Branching processes with immigration in a random environment

Péter Kevei

University of Szeged

ISCPS 2025

Outline

Introduction

GWI in deterministic environment Random environment

Results

Tail asymptotic Stationary Markov chain

Stochastic recurrence equation

Perpetuity equation Goldie's implicit renewal theory

Outline

Introduction

GWI in deterministic environment

Random environment

Results

Tail asymptotic Stationary Markov chain

Stochastic recurrence equation

Perpetuity equation Goldie's implicit renewal theory

GWI

Let $X_0 = 0$,

$$X_{n+1} = \sum_{i=1}^{X_n} A_i^{(n+1)} + B_{n+1} =: \theta_{n+1} \circ X_n + B_{n+1}, \quad n \ge 0,$$

offsprings $\{A_i^{(n)}: i=1,2,\ldots,n=1,2,\ldots\}$ iid, immigrants $\{B_n: n=1,2,\ldots\}$ iid.

Subcritical, critical, supercritical: $\mathbf{E} A < 1, = 1, > 1.$

Stationary distribution – existence

Theorem (Quine (1970), Foster & Williamson (1971))

Unique stationary distribution exists iff

$$\int_0^1 \frac{1 - \mathsf{E} s^B}{\mathsf{E} s^A - s} \mathrm{d} s < \infty.$$

$$X_{\infty} = B_1 + \theta_1 \circ B_2 + \theta_1 \circ \theta_2 \circ B_3 + \ldots = \sum_{i=0}^{\infty} \Pi_i \circ B_{i+1}.$$

If $m=\mathbf{E}A<1$, then $\mathbf{E}\log B<\infty$ is necessary and sufficient. If m=1, then the condition holds if $\mathbf{P}(A>n)\sim \ell_A(n)n^{-1-\alpha}$, $\mathbf{E}B<\infty$, $\alpha\in(0,1)$, or $\mathbf{P}(B>n)\sim\ell_B(n)n^{-\beta}$, $\beta>\alpha$.

Stationary distribution – tail

Theorem (Basrak & Kulik & Palmowski (2013))

(i) If $m={\sf E}A<1$, ${\sf E}A^2<\infty$, and ${\sf P}(B>x)$ is regularly varying with index $-\alpha\in(-2,0)$, then

$$P(X_{\infty} > x) \sim c P(B > x), \qquad c > 0.$$

(ii) If $m = \mathbf{E}A < 1$, $\mathbf{P}(A > x)$ is regularly varying with index $-\alpha \in (-2, -1)$, and $\mathbf{P}(B > x) \sim c' \mathbf{P}(A > x)$, $c' \ge 0$ then $\mathbf{P}(X_{\infty} > x) \sim c \mathbf{P}(A > x)$, c > 0.

More general tail behavior: Foss & Miyazawa (2020) Second order GWI: Barczy & Bősze & Pap (2020)

Critical case, m = 1

Theorem (Guo & Hong (2024))

Assume $P(A > n) \sim \ell_A(n) n^{-1-\alpha}$, $\alpha \in (0,1)$,

 $P(B > n) \sim \ell_B(n) n^{-\beta}$, $\beta > \alpha$, additional assumption on ℓ_A , ℓ_B .

Then

$$P(X_{\infty} > x) \sim \ell(x)x^{-(\beta-\alpha)}$$
.

Without immigration: Fleischmann & Vatutin & Wachtel (2008):

 $\mathbf{P}(W > n) \sim \ell(n) \, n^{-1/(1+\alpha)}$, W: total progeny

Borovkov & Vatutin (1996): $\mathbf{P}(M>x)\sim \frac{\alpha}{x}$

Critical case, m=1

Assume $P(A > n) \sim \ell_A(n) n^{-1-\alpha}$, $\alpha \in (0,1)$, $EB < \infty$. K & Kubatovics (2025+, work in progress):

$$\mathbf{P}(X_{\infty} > x) \sim \ell(x) x^{-(1-\alpha)}.$$

Stationary chain $(X_n)_{n\geq 0}$ is regularly varying, tail process:

$$\mathcal{L}((X_n/x)|X_0>x)\longrightarrow Y(1,1,\ldots),$$

 $\mathbf{P}(Y > y) = y^{-(1-\alpha)}$. Extremal index = 0. The anticlustering condition does not hold.

