *strictly* increasing,

then ψ is a T_n -function for each $n \in \mathbb{N}$.

Remark. If $\psi \in \Psi(X,\Theta)$ is *continuous in its second variable* as well, then part (ii) of the previous result provides a sufficient condition for the existence and uniqueness of a *usual* ψ -estimator.

Another sufficient condition for $[T_n]$, $n \in \mathbb{N}$

Let X be a nonempty set, Θ be a nonempty open interval of \mathbb{R} , and $\psi \in \Psi(X, \Theta)$ be a T_1 -function.

If for all $x \in X$, the function $\Theta \ni t \mapsto \psi(x,t)$ is *strictly* decreasing, then

the function ψ has the property $[T_n]$ for each $n \in \mathbb{N}$.

Below, we provide some examples.

Examples

• empirical α -quantile, where $\alpha \in (0, 1)$:

$$\psi(x,t) := \begin{cases} \alpha & \text{if } t < x, \\ 0 & \text{if } t = x, \\ \alpha - 1 & \text{if } t > x. \end{cases}$$

Special case: empirical median with $\alpha = 1/2$.

• empirical α -expectile, where $\alpha \in (0, 1)$:

$$\psi(x,t) := \begin{cases} \alpha(x-t) & \text{if } t < x, \\ 0 & \text{if } t = x, \\ (1-\alpha)(x-t) & \text{if } t > x. \end{cases}$$

It is a smoothed version of empirical α -quantile.

Examples

• empirical α -quantile, where $\alpha \in (0, 1)$:

$$\psi(x,t) := \begin{cases} \alpha & \text{if } t < x, \\ 0 & \text{if } t = x, \\ \alpha - 1 & \text{if } t > x. \end{cases}$$

Special case: empirical median with $\alpha = 1/2$.

• empirical α -expectile, where $\alpha \in (0, 1)$:

$$\psi(x,t) := \begin{cases} \alpha(x-t) & \text{if } t < x, \\ 0 & \text{if } t = x, \\ (1-\alpha)(x-t) & \text{if } t > x. \end{cases}$$

It is a smoothed version of empirical α -quantile.

• Mathieu-type ψ -estimator: $\psi(x,t) := \operatorname{sign}(x-t)f(|x-t|), \ x,t \in \mathbb{R},$ where $f:[0,\infty) \to [0,\infty)$. In particular, Catoni-type ψ -estimator with $f(z) := \ln\left(1+z+\frac{z^2}{2}\right), \ z\geqslant 0.$

1.

Examples

• empirical α -quantile, where $\alpha \in (0, 1)$:

$$\psi(x,t) := \begin{cases} \alpha & \text{if } t < x, \\ 0 & \text{if } t = x, \\ \alpha - 1 & \text{if } t > x. \end{cases}$$

Special case: empirical median with $\alpha = 1/2$.

• empirical α -expectile, where $\alpha \in (0, 1)$:

$$\psi(x,t) := \begin{cases} \alpha(x-t) & \text{if } t < x, \\ 0 & \text{if } t = x, \\ (1-\alpha)(x-t) & \text{if } t > x. \end{cases}$$

It is a smoothed version of empirical α -quantile.

- Mathieu-type ψ -estimator: $\psi(x,t) := \operatorname{sign}(x-t)f(|x-t|), \ x,t \in \mathbb{R},$ where $f:[0,\infty) \to [0,\infty)$. In particular, Catoni-type ψ -estimator with $f(z) := \ln\left(1+z+\frac{z^2}{2}\right), \ z\geqslant 0.$
- MLE for absolutely continuous distributions: $\psi(x,t) := \partial_2(\ln(f(x,t))) = \frac{\partial_2 f(x,t)}{f(x,t)}, (x,t) \in \mathcal{X}_f \times \Theta$, where, for each $t \in \Theta$, the function $\mathbb{R} \ni x \mapsto f(x,t)$ is a density function.

We present a question that prompted us to search for an axiomatic characterization of generalized ψ -estimators.

Question. Let $X:=(0,\infty)$, $\Theta:=(0,\infty)$, and define the estimator $\kappa:\bigcup_{n=1}^{\infty}(0,\infty)^n\to(0,\infty)$ by

$$\kappa(x_1,\ldots,x_n):=\frac{1}{2}\Big(\frac{x_1+\cdots+x_n}{n}+\sqrt[n]{x_1\cdots x_n}\Big),\quad n\in\mathbb{N},\ x_1,\ldots,x_n>0.$$

Does there exist a function $\psi \in \Psi((0,\infty),(0,\infty))$ such that

$$\kappa(x_1,\ldots,x_n)=\vartheta_{n,\psi}(x_1,\ldots,x_n), \qquad n\in\mathbb{N}, \ x_1,\ldots,x_n>0$$
?

