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Cardinal polysplines in R”
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The main purpose of Part Il is to find and develop a proper polyspline analog to the
notion of the cardinal splines. By definition, in the one-dimensional case the cardinal
splines are those having knots at the integer points, or somewhat more generally, at the
pointsa + Bj wherej € Z, for some fixed numberg andg. There is a very beautiful
theory, which was mainly developed by Schoenberg, the main results being summarized
in his short monograph [18].The results in this theory may be considered as a part
of harmonic analysiglue to the fact that the basic cardinal splines may be viewed as a
Fourier transform of the function

(sins /2)"

g2 )

Let us start with thepolysplines on stripsNow trying to invent ourpolyspline
AnsatZ let us imagine that we have polysplines on infinitely many strips, i.ekitiog¢-
surfaceare infinitely many parallel hyperplanes. It seems very natural to term “cardinal”
those polysplines which have equidistant hyperplanes. It is not very difficult to see that
this is indeed a propefnsatzand one may obtain many results by generalizing the
one-dimensional cage.

Forpolysplines on annuli.e. when the knot-surfaces are infinitely many concentric
spheress(0; r;), finding the proper Ansatz is a real intellectual challenge. Its answer is
far from evident but it is interesting that it is unique! The hint to the answer is hidden in
the representation of polyharmonic functions in the annulus in Corollary 10.38, p. 173.
By this corollary ifh(x) satisfiesA?h(x) = 0 in the annulus%,j,,j+l and belongs td.»
theni(x) has the representation

OOdk

h(x) =YY" fie(ogrYe e0) forrj <r <rjy1,

k=0(=1

where the one-dimensional functigip ¢ (v) is a solution to the equation

My p <%) fre) =0 forr; <e” <rji1.
Recall that by formula (10.26), p. 169, the operatdf , has constant coefficients.
Furthermore, we have seen in Part | and more specially in Theorem 9.7, p. 124ighat
apolyspline if and only if for every two indexésind? the functionf ,(v) is anL-spline
forthe operatol. = My ,! Now the question is whether we have a reasonable “cardinal”
theory of suchL-splines? Yes, we do! It has been developed by Micchelli [12,13]. Some
of the results have been given concise and elementary proofs by Schoenberg [19] in the
same volume.

Eureka! We will callz a “cardinal polyspline on annuli” if all componenfs , are
cardinalL-splines with knots af € Z. Thus we see that the “break-radii” have to satisfy
rj = ¢/, hence the break-surfaces for the polysplingill be the spheres(0; e/).

1 The meaning oAnsatzwas discussed in the footnote on p. 32.

2 Due to the lack of space we omit the consideration of the cardinal polysplines on strips. We treat in detail
only the case of the technically more complicated cardinal polysplines on annuli. The reader will be able to
follow the same scheme and produce similar results for the cardinal polysplines on strips.
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It now becomes clear to the reader what the motivation was for the compendium on
representation of polyharmonic functions in the annulus, and further what the motivation
is to have an exposition of the results of Micchelli on cardibadplines coming in the
next chapter.

Last but not least the one-dimensional cardinal splines serve as a basic example for
the wavelet analysis. We plan to mimic this construction by usardinal polysplines
Thus a major motivation for the detailed study of the cardinal theory of polysplines in
the present Part is their application to “polyharmonic wavelet analysis” in Part Ill.

Finally, we want to warn the reader that there will be some weak overlapping of the
notations in some Chapters of the present Part. Following the traditién(bywe will
sometimes denote the fundamental spline function of Schoenberg and this may be mixed
with the operatoL for the L-spline. This overlapping is indeed very weak and we prefer
to retain the original notations of Schoenberg. We will eventually repeat this warning at
the proper place.



Chapter 13

Cardinal L-splines according to
Micchelli

In the present chapter we provide an extended study of the caidisg@lines following
the approach of Ch. Micchelli, including results by I. Schoenberg, Dyn and'Ron.

13.1 Cardinal L-splines and the interpolation problem

The theory of cardinal splines and more specifically cardinablines is a beautiful
area of spline analysis which deserves much attention in view of its recent applications
to wavelet analysis.

Within the general theory of splines thieeory of cardinal splingsor the splines
having only integers as knots, plays a very important and specific role. First, technically
it may be considered more as a subset of harmonic analysis than of the general spline
theory. Indeed, one may view the whole theory as study of Fourier inverse of functions

of the type
g2 )~ i€ —¢ i€ '

Let us denote by, the usual polynomiaB-spline of degree: with knots at the points
{0, 1, ..., m} and with support coinciding with the interval,[@], and let us introduce
the “centralized” splineM,,,(x) = Q,,(x + m/2), having supportfm/2, m/2] and
knots at{—m /2, —m/2+1, ..., m/2}. Then by the properties of the Fourier transform

1In view of the terminology that has been established, see Chapter 13chmehakef22], it would be
more appropriate to use the name “cardinal Chebyshev splines” since the theory of Micchlli only concerns
operatorg. having constant coefficients, and the corresponding splines are Chebyshev splines.

221
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we obtain the following equality [18, pp. 11,12]:

— 1-e78\"
Qm(§)=<%> = (01®)".

— e 2sinE/2\" ~ m
Mm@):elé'"/zgm(s):(%g/v = (M1(®)".

By taking the inverse Fourier transform we see that

1
O (X) = Op1(x) * Q1(x) = /0 Om_1(x — y)dy. (13.1)

hence, we have a simple constructive and inductive definition of the compactly supported
spline 0, (x).
The cardinalL-splines with compact suppoffB-splines) which we will study may
also be considered as a part of harmonic analysis since their Fourier transforms are given
by
HT:l(e_)‘.f — e_ig)
[T71GE = 1)) '

where} ; are real constants. Thus we have in a similar way

Om-1(x) = Op_1(x) * Q1(x),

which provides a simple method to generate the most important function of the whole
theory. So far this visual simplicity is only superficial.

The reader should be aware that one may start reading the present chapter from
Section 13.10, where the compactly supported splines are introduced, since for the
majority of standard numerical work one does not need much more. However, as will
become clear in Chapter 14, p. 267, in order to understand the deeper properties of the
functionsQ,,, which are further necessary for thavelet analysig Part lll, one really
needs the whole theory developed in the present chapter. In particular, one needs the
notions of Euler polynomiald,, (x; A) and the Euler—Frobenius polynomidls, (1) =
A, (0; 1), the location of their zeros etc.

The theory of polynomial cardinal splines, including the theory of Ehder—
FrobeniusandEuler polynomialselated to them, was developed mainly by Schoenberg
till the mid-1970s. He has summarized almost all the results in his fascinating bock [18].