Explicit calculations are possible: Alsmeyer & Hoang (2025): Power fractional distributions, Lindo & Sagitov (2016): θ -branching

Outline

Introduction

GWI in deterministic environment

Random environment

Results

Tail asymptotic Stationary Markov chain

Stochastic recurrence equation

Perpetuity equation Goldie's implicit renewal theory Random environment

GWRE with immigration (GWIRE)

- $ightharpoonup \Delta$ probability measures on $\mathbb{N} = \{0, 1, \ldots\}$
- \blacktriangleright ξ, ξ_1, \dots iid on Δ^2 (environment), $\xi = (\nu_{\xi}, \nu_{\xi}^{\circ})$

GWRE with immigration (GWIRE)

- $ightharpoonup \Delta$ probability measures on $\mathbb{N} = \{0, 1, \ldots\}$
- ξ, ξ_1, \ldots iid on Δ^2 (environment), $\xi = (\nu_{\xi}, \nu_{\xi}^{\circ})$
- $X_0 = 0$,

$$X_{n+1} = \sum_{i=1}^{X_n} A_i^{(n+1)} + B_{n+1} =: \theta_{n+1} \circ X_n + B_{n+1}, \quad n \ge 0,$$

conditioned on \mathcal{E} , $\{A_i^{(n)}, B_n : i = 1, 2, \ldots, n = 1, 2, \ldots\}$ are independent and for n fix $(A_i^{(n)})_{i=1,2,\ldots}$ are iid with distribution ν_{ξ_n} , and B_n has distribution $\nu_{\xi_n}^{\circ}$.

Subcritical / critical / supercritical: $\mathbf{E} \log m(\xi) < / = / > 0$. Kersting, Vatutin: Discrete Time Branching Processes in Random Environment, 2017, Wiley.

Stationary distribution – existence

Theorem (Key (1987))

If $\mathbf{E} \log m(\xi) < 0$ (offspring) and $\mathbf{E} \log^+ m^{\circ}(\xi) < \infty$ (immigration) then there exists a unique stationary distribution

$$X_{\infty} = B_1 + \theta_1 \circ B_2 + \theta_1 \circ \theta_2 \circ B_3 + \ldots = \sum_{i=0}^{\infty} \Pi_i \circ B_{i+1}.$$

Outline

Introduction

GWI in deterministic environment Random environment

Results

Tail asymptotic

Stationary Markov chain

Stochastic recurrence equation

Perpetuity equation
Goldie's implicit renewal theory

Kesten-Grincevičius-Goldie setup

$$X_{\infty} = B_1 + \theta_1 \circ B_2 + \theta_1 \circ \theta_2 \circ B_3 + \ldots = \sum_{i=0}^{\infty} \Pi_i \circ B_{i+1}.$$

Theorem (Basrak & K 2022)

Assume: $\operatorname{Em}(\xi)^{\kappa}=1$, $\operatorname{E} A^{\kappa}<\infty$, $\operatorname{E} B^{\kappa}<\infty$,

 $\mathbf{E} m(\xi)^{\kappa} \log m(\xi) < \infty$, $\log m(\xi)$ is non-arithmetic. Then

$$P(X_{\infty} > x) \sim Cx^{-\kappa} \quad x \to \infty,$$

with C > 0.

Related papers

- Afanasyev (2001): $P(\sup_{n} X_{n} > x) \sim cx^{-\kappa}, c > 0.$
- Large deviation results: Buraczewski & Dyszewski (2022), Guo & Hong & Sun (2025)
- ➤ Arithmetic case: Jelenković and Olvera-Cravioto (2012), K (2017): implicit renewal theory in the arithmetic case

Grincevičius – Grey setup

Theorem (K 2024)

Assume: $\mathbf{E}(m(\xi)^{1\vee\kappa}) < 1$, $\mathbf{E}(A^{(1\vee\kappa)+\delta}) < \infty$. Let ℓ be a slowly varying function. Then

$$\mathbf{P}(B>x)\sim \frac{\ell(x)}{x^{\kappa}}, \quad as \ x\to\infty,$$

if and only if

$$\mathbf{P}(X_{\infty} > x) \sim \frac{\ell(x)}{x^{\kappa}} \frac{1}{1 - \mathbf{E}(m(\xi)^{\kappa})}, \quad as \ \ x \to \infty.$$

Valid in the deterministic environment setup – Basrak, Kulik, Palmowski (2013); Foss, Miyazawa (2020)

Outline

Introduction

GWI in deterministic environment Random environment

Results

Tail asymptotic

Stationary Markov chain

Stochastic recurrence equation

Perpetuity equation
Goldie's implicit renewal theory

Setup

- ► $X_{n+1} = \sum_{i=1}^{X_n} A_i^{(n+1)} + B_{n+1} =: \theta_{n+1} \circ X_n + B_{n+1}, n \in \mathbb{Z},$ strictly stationary
- $ightharpoonup P(X_0 > x) \sim c\ell(x)x^{-\kappa}$
- ▶ a_n is defined by $n\mathbf{P}(X_0 > a_n) \sim 1$.