We present a question that prompted us to search for an axiomatic characterization of generalized ψ -estimators.

Question. Let $X:=(0,\infty),\ \Theta:=(0,\infty)$, and define the estimator $\kappa:\bigcup_{n=1}^{\infty}(0,\infty)^n\to(0,\infty)$ by

$$\kappa(x_1,\ldots,x_n):=\frac{1}{2}\Big(\frac{x_1+\cdots+x_n}{n}+\sqrt[n]{x_1\cdots x_n}\Big),\quad n\in\mathbb{N},\ x_1,\ldots,x_n>0.$$

Does there exist a function $\ \psi \in \Psi((0,\infty),(0,\infty))$ such that

$$\kappa(x_1,\ldots,x_n)=\vartheta_{n,\psi}(x_1,\ldots,x_n), \qquad n\in\mathbb{N},\ x_1,\ldots,x_n>0\ ?$$

In other words,

is κ a generalized ψ -estimator with some function ψ ?

We will answer this question later on.

More generally, one can formulate the following problem:

given an *arbitrary* estimator κ for the unknown parameter $\vartheta \in \Theta$, can one find a function $\psi: X \times \Theta \to \mathbb{R}$ such that

 κ is a generalized ψ -estimator?

A similar question can be formulated for (usual) ψ -estimators as well.

More generally, one can formulate the following problem:

given an *arbitrary* estimator κ for the unknown parameter $\vartheta \in \Theta$, can one find a function $\psi: X \times \Theta \to \mathbb{R}$ such that

 κ is a generalized ψ -estimator?

A similar question can be formulated for (usual) ψ -estimators as well.

For the solutions, the characterisation theorem of quasi-arithmetic means due to Kolmogorov (1930), Nagumo (1930) and de Finetti (1931) served as motivation for us.

Notations.

- Property [T]: property $[T_n]$ holds for each $n \in \mathbb{N}$,
- Property [Z]: property [Z_n] holds for each $n \in \mathbb{N}$,
- Property [C]: ψ is continuous in its second variable,
- Given a function $M: \bigcup_{n=1}^{\infty} X^n \to \Theta$ and $m \in \mathbb{N}$, we will denote by M_m the restriction of M onto X^m , i.e.,

$$M \mid_{X^m} =: M_m.$$

Characterisation of generalized ψ -estimators

Let X be a nonempty set, Θ be a nonempty open interval of \mathbb{R} , and $M:\bigcup_{n=1}^{\infty}X^n\to\Theta$ be a function such that $\inf M_1(X)=\inf\Theta$ and $\sup M_1(X)=\sup\Theta$. Then the following two statements are equivalent:

- There exists a function $\psi \in \Psi[T](X, \Theta)$ such that, for all $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in X$, we have $\vartheta_{n,\psi}(x_1, \ldots, x_n) = M_n(x_1, \ldots, x_n)$.
- The function M possesses the following properties:

Characterisation of generalized ψ -estimators

Let X be a nonempty set, Θ be a nonempty open interval of \mathbb{R} , and $M:\bigcup_{n=1}^{\infty}X^n\to\Theta$ be a function such that $\inf M_1(X)=\inf\Theta$ and $\sup M_1(X)=\sup\Theta$. Then the following two statements are equivalent:

- There exists a function $\psi \in \Psi[T](X, \Theta)$ such that, for all $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in X$, we have $\vartheta_{n,\psi}(x_1, \ldots, x_n) = M_n(x_1, \ldots, x_n)$.
- The function M possesses the following properties:

 (a) Symmetry: M_n is symmetric for each $n \in \mathbb{N}$, that is.
 - (a) Symmetry: M_n is symmetric for each $n \in \mathbb{N}$, that is, $M_n(x_1, \ldots, x_n) = M_n(x_{\pi(1)}, \ldots, x_{\pi(n)})$ for all $x_1, \ldots, x_n \in X$ and each permutation π .