During the last decade there has been renewed interest in cardinal splines in view
of their applications tovavelet theory One may even say that the cardinal splines
were reborn in wavelet analysis in the works of Chui, [3], who generalized such a
fundamental notion as the Euler—Frobenius polynomial for an arbitrary scaling function
¢ (x) generating anultiresolution analysis

20ne has to mention also the initiating work of Quade and Collatz [16], and that of Tchakaloff [35] of
which Schoenberg was apparently not aware. More about the beautiful analytic work of Tchakaloff, which
has been published in Bulgarian with a French summary, [2, p. 39].
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As we have already said the theory adrdinal L-splineshas been developed by
Micchelli and Schoenber§jThe cardinalL-splines possess most of the advantageous
properties of the usual (polynomial) cardinal splines. However, one important property
which distinguishes thé-splines from the polynomial splines is that they are not scale-
invariant, i.e. if f (x) is anL-spline for some operatdt then f (ax) is not anL-spline
for the same operator. In the case of constant coefficient opefatbesfunctionf (ax)
is still an L-spline, but for another operator. This is essentially used in the theoiymsf
stationary waveletsleveloped by de Boaat al. ([5] p. 150). The last is a construction
which we will need for the wavelet analysis usiogrdinal polysplines on annutb be
treated in Part 1l of the present book, and for that reason all details of the one-dimensional
construction will be studied here.

Cardinal L-splines are a basic tool for our study. For that reason we prefer to give
an independent exposition of the theory, which does not refer to the fundamental theory
of L-splines (and Chebyshev splines) with general knots developed by Schumaker [22],
which we have already used in Part |I. Such an exposition will give an opportunity for
a reader who is mainly interested in wavelet analysis to have a complete and logically
closed understanding of the subject. Let us note that the same results may be obtained
[6, 7] by following the approach ta-splines of [22].

In the present section we will follow closely the approach and most of Micchelli's
notations [12,13]. Let us give some basic definitions and notations. Let the real numbers
A, ..., Az41 be given. We will consider theonorderedvector

A=Azy1:=[ 1, 2, ..., Azq1], (13.1a)

where some of the numbeks may have repetitions. The number of repetitions of a
numbera in A will be termed themultiplicity of A.

There are different ways to give a good representation of such vectousthey are
all overburdened with indices. For example, we might write [22, p. 20]

11 lq
e e ——
t1§t2§"‘Etm:tl,...,fl,...,fd,...,fd,

Wherer’:l l; = m. Another possibility is to put [2, p. 5]
(11,12, .« 1) = (71, 11), - -, (T4, La))-
By using the notation] for such a vector we avoid having to describe the multiplicity

of the entries every time. For almost all our purposes the representation by a nonordered
vector A will be adequaté.

3 Micchelli constructs his theory in a way close to the meditative approach to cardinal splines developed
by Schoenberg. This is based mainly on the Euler exponential spline.

4We note that a large part of the theory in the present chapter holds for complex numbarsuch a case
the so-calledV-property, associated with the name of Polya, holds only for intervals with bounded length, i.e.
the set/z.1 is not Chebyshev over arbitrary large intervals and one has to keep this in mind. See for examples,
the comment of Schoenberg [19, p. 251]. The results which we need for the cardinal polysplines require no
such generality, while the last would overburden some proofs.
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Further we introduce the polynomial

Z+1

9z+1() = qz1lAl@) = [[@=2)) (13.2)
j=1

and the operatof 71 defined by

LzalAlf(x) i=qz41 <E>f(x) =11 (E - Aj)f(x) (13.3)

j=1

where, if it is clear from the context, we will drop the dependence on the\ satd

simply write £74.1 f or g741.°
Let us introduce the set of solutions, sometimes callegolynomials, over the

whole real axis:
Uzi1 :=Uz41[A] ={uin C®®R): Lzy1[A]u(x) = 0forx in R}.

As will be discussed in the sections below the fact ihyadre real constants provides
the following important properties:

1. The seUz,1 is Chebyshev over the whole real axis, i.e. ewery Uz,1 has no more
thanZ real zeros.

2. The setUz,1 is translation invariant, i.e. i € Uz then for every real number
we havep(x —«) € Uz41.

3. The classical polynomial case is obtained as a special case,when, = --- =
Az+1 = 0. In this case we have the following:

Sl Z+1
az+1() =277 LzulAlf(x) = de_Hf(X),

andUz.1 is the set of all polynomials of degreeZ.

We are using the notatiod + 1 in order to make our notation consistent with the
standard one-dimensional polynomial case. As is known, the dimension of the space
Uzy1is

dimUZ+1 =Z+1,
but in the polynomial case the degree of the polynomiats 8.

Definition 13.1 The class otardinal L-splinesfor the operatorLz1[A] is defined
as the set of those functiongx) € CZ~1(R) which on every intervalj, j + 1) is a
solution of £z 1[Alu(x) =0, i.e.

Sz41:=Sz41[Al = (uin CZ7XR): wy(j j41)inUzyaforall j e Z). (13.4)

5 As we will see below, the global™ solutions ofC p1 f(x) = 0 are linear combinations of expressions
Rj(x)- FUAR whereR; (x) is a polynomial with deg; < (multiplicity of ¢;) —1. For that reason these splines
are sometimes callezkponential This terminology should not be mixed with the so-called “exponential Euler
spline” of Schoenberg which we will meet below.
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Inthis definition byg,(;. j+1) we have, as usual, denoted the restriction of the function
g totheintervakj, j + 1). In order to save notation, ky((; j+1) € Uz4+1 We mean that
8|(j,j+1) is arestriction of an element &fz ;.

(We usegz.1 for the polynomial instead o1 of Micchelli [12,13]. We also
write Sz 1 for the space of splines instead 8%. Let us note again that his notation
[12,13] tends to preserve the tradition of the polynomial splines whereipeeof the
polynomials isZ and the dimension of the spaceds+ 1. We put as a central index
Z + linstead.)

The main problem solved by Schoenberg for polynomial splines and by Micchelli
for the above introducell-splines is the so-callechrdinal interpolation problemThey
have found the conditions within which the problem:

u(j+a)=y; forall;jinz, (13.5)

has a solutiom in Sz, 1. Herex is a constant such that® o < 1.5 In order to formulate
the complete solution for (13.5) we need the class of htgplines, which is defined as

8.1 i={uinSzi1: u(j +a) = O0forall jin Z}.

We always assume thatis fixed. The following result is basic in Micchelli [12,13,
p. 204], and Schoenberg [19]. It generalizes the classical result of Schoenberg about
cardinal interpolation through polynomial splines from his book [18].

Theorem 13.21. The spacé"gJrl has dimension

di (80 ) m=27Z-1 fora=0,
Im =
Z+1 m=127 forO<oa < 1.

2. The spacégJrl is spanned byn eigensplinessy, So, ..., S, which satisfy the
equation
SSx+1) =158k fori=1,...,m,

where the constants (called the eigenvalues of the problem) satisfy
T1I<T2<---<Ty <O

3. Letr; # —1fori =1, ..., m. Then there exists a fundamental cardiiaspline
L(x) € Sz41, i.e. a spline such that

0 forj #0,
1 forj=0.