Kulik, Soulier (2020): Heavy-tailed time series Mikosch, Wintenberger (2024): Extreme value theory for time series

Asymptotic properties of Markov chain

- ► tail process (Basrak & Segers (2009))
- point process convergence (ergodicity, anticlustering)
- convergence of partial sums (vanishing small values)

Stable limit for partial sums

Theorem (Basrak & K 2022)

Let $b_n = 0$, $\kappa < 1$, $b_n = n\mathbf{E}(X_{\infty}/a_nI(X_{\infty} \le a_n))$, $\kappa \in [1,2)$. Then

$$V_n = \sum_{k=1}^n \frac{X_k}{a_n} - b_n \xrightarrow{\mathcal{D}} V, \qquad n \to \infty,$$

with V κ -stable. If $\kappa > 2$,

$$\frac{1}{\sqrt{n}\sigma}\sum_{i=1}^{n}(X_{i}-\mathbf{E}X_{\infty})\stackrel{\mathcal{D}}{\longrightarrow}Z\sim N(0,1).$$

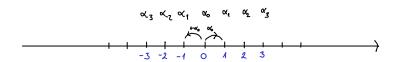
Random walk in random environment

Kozlov and Solomon:

- $ightharpoonup \{\alpha_i\}_{i\in\mathbb{Z}}$ iid in [0,1]
- \blacktriangleright $A = \sigma(\alpha_i : i \in \mathbb{Z}), \sigma$ -algebra generated by the environment,
- $X_0 = 0$,

$$P(W_{n+1} = W_n + 1 | A, W_0, ..., W_n) = \alpha_i \text{ on } \{W_n = i\}$$

$$P(W_{n+1} = W_n - 1 | A, W_0, ..., W_n) = 1 - \alpha_i \text{ on } \{W_n = i\}$$



KKS result

Let T_n be the first hitting time of n. $T_n \approx 2 \sum_{k=1}^n X_k - n$.

KKS result

Let T_n be the first hitting time of n. $T_n \approx 2 \sum_{k=1}^n X_k - n$.

Theorem (Kesten & Kozlov & Spitzer 1975)

For $\kappa \in (0,2)$,

$$n^{-1/\kappa}(T_n-A_n)\stackrel{\mathcal{D}}{ o} \kappa - \text{stable r.v.}$$

where $A_n \equiv 0$ if $\kappa < 1$, $A_n = nc_1$ if $\kappa > 1$.

For $\kappa > 2$

$$n^{-1/2}(T_n-nc)\stackrel{\mathcal{D}}{\to} N(0,1).$$

Moreover, $n^{-\kappa}(W_n - B_n)$ also converges.

Outline

Introduction

GWI in deterministic environment

Results

Tail asymptotic Stationary Markov chain

Stochastic recurrence equation

Perpetuity equation

Goldie's implicit renewal theory

Perpetuity equation

 $(A_n, B_n)_n$ iid random vectors, and X_0 a random variable independent of them. The stochastic recurrence equation is

$$X_{n+1} = A_{n+1}X_n + B_{n+1}.$$

The stationary solution should be

$$X_{\infty} = B_1 + A_1 B_2 + \ldots + A_1 A_2 \ldots A_n B_{n+1} + \ldots =: \sum_{n=0}^{\infty} \prod_{n=0}^{\infty} B_{n+1}.$$

Satisfies the fixed point equation

$$X \stackrel{\mathcal{D}}{=} AX + B$$
,

where (A, B) and X on the RHS are independent.

Tail of the stationary distribution

Theorem (Grincevičius - Kesten - Goldie)

If $\mathsf{E} A^\kappa = 1, \mathsf{E} A^\kappa \log_+ A < \infty$, $\log A$ is nonarithmetic, $\mathsf{E} B^\kappa < \infty$ then for the solution to the equation $X \stackrel{\mathcal{D}}{=} AX + B$ we have

$$\mathbf{P}(X>x)\sim cx^{-\kappa},$$

with c > 0.