Characterisation of generalized ψ -estimators

Let X be a nonempty set, Θ be a nonempty open interval of \mathbb{R} , and $M:\bigcup_{n=1}^{\infty}X^n\to\Theta$ be a function such that $\inf M_1(X)=\inf\Theta$ and $\sup M_1(X)=\sup\Theta$. Then the following two statements are equivalent:

- There exists a function $\psi \in \Psi[T](X,\Theta)$ such that, for all $n \in \mathbb{N}$ and $x_1,\ldots,x_n \in X$, we have $\vartheta_{n,\psi}(x_1,\ldots,x_n) = M_n(x_1,\ldots,x_n)$.
- \bigcirc The function M possesses the following properties:
 - (a) Symmetry: M_n is symmetric for each $n \in \mathbb{N}$, that is, $M_n(x_1, \ldots, x_n) = M_n(x_{\pi(1)}, \ldots, x_{\pi(n)})$ for all $x_1, \ldots, x_n \in X$ and each permutation π .
 - (b) Mean-type property (internality): for each $n, k \in \mathbb{N}$ and $(x_1, \ldots, x_n) \in X^n, (y_1, \ldots, y_k) \in X^k$, we have

$$\min(M_n(x_1,...,x_n),M_k(y_1,...,y_k)) \leqslant M_{n+k}(x_1,...,x_n,y_1,...,y_k)$$

$$\leqslant \max(M_n(x_1,...,x_n),M_k(y_1,...,y_k)),$$

Characterisation of generalized ψ -estimators

Let X be a nonempty set, Θ be a nonempty open interval of \mathbb{R} , and $M:\bigcup_{n=1}^{\infty}X^n\to\Theta$ be a function such that $\inf M_1(X)=\inf\Theta$ and $\sup M_1(X)=\sup\Theta$. Then the following two statements are equivalent:

- There exists a function $\psi \in \Psi[T](X, \Theta)$ such that, for all $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in X$, we have $\vartheta_{n,\psi}(x_1, \ldots, x_n) = M_n(x_1, \ldots, x_n)$.
- The function M possesses the following properties:
 - (a) Symmetry: M_n is symmetric for each $n \in \mathbb{N}$, that is, $M_n(x_1, \ldots, x_n) = M_n(x_{\pi(1)}, \ldots, x_{\pi(n)})$ for all $x_1, \ldots, x_n \in X$ and each permutation π .
 - (b) Mean-type property (internality): for each $n, k \in \mathbb{N}$ and $(x_1, \ldots, x_n) \in X^n, (y_1, \ldots, y_k) \in X^k$, we have

$$\min(M_n(x_1,...,x_n),M_k(y_1,...,y_k)) \leq M_{n+k}(x_1,...,x_n,y_1,...,y_k)$$

$$\leq \max(M_n(x_1,...,x_n),M_k(y_1,...,y_k)),$$

(c) Asymptotic idempotency: for each $k \in \mathbb{N}$ and $x_1, \ldots, x_k, y \in X$,

$$\lim_{n\to\infty} M_{1+kn}(y,\underbrace{x_1,\ldots,x_1},\ldots,\underbrace{x_k,\ldots,x_k}) = M_k(x_1,\ldots,x_k).$$

Answer to the motivating question

Motivating question: Is

$$\kappa(x_1,\ldots,x_n):=\frac{1}{2}\Big(\frac{x_1+\cdots+x_n}{n}+\sqrt[n]{x_1\cdots x_n}\Big),\quad n\in\mathbb{N},\ x_1,\ldots,x_n>0,$$

a generalized ψ -estimator with some function ψ ?

Answer to the motivating question

Motivating question: Is

$$\kappa(x_1,\ldots,x_n):=\frac{1}{2}\Big(\frac{x_1+\cdots+x_n}{n}+\sqrt[n]{x_1\cdots x_n}\Big),\quad n\in\mathbb{N},\ x_1,\ldots,x_n>0,$$

a generalized ψ -estimator with some function ψ ?

Answer: No. On the contrary, suppose that κ is a generalized ψ -estimator. Then, by the mean-type property with

$$(x_1, x_2) := (1,81)$$
 and $(y_1, y_2) = (25,25),$

we should obtain that

$$\min(\kappa(1,81),\kappa(25,25)) \leqslant \kappa(1,81,25,25) \leqslant \max(\kappa(1,81),\kappa(25,25)).$$

Answer to the motivating question

Motivating question: Is

$$\kappa(x_1,\ldots,x_n):=\frac{1}{2}\Big(\frac{x_1+\cdots+x_n}{n}+\sqrt[n]{x_1\cdots x_n}\Big),\quad n\in\mathbb{N},\ x_1,\ldots,x_n>0,$$

a generalized ψ -estimator with some function ψ ?