L(j+a) =

6 The results about solubility of this problem are extended by Schoenberg [19] without any extra effort to
the cardinal grid j2 + «: for all j in Z}, whereh > 0 is an arbitrary constant.

7 As we said already in the Introduction to this Part, the reader does not have to niiwififsthe operator
L. We have preserved Schoenberg’s original notation which was also used by Micchelli and Chui.
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There exist positive constards B such that
IL(x)| < Ae” B forall x in R.

4. Letr; # —1fori =1,...,m. Let the sequence; be of power growth, i.e. for
somey > Qit satisfiesy; = O(|j|”). Then there exists a uniquee Sz1 which has
a power growth, i.e.

lu(x)| = O(|x|¥) forall xinR,

and which interpolates the datg;, i.e.
u(j+a)=y; forall;jinZ.
We have the representation
o
u(x) = Y yiL(x =),
i=—00

Later, in Theorem 13.33, p. 238, we will provide another criterion for solving the
cardinal interpolation problem. One of our main purposes in Part Il will be to find an
analog to the above theorem for cardinal polysplines.

13.2 Differential operators and their solution setsU . 1
Let us introduce some operators decomposing the opefator of Section 13.1.

When the nonordered vectak = [A1,A2,...,Az41] iS given we define the
following operators:

D;f(x) = (% - )»j)f(x) = e)‘fx%e_)‘fxf(x) forj=1,...,Z+1, (13.6)

Dof(x) := f(x).

Evidently, for every integer > 1 we have

s

d
[D;1° f(x) =M% ——e ™7 f(x).

de

For every integes > 1 we will define the following differential operators:

Lsf(x):=Dq1---Dyf(x),
Lof(x) = f(x).

As was said above, the space@¥ solutions of the equation
Lzy1f(x)=0 forxinR,

which we have denoted by, 1[ A] will be important.
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In order to develop some intuition in the reader who is not experienced in differential
equations, we provide the following simple, standard facts from the theory of ODEs
concerning the spadéz . 1[A], see Pontryagin [15].

Example 13.3dimUz41 = Z + 1.

Example 13.4 If
M=kr=-=2z41=0
then
Z+1
Lzi1f(x) = Tz S )

and Uz is the set of all algebraic polynomials of degreeZ, i.e.

2

V4
Uzi1=1{Lx,x% ..., x%}in.

Here{-}jin denotes the linear hull of the set of functions inside the brackets.

Example 13.5If all A; are pairwise different, i.e.; # A ; fori # j, then

A1x  Aox A X
{e"1*, e"? , €71 in.

Uz41=

g o e

Example 13.6 The constants belong to the déf 1[A] if and only if there exists an
index j for whichx; = 0.

Example 13.7 If
AM=Az=-=Azq1

then the seUz,1[A] coincides with all algebraic polynomials of degreeZ, times
A1X
err e,

Uzia[A] = (M, xe*™, o xZe P iy

= {R(x)e** : R is a polynomial ofdegR < Z}.

Example 13.8 More generally, let the set be given by

A= |T1,T1, s T, T2, T2 e ey T2 eeeyenay ey T, Ty eeay Tp |,
—— ——

my mp nye
wherem1 +mo+---+my = Z+ 1. Then
Uz+1[A] = {R1(x)e™, Ra(x)e™", ..., Re(x)e™ }iin
where the polynomialg ; satisfy

degR1(x) <mq — 1, degRo(x) <mp—1,..., degRy(x) <my; — L.
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13.3 Variation of the setU;,1[A] with A and other
properties

Let us see how the sdf,1[A] changes with the variation oh. If all values of
A j are pairwise different, we have seen in Example 13.5, p. 227,Uba4[A] =

{eM*, e?2X ezt Now letio, — A1. Obviously, foris # A1 we have
e)\lx _ ekzx
Uzs1lr1, A2, A3, .o Azqa] = €M%, ————— 3%, . ot
A1 — A2 .
lin
which in the limitA, — A1 gives
Uz+alh1, A1, Az, ooy hzga] = (€M7 xe™¥, 35, L M2y,

In this way we obtain the set$z; in Examples 13.7 and 13.8.

This kind of limiting process will often be used below — the reason is that several
formulas are much simpler to write in the case of pairwise diffexeat Then, using the
above limiting argument, we will also obtain the result in the case of arbitrgy

Theorem 13.9 The spacelz,1[A] is translation invariant, i.e. ifp(x) belongs to
Uz+1[A] theng(x —c) belongstd/z1[A] forevery real numbet. The spac&/ z1[A]

is not scaling invariant, i.e. ip(x) belongs td/z,1[ A] then in general it does not follow
that ¢ (hx) belongs taUz1[A] for arbitrary real numberh.

The first statement is due to the fact that
=0 = ¢7hi¢ L A% belongs taU ;4 1[Al,
and the last is true since only for= A; /A ;, we have
¥ belongs talUz 1 1[A].
So far, if we consider another operator, namely
LzalhT] =[] (d_ - hfj>,
=1 N

then evidently
¢"i* belongs taUz . 1[hT].

Here we have used the notation for the nonordered vector
hT :=[ht1, ..., htz41].

This simple fact will be used further in the wavelet analysis.

Theorem 13.10 The spacd/z,1[A] is Chebyshewn the whole real line, i.e. (x)
belongs taUz41[A] theng has no more thaiX real zeros.



Micchelli’'s cardinal L-splines 229

Theorem 13.10 is in fact a reformulation of Theorem 11.4, p. 188, and is important
to us.

Exercise 13.11Prove Theorem 13.10 in the case of pairwise diffefeist

Hint: If someg(x) € Uz11[A] hasZ + 1 different zerosyy, ..., xz41, then on
every interval(x;, x; 1) we have a poing; wherego/(gj) = Me(£)). Indeed, on the
interval (x;, x;4+1) the continuous functiog’(x) changes its sign. However, on the
same interval the continuous functiang(x) is zero at both endpoints. It follows that
the functiony’(x) — 11¢(x) changes sign on the intervat;, x; 1), hence, by Rolle’s
theorem there exists & € (x;, xj4+1) such thaty’(£;) = A1¢(£;). Now the function
¢’'(x) — A1p(x) belongs toUz 1 1[A2, A3, ..., Az11]. Proceed further using inductive
reasoning.

13.4 The Green functioncpg(x) of the operator L1

Here we introduce the so-called Green function associated with the op&gater This
function is the analog to the functiagm — t)JZr in the polynomial case. We put

¢Z(x) = [A'ls )"Zs s )“Z-‘rl]ZeXZ!

where the index of thdivided differencérq, Ao, ..., Az41]; means that it is taken with
respect to the variable. Let us note that, using the equivalent definition of divided
difference through residuum, see Chapter 11, formula (11.12), p. 193, we have

XZ
¢Z(x)=/ ¢ 4, (13.7)
r 9z+1(2)

where the contour in the complex plane surrounds the zeros of the polynogial (z).
In particular, in the case of pairwise differents we obtain

Z+1 )ij

$10) =Y

. 13.8
j=1 q/z+1()‘j) ( )

We define the functios} (x) as follows:

¢z(x) forx =0,

¢ (x) =
0 forx <O.