Tail of the stationary distribution

Theorem (Grincevičius - Grey)

If $A \ge 0$, $\mathbf{E} A^{\kappa} < 1$, $\mathbf{E} A^{\kappa+\epsilon} < \infty$ then the tail of X is regularly varying with parameter $-\kappa$ if and only if the tail of B is.

Damek & Kołodziejek 2020: Between Kesten and Grincevičius – Grey

Outline

Introduction

GWI in deterministic environment Random environment

Results

Tail asymptotic Stationary Markov chair

Stochastic recurrence equation

Perpetuity equation

Goldie's implicit renewal theory

Goldie's setup - stochastic fixed point equations

$$X_{n+1} = \sum_{i=1}^{X_n} A_i^{(n+1)} + B_{n+1} =: \theta_{n+1} \circ X_n + B_{n+1}, \quad n \ge 0,$$

X stationary law:

$$X \stackrel{\mathcal{D}}{=} \sum_{i=1}^{X} A_i + B = \theta \circ X + B$$

 (θ, B) and X are independent.

Examples

▶ Perpetuity: $X \stackrel{\mathcal{D}}{=} AX + B$, (A, B) and X are independent.

Examples

- Perpetuity: $X \stackrel{\mathcal{D}}{=} AX + B$, (A, B) and X are independent.
- ▶ Supremum of RW with negative drift: $X \stackrel{\mathcal{D}}{=} AX \vee B$.

Examples

- ▶ Perpetuity: $X \stackrel{\mathcal{D}}{=} AX + B$, (A, B) and X are independent.
- ▶ Supremum of RW with negative drift: $X \stackrel{\mathcal{D}}{=} AX \vee B$.
- $X \stackrel{\mathcal{D}}{=} \sum_{i=1}^{X} A_i + B$

Stationary distributions of a Markov chain.

Examples

- Perpetuity: $X \stackrel{\mathcal{D}}{=} AX + B$, (A, B) and X are independent.
- ▶ Supremum of RW with negative drift: $X \stackrel{\mathcal{D}}{=} AX \vee B$.
- $X \stackrel{\mathcal{D}}{=} \sum_{i=1}^{X} A_i + B$

Stationary distributions of a Markov chain.

Buraczewski, Damek, Mikosch: Stochastic models with power law tails. The equation X = AX + B. (2016)

Iksanov: Renewal theory for perturbed random walks and similar processes. (2016)

General: $X \stackrel{\mathcal{D}}{=} \Psi(X)$, where $\Psi : \mathbb{R} \times \Omega \to \mathbb{R}$ random operator, independent of X.

General: $X \stackrel{\mathcal{D}}{=} \Psi(X)$, where $\Psi : \mathbb{R} \times \Omega \to \mathbb{R}$ random operator, independent of X.

Assume: $A \ge 0$, $\mathbf{E} A^{\kappa} = 1$ for some $\kappa > 0$, $\mathbf{E} A^{\kappa} \log^+ A < \infty$, $\log A$ is not arithmetic.

General: $X \stackrel{\mathcal{D}}{=} \Psi(X)$, where $\Psi : \mathbb{R} \times \Omega \to \mathbb{R}$ random operator, independent of X.

Assume: $A \ge 0$, $\mathbf{E} A^{\kappa} = 1$ for some $\kappa > 0$, $\mathbf{E} A^{\kappa} \log^+ A < \infty$, $\log A$ is not arithmetic.

Theorem (Goldie (1991), Grincevicius (1975))

X is the solution to $X \stackrel{\mathcal{D}}{=} \Psi(X)$, assume $\mathbf{E}|(\Psi(X))^{\kappa} - (AX)^{\kappa}| < \infty$. Then $\mathbf{P}(X > x) \sim cx^{-\kappa}$, where $c = \mathbf{E}(\Psi(X)^{\kappa} - (AX)^{\kappa})/\mathbf{E}(A^{\kappa} \log A) \geq 0$.

$$P(X > x) \sim cx^{-\kappa}$$

- Problem: c = 0 is possible!
- ▶ If **E** X^{κ} < ∞ , then c = 0.
- ▶ Idea: $\Psi(x) \sim Ax$, $x \to \infty$. $(x \to \pm \infty)$
- Alsmeyer, Brofferio, Buraczewski: Asymptotically linear iterated function systems on the real line (2023)
- ▶ K (2016): additional slowly varying factor, or $\mathbf{E}A^{\kappa} < 1$ is possible