Answer: No. On the contrary, suppose that κ is a generalized ψ -estimator. Then, by the mean-type property with

$$(x_1, x_2) := (1, 81)$$
 and $(y_1, y_2) = (25, 25),$

we should obtain that

$$\min(\kappa(1,81),\kappa(25,25)) \leqslant \kappa(1,81,25,25) \leqslant \max(\kappa(1,81),\kappa(25,25)).$$

However, the left hand side inequality above is violated, since

$$\kappa(1,81) = \kappa(25,25) = 25$$
 and $\kappa(1,81,25,25) = 24$.

It leads us to a contradiction.

Characterisation of (usual) ψ -estimators with ψ continuous in its 2nd variable

Let X be a nonempty set, Θ be a nonempty open interval of \mathbb{R} , and $M:\bigcup_{n=1}^{\infty}X^n\to\Theta$ be a function such that $\inf M_1(X)=\inf\Theta$ and $\sup M_1(X)=\sup\Theta$. Then the following two statements are equivalent:

- There exists a function $\psi \in \Psi[Z, C](X, \Theta)$ such that, for all $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in X$, we have $\vartheta_{n,\psi}(x_1, \ldots, x_n) = M_n(x_1, \ldots, x_n)$.
- The function M possesses the following properties:

Characterisation of (usual) ψ -estimators with ψ continuous in its 2nd variable

Let X be a nonempty set, Θ be a nonempty open interval of \mathbb{R} , and $M:\bigcup_{n=1}^{\infty}X^n\to\Theta$ be a function such that $\inf M_1(X)=\inf\Theta$ and $\sup M_1(X)=\sup\Theta$. Then the following two statements are equivalent:

- There exists a function $\psi \in \Psi[Z, C](X, \Theta)$ such that, for all $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in X$, we have $\vartheta_{n,\psi}(x_1, \ldots, x_n) = M_n(x_1, \ldots, x_n)$.
- The function M possesses the following properties: (a) Symmetry: M_n is symmetric for each $n \in \mathbb{N}$.

Characterisation of (usual) ψ -estimators with ψ continuous in its 2nd variable

Let X be a nonempty set, Θ be a nonempty open interval of \mathbb{R} , and $M:\bigcup_{n=1}^{\infty}X^n\to\Theta$ be a function such that $\inf M_1(X)=\inf\Theta$ and $\sup M_1(X)=\sup\Theta$. Then the following two statements are equivalent:

- There exists a function $\psi \in \Psi[Z, C](X, \Theta)$ such that, for all $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in X$, we have $\vartheta_{n,\psi}(x_1, \ldots, x_n) = M_n(x_1, \ldots, x_n)$.
- \bigcirc The function M possesses the following properties:
 - (a) Symmetry: M_n is symmetric for each $n \in \mathbb{N}$.
 - (b) Strict mean-type property (strict internality): for each $n, k \in \mathbb{N}$ and $(x_1, \ldots, x_n) \in X^n$, $(y_1, \ldots, y_k) \in X^k$, we have

$$\min(M_n(x_1,...,x_n),M_k(y_1,...,y_k)) \leqslant M_{n+k}(x_1,...,x_n,y_1,...,y_k) \leqslant \max(M_n(x_1,...,x_n),M_k(y_1,...,y_k)),$$

and if $M_n(x_1, \ldots, x_n) \neq M_k(y_1, \ldots, y_k)$, then both inequalities are strict.

Characterisation of (usual) ψ -estimators with ψ continuous in its 2nd variable

Let X be a nonempty set, Θ be a nonempty open interval of \mathbb{R} , and $M: \bigcup_{n=1}^{\infty} X^n \to \Theta$ be a function such that $\inf M_1(X) = \inf \Theta$ and $\sup M_1(X) = \sup \Theta$. Then the following two statements are equivalent:

- ① There exists a function $\psi \in \Psi[Z, C](X, \Theta)$ such that, for all $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in X$, we have $\vartheta_{n,\psi}(x_1, \ldots, x_n) = M_n(x_1, \ldots, x_n)$.
- The function *M* possesses the following properties:
 - (a) Symmetry: M_n is symmetric for each $n \in \mathbb{N}$.
 - (b) Strict mean-type property (strict internality): for each $n, k \in \mathbb{N}$ and $(x_1, \ldots, x_n) \in X^n$, $(y_1, \ldots, y_k) \in X^k$, we have

$$\min(M_n(x_1,...,x_n),M_k(y_1,...,y_k)) \leq M_{n+k}(x_1,...,x_n,y_1,...,y_k)$$

$$\leq \max(M_n(x_1,...,x_n),M_k(y_1,...,y_k)),$$

and if $M_n(x_1, \ldots, x_n) \neq M_k(y_1, \ldots, y_k)$, then both inequalities are strict. (c) Asymptotic idempotency: for each $k \in \mathbb{N}$ and $x_1, \ldots, x_k, y \in X$,

$$\lim_{n\to\infty} M_{1+kn}(y,\underbrace{x_1,\ldots,x_1},\ldots,\underbrace{x_k,\ldots,x_k}) = M_k(x_1,\ldots,x_k).$$

Main tool in the proof of characterisation theorem

Proof of part $(ii) \Rightarrow (i)$ is based on a separation theorem for Abelian subsemigroups.

Core of an Abelian subsemigroup

Let (S, \oplus) be an Abelian semigroup, and A be a subsemigroup of S. The (algebraic) core of A is defined as the subsemigroup

$$\operatorname{cor}(A) := \left\{ a \in A : \forall \, s \in S \, \exists \, n \in \mathbb{N} \, \text{ such that } \underbrace{a \oplus \ldots \oplus a}_{n} \oplus s \in A \right\}.$$

Main tool in the proof of characterisation theorem

Separation theorem for Abelian subsemigroups (Páles (1989))

Let (S, \oplus) be an Abelian semigroup, let A and B are disjoint subsemigroups of S such that $cor(A) \neq \emptyset$ and $cor(B) \neq \emptyset$.

Then there exists a function $F: S \to \mathbb{R}$ such that

(i) it is a homomorphism, i.e., $F(s_1 \oplus s_2) = F(s_1) + F(s_2)$, $s_1, s_2 \in S$, (ii)

$$F(a) \geqslant 0 \geqslant F(b), \qquad a \in A, \ b \in B,$$

(iii)

$$F(a) > 0 > F(b),$$
 $a \in cor(A), b \in cor(B).$

This result already played an important role in the characterisation of (strongly) internal means due to Páles (1989).

Proof of part $(ii) \Rightarrow (i)$:

Let $(S(X), \oplus)$ be the free Abelian semigroup generated by the elements of X, that is,

- S(X) consists of all the finite (unordered) sequences (or unordered strings) of X having positive lengths.
- furnish S(X) with the string concatenation \oplus as an operation.

Proof of part $(ii) \Rightarrow (i)$:

Let $(S(X), \oplus)$ be the free Abelian semigroup generated by the elements of X, that is,

- S(X) consists of all the finite (unordered) sequences (or unordered strings) of X having positive lengths.
- furnish S(X) with the string concatenation \oplus as an operation.

Note that, for all $n \in \mathbb{N}$, $x_1, \ldots, x_n \in X$ and each permutation $(\pi(1), \ldots, \pi(n))$ of $(1, \ldots, n)$, we have

$$X_1 \oplus \cdots \oplus X_n = X_{\pi(1)} \oplus \cdots \oplus X_{\pi(n)}.$$

Introduce the mapping $\mu: \mathcal{S}(X) \to \Theta$ by

$$\mu(x_1 \oplus \cdots \oplus x_n) := M_n(x_1, \ldots, x_n), \qquad n \in \mathbb{N}, \ x_1, \ldots, x_n \in X.$$

Introduce the mapping $\mu: \mathcal{S}(X) \to \Theta$ by

$$\mu(x_1 \oplus \cdots \oplus x_n) := M_n(x_1, \ldots, x_n), \qquad n \in \mathbb{N}, \ x_1, \ldots, x_n \in X.$$

Due to the symmetry of M, the mapping μ is well-defined.

Introduce the mapping $\mu: \mathcal{S}(X) \to \Theta$ by

$$\mu(x_1 \oplus \cdots \oplus x_n) := M_n(x_1, \ldots, x_n), \qquad n \in \mathbb{N}, \ x_1, \ldots, x_n \in X.$$

Due to the symmetry of M, the mapping μ is well-defined.

Let $t \in \Theta$ be fixed and define

$$A_t := \{ s \in S(X) : \mu(s) < t \}, \qquad B_t := \{ s \in S(X) : \mu(s) > t \}.$$

Introduce the mapping $\mu: \mathcal{S}(X) \to \Theta$ by

$$\mu(x_1 \oplus \cdots \oplus x_n) := M_n(x_1, \ldots, x_n), \qquad n \in \mathbb{N}, \ x_1, \ldots, x_n \in X.$$

Due to the symmetry of M, the mapping μ is well-defined.