The following result shows that the functioﬁ%”(x) is the Green function for the
operatorLz. 1.

Proposition 13.12 The functiongb}r(x) is the Green functiorfor the operatorz. 1,
i.e. it satisfies the following three equivalent properties.
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1.¢} (x) belongs taCZ~1(R).
2. The following equalities hold:

DoDq---D X)ix=0+ =0 fore=0,...,Z-1,
{ 0D1 0Pz (X)|x=0+ (13.9)

DoD1---Dz¢z(x)x=0+ = 1,

where the operator®; were defined in (13.6), p. 226.
3. The equalities in (13.9) are equivalent to the following:

dﬁ
W‘ﬁz(x)pc:o_,_ =0 fore=0,...,Z-1,

VA
dx—zd’z ()x=0+ = 1.

The functionpz (x) is also the unique element Uiz 1 which satisfies these equalities.

Proof By the residuum representation (13.7), p. 229, we obtain, ¢foe
0,...,Z — 1, the equalities

DoD1---Dypz(x)|x=0+ = |:/r

[

Taking forT" the large circld 'z = {R - ¢ : 0 < 6 < 8}, we obtain the estimate

DDy - - - Dy’ }
———dz
qz+1(2) [x=0,

dz.

qz+1(2)

[DoDs - Doz (X)jrmor | < f (-2 Rd6
=0t 0 H » QZ—i-l(Z)
O C e €
= 0 RZ+1-¢ 0= RZ-¢
which after lettingR — oo proves the first part of (2).
Since
[DoDl-nDze“} . 1
qz+1(2) =0+ Azl

and by the Cauchy residuum theorem

1
/—dz=2m‘,
rz—Az+1

we obtain the second equality in (2).
Point (3) follows easily by induction is since

N d S—
j]i[(a—)» +Z dej.

The uniqueness as stated follows since the dimension of theEpagéA)isZ+1. R
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Let us denote by%r[kl + ¥, ..., Az41 + y](x) the Green function corresponding
to the nonordered vector

Aty =[Rr+y,224+y,...,Azy1+y]
Proposition 13.13 The Green functiorp}r satisfies the following identity:
¢7[A +y1(x) = " P [A] ().

Proof Since the functiom”* is C*° it follows thate”qb}[M, A2, ooy hzy1](x) €

CZ7Y(R), hence, the functior”*¢}[r1, A2, ..., Az41](x) satisfies the first row of
conditions in (13.9), p. 230. The last condition in (13.9) is satisfied owing to the Leibnitz
formula for differentiation of a product

Z(d
I1 (a - )»j) [e"*¢F A1, A2, -, Az 2] ()] =0t

j=1
dZ zZ-1 dj
= — + ZC-+ [eyx¢)+[)\l? )\27’)\‘2+1](x)]| =0+
V4 J V4 X
dx =0 dxJ
dZ
= dxz‘[eyxd,}r[llv 22, s hz4a] (0] jx=0+

dZ
— [ewfdx_zqs;[xl, A2, .. hzq1] (X)}
|]x=0+

=1,
which completes the proof. |

Exercise 13.14Prove the above theorem without residuum, assuming for simplicity that
all »; are pairwise different.

Hint: Then
z+l 4 .
pz(x) = )  ————eit.
j2=161/z(?~j)

and it follows that

z
DoD1---Dz¢z(x)|x=0, = H(/\z+1 - X)) N s [N
j=1

A

[ora-p- ot
- Z+1—Aj) <
N AP

1.
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In Theorem 11.25, p. 200, we provided the basic result about the one-sided basis
generated by the Green function for general Chebyshev splines. Here we specify that
general result for the case of the cardinal spligs1 defined in (13.4), p. 224.

Theorem 13.15Let us denote b§z1[a, b] the L-splinesinSz, 1 having break-points
in the interval[a, b] wherea, b are integers. Then the set of shi{as}[A](x —j)ij=
a—1,...,b}is alinear basis for the spac8z1[a, b].

This is a classic result in spline theory and is proved simply by counting dimensions.

Corollary 13.16 The functiongb}“(x) € LpR) if and only ifA; < Oforall j =
1,....,Z+1

This will be used later in wavelet analysis usibgsplines.

Exercise 13.17Prove Corollary 13.16Hint: Use representation (13.8), p. 229 ¢f (x)
in the case of pairwise different;. Another possibility is to use representation (13.7).

Remark 13.18 1. Let us note that the functiqr}*(x) may be considered as dnspline
with the only knot the poir@. Since the dimension &fz1 is Z + 1 (as we have seen
in Proposition 13.12, p. 229) this is the onlyspline with a knot ad. This corollary
means, roughly speaking, that the space of splingsifR) with the only knoD has
dimension zero or one, and both cases are described.

2. Let us note that due to the translation invariance of the sdage; it follows
that the functionp}[A] (x —y) is theGreen function associated with the operaiet,
in the most general sense of this notion, see Section 11.3.1, especially formula (11.18)
onp. 198.

13.5 The dictionary: L-polynomial case

In order to make the transition from the classical polynomial case to the case of solu-
tions of the operatof ;1 calledL-polynomials we provide the following dictionary of

notions:
dZ+l Z+1 d
ezl (d_x ﬁf')’
j=1
7z — Uz41,
x =% — ¢fx—1),

where, as usual;z denotes the set of polynomials of degreer.

13.6 The generalized Euler polynomialsAz(x; )

In the classical theory of cardinal splines the so-callater andEuler—Frobeniugoly-
nomials, see Schoenberg [18, p. 21], play a major role. These two notions may be
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generalized to the case of the differential operafigrs1, and they also play an analogous
role in the theory of cardindl-splines.

Lemma 13.19 Let A # erifori =1,...,Z + 1. If for some function: in Uzy1 we
haveu/) (1) = Au)(0) for j =0, 1, ..., Z, thenu = 0.

Proof ForZ = 0we haveA = [11] and the spacé&/1[A] is one-dimensional with
elementsCe*1* for an arbitrary constant. Hence,u(1) = u(0) impliesx = e if
C #£0.

For Z > 1 we obtain from the first two conditions

u() =u0), u'(1)=4d(0),

that

L ) um = (L —iz41) w0

dx ZH1 ) D= ax 241 ) Ui
However,((d/dx) — Az4+1)u(x) belongs taUz[A1, ..., Az], which shows that we may
proceed inductively. |

Let us note that the above proof is similar to the proof of the equivalence of gajnts
and(3) in Proposition 13.12, p. 229, and we can see that conditiéfigl) = 1) (0)
are equivalent to conditior®gD; - - - Dyu(1) = ADgD1 - - - Deu(0).

Thanks to the above lemma we may introduce the very important fundtjon)
of the theory developed by Micchelli which is a generalization of the classindér
polynomialconsidered by Schoenberg [18, p. $1]et us first put

XZ

G(z;x, M) =

ez — A

Definition 13.20 Let» # ¢* fori = 1,...,Z + 1. Then the functiom z(x; A) =
Az[A](x; X) is defined as the unique elementip,1 = Uz 1[A] which is a solution
of the boundary value problem

AP0 =24P©: 1) forj=0....2-1,
AP Ly =242 00 + 1.

It will be called theEuler polynomial

In fact Az(x; 1) is L-polynomial. Where necessary we will writéz[A](x; 1)
or Az[r1,A2,...,Az+1](x; A) in order to stress the dependence in the nonordered
vectorA.

Recalling the operato®; defined in (13.6), p. 226, we can state the most important
properties of the functiod (x; A).

8\We have taken the notatioh(x; 1) from Schoenberg.
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Theorem 13.21 The functiond z[ A](x; A) satisfies the following properties:
LiAz(LA) =AL;AZ(O; 1) fori=0,1,...,Z—1, and
L7A7(L;0)=ALzAZz(0; 1) + 1.

2. Dzi1Az[A1 ho, oo Azl (i d) = Az_q[A1, Ao, ..., Az (x5 A).
3. Az(x; A) = [A1, A2, ..., Az+1]:G(z; x, A), the last being the divided difference with
respect to the variable.

4 Az(x+1LA) —AAz(x; L) = 9z (x).

Exercise 13.22Prove properties®) and @2).
Hint: Use induction as in the proof of Lemma 13.19, p. 233.

Proof Let us prove properties (3) and (4).
Assuming for simplicity that.; # A; for j # i, we see that the spadé;, is
spanned by the exponentiafs*, hence, for some constantg we have

Z+1
Az(x;)) = Z et
j=1
Now the conditions in Definition 13.20 give

Z+1

Zo_/k;(e)‘/—k)zo fori=0,...,7Z—1,
j=1

Z+1

Zajklz(e’\/ —A) =1

=1

which is a linear system with respect4g which has a determinant, multiple of the
Vandermonde

Z+1
[T —n - detpi]25%1 = ]_[(e RSN (Tl
j=1 i<j

The solution is given by

1 1
T =0 a0
which proves
Z+1 1 i
Az(x;h) = ]X::l 0D @ (13.10)
which is exactly (3. From this formula property (4follows directly. ]

Exercise 13.23Prove @) by checking directly that all conditions of Definition 13.20,
p. 233, are satisfied by the functifiy, A2, ..., Az11];G(z; x, A).
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We have the following useful corollary.

Corollary 13.24 For everyx such that. # ¢* forall j = 1,2, ..., Z+1, the function
Az (x; A) permits the residuum representation

1 1 ert
21i Jr qz41(2) € — 2

where the closed contodt surrounds the zeros @fz1(z), i.e. all elements oA =
[A1, X2, ..., Az4+1], and excludes the zeros of the functexp(xz)/(e* — 1).

Az(x;A) = dz, (13.11)

The proof is due to the Frobenius representation of divided difference as residuum,
see formula (11.12), p. 193.

Let us put
Z+1 Z+1
roy = JE =0 =Y rn, (13.12)
j=1 j=0
Z+1 zZ+1
sy =™ =n=> sl (13.13)
j=1 =

We have the following important representation of the functigrn(x; A).
Corollary 13.25 The expression

[z (A x) i=r(M)Az(x; L) (13.14)
is a polynomial of degree Z in 1. The polynomiallz(; 0) has degree< Z — 1.

The polynomialllz (A := I1z(A; 0) is known as thé&uler—Frobenius polynomial
Corollary 13.25 follows directly from formula (13.10). We obtain the representation
Mz (A x) = pz()AZ 4o 4 AT Frzeig, (r — 1),

We see that the points = ¢/ are singular for the functiod z (x; ). However, the
polynomialsIlyz(A; x) also make sense for such values of the parameter

Proposition 13.26 Assume that all; € A are pairwise different. Then for evexrye R
and for everyr; € A we have the following equality:

AgX
Oz x) = —r'(e) - /e;‘ (13.15)
qZ+1()\s)

Proof By the definition of the function in formula (13.14) we obtain

Z+1 Z+1 ij

Mz (s x) =r(W)Az(x; ) = H (€ =) - Z

qz.,.]_()\ ) ekf — A

- - . (e — ). 13.16
2 920 ezll,_zLj -
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Hence,
e)»,-x
Mz(e™:x) = —r'(e™) - ————.
qZ_,_l()Ls)
which completes the proof. |
Exercise 13.27Find an expression fofl 7 (1; x) when the values af; are not pairwise
different as in equality (13.16). Consider the case whenl = 2p withiy = --- =1,
andkp+1 == A2p.

13.7 Generalized divided difference operator

In the general theory of Chebyshev splines presented in Section 11.2, p. 191, we have
a divided difference operator which is not uniquely determined. It is important for the
cardinal L-splines that the coefficients of the polynomia(a) ands () determine an
elegant expression fordivided difference operator

Let us consider the polynomial

z+1
97.1[A1@) = q7,1(2) ‘= qz41[-Al(2) = ]—[ (z+ 1)),
j=1

which evidently satisfieq§+1(z) = (—1)Z+1q2+1(—z) by the definition oﬁ;}H(z) in
(13.2), p. 224.
Naturally, we will define byU7_ ,[A] the space o€>°-solutions of the equation

d .
>|2+;|_[A]f = q;+1[A] <E>f()€) =0 forxinR.

We have the followinglivided difference operatoffer cardinal L-splines.

Proposition 13.28 If the coefficients; ands; are those defined, respectively, in (13.12)
and (13.13), p. 235, then for every functigiix) in Uz41[A]

Z+1

> rif(j)=0. (13.17)

j=1

Also, for everyf in U7 1[A]
Z+1
> sif(j)=0. (13.18)
j=1
Proof For simplicity, we first assume that all; are pairwise different. In such a
case every solution t6z1 f (x) = O is a linear combination of simple exponents

Z+1

fx) = Z o1eh*.
=1
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Butforeveryl =1,...,Z+1

Z+1 ) Z+1 )
Z rjeMj — Z rj(e)")j — r(e)‘l) =0
=1 =1

holds, hence:jzill ri f(j) = 0.