Let $t \in \Theta$ be fixed and define

$$A_t := \{ s \in S(X) : \mu(s) < t \}, \qquad B_t := \{ s \in S(X) : \mu(s) > t \}.$$

One can verify the conditions of the separation theorem with the choices

$$S := S(X), \qquad A := A_t, \qquad B := B_t.$$

It turns out that

$$cor(A_t) = A_t$$
 and $cor(B_t) = B_t$.

Some questions that may be studied:

• given $\psi \in \Psi(X, \Theta)$ and a sequence of i.i.d. random variables $\xi_n, n \in \mathbb{N}$, investigate the asymptotic properties of $\vartheta_n(\xi_1, \dots, \xi_n)$ as $n \to \infty$ (e.g., consistency and central limit theorem),

Some questions that may be studied:

- given $\psi \in \Psi(X, \Theta)$ and a sequence of i.i.d. random variables ξ_n , $n \in \mathbb{N}$, investigate the asymptotic properties of $\vartheta_n(\xi_1, \dots, \xi_n)$ as $n \to \infty$ (e.g., consistency and central limit theorem),
- investigation of a multidimensional parameter set instead of an open interval Θ of \mathbb{R} ,

Some questions that may be studied:

- given $\psi \in \Psi(X, \Theta)$ and a sequence of i.i.d. random variables ξ_n , $n \in \mathbb{N}$, investigate the asymptotic properties of $\vartheta_n(\xi_1, \dots, \xi_n)$ as $n \to \infty$ (e.g., consistency and central limit theorem),
- investigation of a multidimensional parameter set instead of an open interval Θ of \mathbb{R} ,
- given an estimator κ for the unknown parameter $\vartheta \in \Theta$, is it a MLE for some absolutely continuous distribution? More precisely, is there a family of density functions $\mathbb{R} \ni x \mapsto f(x,t), \ t \in \Theta$ such that the MLE for θ coincides with κ ?

Some questions that may be studied:

- given $\psi \in \Psi(X, \Theta)$ and a sequence of i.i.d. random variables ξ_n , $n \in \mathbb{N}$, investigate the asymptotic properties of $\vartheta_n(\xi_1, \dots, \xi_n)$ as $n \to \infty$ (e.g., consistency and central limit theorem),
- investigation of a multidimensional parameter set instead of an open interval Θ of \mathbb{R} ,
- given an estimator κ for the unknown parameter $\vartheta \in \Theta$, is it a MLE for some absolutely continuous distribution? More precisely, is there a family of density functions $\mathbb{R} \ni x \mapsto f(x,t), \ t \in \Theta$ such that the MLE for θ coincides with κ ?

Using the characterisation theorem, we can check that whether κ is a generalized ψ -estimator with some function ψ . However, since in the proof of the characterisation theorem, our construction for ψ is not explicit, we can not see whether the functional equation

$$\psi(x,t) = \frac{\partial_2 f(x,t)}{f(x,t)}, \qquad (x,t) \in \mathcal{X}_f \times \Theta,$$

could be solved for f or not.

References

The talk is based on the following three papers:

- MÁTYÁS BARCZY, ZSOLT PÁLES: Existence and uniqueness of weighted generalized ψ -estimators. Lithuanian Mathematical Journal 65(1), 14-49 (2025).
- Mátyás Barczy, Zsolt Páles: Basic properties of generalized ψ-estimators. Publicationes Mathematicae Debrecen 106/3-4, 499-524 (2025).
- MáTYÁS BARCZY, ZSOLT PÁLES:
 Axiomatic characterisation of generalized ψ-estimators.

 arXiv 2409.16240 (2024)

References

The talk is based on the following three papers:

- MÁTYÁS BARCZY, ZSOLT PÁLES: Existence and uniqueness of weighted generalized ψ -estimators. Lithuanian Mathematical Journal 65(1), 14-49 (2025).
- MÁTYÁS BARCZY, ZSOLT PÁLES: Basic properties of generalized ψ-estimators. Publicationes Mathematicae Debrecen 106/3-4, 499-524 (2025).
- MÁTYÁS BARCZY, ZSOLT PÁLES: Axiomatic characterisation of generalized ψ -estimators. arXiv 2409.16240 (2024)

Thank you for your attention!