For arbitrary values of ; let us note that all the equalities above depend continuously
on the parameters;, j =1,..., Z + 1. We proceed by perturbing the coincidings
so that the perturbed values do not coincide and then we apply a limiting argument in
all the above equalities. In a similar way we prove the second part, since the solutions
of £§+l(d/dx)f(x) = 0 are linear combinations of exponents of the typ&/*. MW

13.8 Zeros of the Euler—Frobenius polynomiallz())

Recall that we have termed the polynomial
Iz () =Tz *;0)

Euler—Frobenius polynomial

From formula (13.10), p. 234, we see that the values¢* are generally speaking
singular for the functiom z (x; A). Lemma 13.29 gives an answer to what happens if
1 = e’ for somei. It plays a central role in solving theardinal interpolation problem
(13.5), p. 225.

Lemma 13.29 LetUz1[A] = {u1, ..., uz+1}in-
For anya with 0 < a < 1the system of equations

yO(@) =2yD©) fori=0,...,7 -1,

y(@) =0,
has a nontrivial solutiony in Uz if and only if» # ¢* fori = 1,...,Z + 1and
Az(a; 1) =0.
More precisely, the determlinant of the above linear system with respect to the
Z+

variablesc, wherey(x) = ijl uj(x), is proportional toA z (a; A).

Exercise 13.30Prove the above lemméalint: Follow a way similar to the one we used
to obtain formula (13.10), p. 234.

We will not prove the following fundamental theorem since its proof will not be
necessary later in our study.

Theorem 13.311. If A > Oandx # ¢* fori = 1,..., Z + 1, then as a function of
x, Az(x; A) has no zeros in the intervaD, 1). If . < 0thenAz(x; A) has exactly one
simple zero in the intervdD, 1).
2. Let us fixa with0 < @ < 1. Then as a function of, Az («; A) has exactlyZ
different zeros
1) < --- < 17(t) <0

which interlace the zeros of ;_1(a, A) = Az_1[A1, ..., Az] (o, A).
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3. For Z > 2 the polynomialllz (A) = r(A)Az(0; A) has exactlyZ — 1 negative
zeros which interlace th& — 2 zeros

7110 <---<17_.10) <0

of Az_1(0; M) = Az_q[A1, ..., Az](0, ).

Micchelli proves this theorem by applying a generalized Budan—Fourier-type result
for the zeros ofL-polynomials [13, pp. 210-211]. Schoenberg has provided a more
elementary proof of the above result [19, p. 256, Theorems 1 and 2, pp. 258, Lemma 1].

13.9 The cardinal interpolation problem for L-splines

In view of the above results we see that for evenyith 0 < o < 1 there exist precisely
Z solutions of the zero interpolation problem (13.5), p. 225, i.e. elements of the space
Sg. They correspond to the different solutions of equatigi(a, 1) = 0.

Proposition 13.32 For everyu satisfying0 < o < 1 the dimension 052 is exactlyZ,
while fore = 0itis Z — 1.

For the proof see the illuminating explanation by Schoenberg either in his book [18,
Lecture 4, pp. 35, 36], or in his paper [19, p. 269].
We put
Sj(x):=Az(x,7j(@) forO<x<1

and extend it for every in R by means of the functional equation
Si(x+1) =7j(@)S;(x).

We proceed in a similar way fer = 0 but there we use the — 1 zeros ofA 7 (0; A).
Let us note that all these elements have an exponential growth. Indeed, 4
7j(a) < O then due to

Sj(m) = 1:}”(0{)51-(0) forall m in Z,

forallm < 0 we have an exponential growth far— oo. If 7;(«) < —1thenwe obtain
exponential growth for all > 0 form — —oo.

Let us denote by the unique simple zero of 7 (x; —1) satisfying 0< & < 1. Thus,
if @ # & an elemensg of power growth does not exist.

This obtains the main result of the cardinal interpolation.

Theorem 13.33 Leté be, as above, the unique zerodf (x; —1) in the interval[0, 1).
Then for every with 0 < o < 1 such thatx # £ and any bi-infinite sequence of power
grovvth{yj};?":_OO there exists a unique splingx) in Sz of power growth for which

u(a+j)=y; forall jinZ,
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andu(x) is given by the cardinal series

u@)= Y yiLlx—j).

j=—00

Here L(-) is the fundamental cardindl-spline of Theorem 13.2, p. 225.

13.10 The cardinal compactly supported_.-splinesQ .1

One of the important features of Micchelli's approach to cardinaplines is the simple
and natural way in which the cardirEB-splin€ functions are obtained, compared with
the general construction of tifeB-splines in Section 11.4.1, p. 201.

We will consider a more general situation by taking the migélinstead ofZ. This
will be particularly important when we study-spline wavelets.

We assume as usual that the nonordered vetter [Aq, Ao, ..., Az41] Of the real
numbers is fixed. We will consider tloardinal mesh

h7Z = {jh: all jinZ}

where we have taken some fixed numbes 0.10 The reader may simplify the results
below by putting: = 1.

Definition 13.34 The forward) T B-spline for the cardinal L-spline spaceSz(A) is
defined by

Z+1
Qz41(x) = Qz4a[A: h](x) == )¢5 (x — jh)sjh (13.19)
j=0
where
Z+1 Z+1 .
sp(x) = sp[A](x) == H (e M —x) = Z sjnx’. (13.20)
j=1 Jj=0

The notationQ z+1 = Qz+1[A; k] = Q[A; k] will be used on equal rights depend-
ing on what we want to emphasize. Obviously the notatibn, 1[A; /] is redundant
since A will normally haveZ + 1 elements, but if this is not the case we will use this
notation.

In the caseZ = 0 we obtain

—Mh oy = so + s1x, with

9The notionT B-spline is the generalization of the polynomigispline. It means ar.-spline with a
minimal compact support.

105ych a cardinal mesh is considered by Schoenberg [19]. The case considered by Micchelli [12,13] is that
of h =1.
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By the properties op (x) in Proposition 13.12, p. 229, we have
po(x) = M*

hence,
01(x) = e MM 10 11 (x), (13.21)

wherex[o, 4] (x) is the characteristic function of the interval [i], i.e. by definition

1 forO<x <h,
X[0,n] (X) = (13.22)

0 elsewhere.
Here is the most central result of classical spline theory but formulated ii-our
spline setting (see the case of general Chebyshev splines in Theorem 11.29, p. 201):

Proposition 13.351. The splineQz1(x) = Qzy1[A; h](x) defined by formula
(13.19) is af B-spline for the operator. 7, 1[A] on the meshZ, i.e. itis a nonnegative
function, has a minimal compact support in the sense that no (nonzespjine with
smaller support exists, and it is the unigliespline up to a multiplicative constant with
support[0, Ph + h]. The above means that

Qz41(x) >0 forO<x < Ph+h,
Qz4+1(x)=0 forx <0 or x> Ph+h.

Proof We prove only that the support @, 1(x) is contained in the interval
[0, Ph + h].

Assuming for simplicity that all values af; are pairwise different, by the definition
of the functiongz (x) in formula (13.8), p. 229, we obtain

Z+1

1 .
pz(x = jh) =Y~ 1IN,
; q/Z+1()"l)

hence, forx > Z 4+ 1 we have

Z+1
Qz41(x) = Y bz(x — jh)s;
j=0
_ ZZH ZZH L ueim )
-1 qZ+1()¥l) !

Z+1 1 Z+1
T I
=1 qZ—i—l()‘l)
Z+1
1
= — = Mg

—)\,1/’1) =0
=1 4741(M)

Thus forx < 0, Qz+1(x) = 0 follows immediately from the definition of the function
¢ (x). -
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Exercise 13.36Prove the above result by using the residuum representatidx}f(vf)
in formula (13.7), p. 229.

Exercise 13.37This is another classic result in spline theory. Prove the minimality of
the support forQ z1(x) stated in Proposition 13.35.

Hint: Recall that the dimension dfz.1 is Z + 1 and check that the number of
smoothness conditions @y 1(x) (noteQ 4 1(x) belongs taCZ-L(R))is (Z +2)Z.
Count the dimensions.

Theorem 13.38 is the most basic of all results about compactly supported spline, (for
the general Chebyshev splines see Theorem 11.30, p. 202).

Theorem 13.38 Take for simplicityh = 1.
1. No element of the set of shifts

{Qz4+1(x — j): forall jinZ}

is a finite linear combination of the others.
2. Denote by5z (A)[a, b] the space of cardindl-splines inSz (A) which have their
support only in the intervdla, b] wherea, b are two integers. Then the set of shifts

{Qzy1x—j):forj=a—-Z,....b+ Z}

forms a linear basis of5Sz(A)[a, b]. All elements in this set of shifts are linearly
independent.

13.11 Laplace and Fourier transform of the cardinal
1B-spline Q7.1

Since the functiorep}r (x) has no compact support we may not consider its Fourier trans-
form in the classical sense. On the other hand the fun@igni(x) = Qz+1[A; h](x)

is a linear combination of shifts (integer translates¢§tx) but has a compact support

and for that reason its Fourier transform is defined in a classical sense. Because of this
we first compute théaplace transformﬁ[qﬁ}](z) which makes sense for some subdo-
main of the complex plane and after that we extend by analytical argument the formula
obtained for€[ Q7+ 1](z). Then we use the fact that tieurier transform is obtained
through theLaplace transformat the point; = i&.

Proposition 13.39 The Laplace transform of the functi@z.1 is given by
ey Tt — e

qz+1@) MA@ —2))

Ll0z+1[A ] (2) = / Qz11(x)e *dx =

for every complex numbere C. The Fourier transform is, respectively,
sp (e _ szill(e_)”'h — e7i5h)

= 13.23
qz+1(i§) 17241 GE —2p) (13239

Q71[A: h](E) = £[Q 741] (&) =




242 Multivariate polysplines

Proof  Assuming for simplicity that all. ;s are pairwise different, we can easily see
that

oo
Loy 0] = / ¢ (x)e dx (13.24)
oo
1
= for Rez > max Aj,
qz+1(2) J=L Z4+1

which follows directly from the representation of the functiﬁ@(x), formula (13.8),
p. 229. Indeed, we have

. -1
/e)‘fxe_” dx = for Rez > max A;
Aj—2z i=1,...Z

j=1..., +1
and -
0o + 1 1 1
| srweax =3 - -
00 = 97,1 z—rj  qz4+1(2)

The lastequality is a standard resultin the representation of a rational polynomial through
simple fractions, easily checked by multiplying with— A ;) and substituting = A
thereafter.

Hence, by the standard properties of Liaplacetransform we obtain

OO —xz & —zjh % xz sn(e”™")
foo QZ-}-l(-x)e dx = ;)Sj@ -/ ' foo ¢Z (X)e ‘dx = m

which is now true for every complex numbere C since Qz,1(x) has a compact
support and we extend the right-hand side analytically. For coincidjsgthe result
follows by a continuity argument. |

From the above there immediately follows a relationship betweef thapline for
differentZ, which shows that we may reduce the studydof, 1[A; 4] to the case of
h = 1. For that reason it makes sense to introduce a simplified notation ferl,
namely

0z+1[A1 (x) = 0z41[A; 1] (x). (13.24a)

By formula (13.23) we obtain, through simple transformations,

nj:]{l-(e—)ujh _ e—ifh)

HE =)

QzlA; h](E) = (13.25)

Z41, —ah i
_hZ+1Hj=1(e Ml — et

H}Z;rll(ihé — i)

= h?* . 07 alhAI(hE).

Taking the inverse Fourier transform we obtain Proposition 13.40.
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Proposition 13.40 The T B-spline Qz41[hA] on the meshZ and the T B-spline
Oz+1[A; h](x) on the meshZ are related by the equality:

0zalA: k1) = h” - Qz1a[nA] () (13.26)

It should be noted that the last function has singularitiés ati € Z, since the function
Qz+1[hA](y) has singularities at € Z.

Exercise 13.41Prove Proposition 13.40 by using the residuum representatigry 6f)
in formula (13.7), p. 229.

13.12 Convolution formula for cardinal 7B-splines

Here we will prove an important generalization of the inductive convolution formula
known for the polynomial cardinal splines, see Schoenberg [18, p. 12, formula (1.9)],
which we have mentioned in the introduction as formula (13.1), p. 220.

Assume that we are given the nonordered veetoe= [r1,...,Ax] and let us
denote bym ; the number of entries i\ for the number.;, i.e. m; is the multiplic-
ity of »;.11 As above we denote b@ [A] (x) = Qn+1[A] (x) the L—spline onZ
which corresponds, according to formula (13.19), p. 239, to tha sétWe denote by
QO[A]l(x) = On+1[A](x) the L-spline which corresponds according to formula (13.19),
p. 239, to the seA. Here we drop the subindéx + 1 of Q as inessential for the present
consideration.

The Fourier transform o[ A](x) which we have by formula (13.23), p. 241, is
equal to

[Tioi(e™ —e7)

O[Al®) = :
[T)_1GE —))
Assume that aubdivisiorof the nonordered vectay be given, i.e. two other nonordered
vectorsA; andAp are determined byt 1 = [u1, ..., un;]andAz = [vy, ..., vn,] with

N = N1 + N2, and the number of entries af in A1 plus the number of entries af;
in Ay is equal tan ;. Evidently, we have

O[A1(6) = O[A1](€) - Q[AZ](®).
By taking the inverse Fourier transform and using a basic property of the Fourier trans-

form, namely to convert the convolution between two functions into their product, see
(12.7), p. 212, we obtain

O[A1] * O[A2](§) = Q[A1) - Q[AZ] ().

This completes the proof.

11 see the conventions about non—ordered veatoos p. 223.
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Proposition 13.42 If the setsA 1, A> andA are defined as above then the corresponding
T B-splines satisfy the following equality:

O[A](x) = Q[A1](x) * Q[A2](x).

In particular,
h
Olp, Ay . Al (x) = e M. f O[M, ..., As](x — y) - e®dy, (13.27)
0
and
O[r1. ..., Al (x) = Q[A](x) * Q[A2] (x) - - - % Q[An](x). (13.28)

Let us recall that in the last equali@[2 ;] (x) is theTB-spline corresponding to the
vector A = [ ;] which has a unique element and which by formula (13.21), p. 240, is
given by

Q1 j1(x) = e 2" i% yig 41 (x)

or inthe case of the meghis given byQ[ 2 ;](x) = e~/ e*i* x[0,1](x). It has the Fourier
transform

L

h
/)\,\‘ — —)\.jh/ Ajx —iéxd —
OL1(E) = et [ ehmedy = e o

which coincides with the general formula (13.23), p. 241.

13.13 Differentiation of cardinal 7B-splines

We now prove Theorem 13.43 by means of the convolution formula for different order
TB-splines.

Theorem 13.43If we use the notation for thEB-spline as in (13.19), p. 239, for the
meshiZ, then the following formula holds:

d
(d— - u) Ol 3, - A1)
X

=~ M(Q[1. ... sl = h) et — Q. L ] (1))
=e MO, . ) + QA1 .. Al (x — h).

Proof Informula (13.27), p. 244, we have proved that

h
Q[M’)"la "'7)\'5](x) = e_th /O Q[)"lv "'7)\'5](x - )’) 'e'uydy'
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Let us differentiate it. We obtain after integration by parts, and using the fact that
(d/dx)g(x —y) = —(d/dy)g(x — y), the following equality:

d
d Q[M?A‘l»"'s)\'s]('x)
X

ha
= '/o EQ[M» Al = y) - e dy

h
=" <Q[M’ ksl =) e"yliig—ﬂfo OlAL, ..o Al (x — y) - e dy)
= =MD, o A1 = ) e = Qg AT
h
+ M/O Oli, Ay ooy As](x — y) - e dy,

which completes the proof. [

13.14 Hermite—Gennocchi-type formula
We may easily derive an analog to the classical Hermite—Gennocchi formula [2, p. 9].

In order to be able to apply the Fourier transform we have to work at least temporarily
with functions inL2(R). For an arbitrary functiorf € L1 joc(R) N L2(R) let us consider

Y 1=K f)O[A](x) dx.

Using the Parseval identity (12.5), p. 212, and the convolution formula (13.28), p. 244,
we obtain

1 BN —
I'=2= / (&) - O[Al(§) d§
T J—o00

1 BN — — —
=2—f F©&) - O[rl @) - Q[22]() - ... - Q[An](E) d&
T J—00

N oh
e Mt Hf MYl dx Y dE
j=1"0

j=1

1 N h h poo N .
_ = 1—[ e hil / / / F &) - H %t ¥idxy - - dxy dE
2 j=1 0 0 J—oo j=1
N
1 | XN h h N 0 __ .
=—[[e™" / / ehivi / F&)- S0+ g gy . day.
2 j=1 0 0 j=1 —00

N
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Further we apply the inverse Fourier transfoffit!, see (12.4), p. 212. By formula
(12.6), p. 212, it has the property thAt 1F = id, which implies the equality:

N h h N
I: l—[ei)“]h / ./ l_[g)“Jx].f(xl++xN)dxl.de.
j=1 0 0 j=1
N

Let us note that both sides also make sense for functiors; igc(R), and by the
approximation argument we may prove it for all functiondifoc(R).
Thus we have proved tlgeneralized Hermite—Gennocchi formtda

Theorem 13.441If the nonordered vectoN = [A1, ..., Ay] iS given and the function
f belongs talL1 joc(R) (i.e. f belongs taL1(a, b) for every finite intervala, b)). Then
the corresponding” B-spline Q[ A](x) defined on the mesi¥. satisfies the identity

/ () Q[A](x) dx

N h h N
= He‘kfh f / l_[e)‘fxf~f(x1+~-'+x1v)dx1~-~dx1v. (13.29)
N

Exercise 13.45Recall that the left-hand side of equality (13.29) is equal to the divided

difference of a functiory for which ﬁ};Hg = f, which will be proved in Theorem

13.59, p. 258. Combining both results we obtain the equality which is usually known

as theHermite—Gennocchiormula. Prove the above result for noncardinalsplines
whenQ[A](x) is the corresponding compactly supportE@-spline without using the
Fourier transform.

13.15 Recurrence relation for the7B-spline

As an application of the Fourier transform of tleB-spline Q[A](x) we may easily
prove a recurrence relation which expresses the valugg f through values of lower
orderT B-splines.[14}3

12 This result has been proved by Dyn and Ron [7].
13 This result was first proved by Dyn and Ron [6, 7].
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Theorem 13.461f A1 # Xz1 then the following recurrence relation holds:

—Az+41
O[r1, A2, .oy hzq1](x) = —— O[22, ..., Az41](x)
Al —Az41
" g ]
— O[M, . Azl
Al —Az41 z
-1
+ ———0[* ..., Az41](x = 1)
Al —Az41
1
— = O[M,...,hz](x = D). (13.30)
Al—Az4+1

Proof By assumptiom1 # Az41. We will be looking for the constants in the
equality

O[A1, A2, ..., Az41](x) = C10[A2, ..., Az41](x) + C20[A1, ..., Az](x)

We carry out some algebraic operations. First, we take the Fourier transform on both
sides and obtain

[T/ — i)
7265 =)
[T e T2 —e)
Zlig—2) [Ty —2)
jzizl(efkj — e7i6) it Hszl(e—Aj — i)

NA%ae—x 0 [17aGE —4)

Then we divide the last bQHjZZZ(e—M - e""f)> / (szzz(is - Aj)>, after putting

z=e 8, Ti=e M, Tp=e 1,

we obtain

(Ty —2)(T2 — 2)

(1§ — A& — Azy1)
_ (C1+C3)(i§ — Az )(T1 — 2) + (Co+ Cax) (1§ — 1)(T2 — 2)
(1§ — A€ — Azy1)
By comparing both sides as polynomialszofre obtain the system:
C1(i§ — Az4D)Th + C2(i§ — A1) T2 = Th T2,
—C10§ — Az41) + C3(§ — Az41)T1 — C2(i§ — A1) + Ca(i§ — A)T2 = —(T1 + T2),
—C3(i§ —Az41) — Ca(i§ — A1) =1
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Now we compare the coefficients in front of the variablén the first and the third

equations which gives

C1T1 4+ CoTo =0,
C3+C4=0,

which again gives, using the first and the third equations, the solution

b e hz+1
Cl = = )
A —Azy1  Al—Az41
C1Th —T1 —e™M
C2 = — = — = ,
p) Al—Azy1 A1 —Azpa
-1
C3=———,
A=Azl
1
Cp=—" .
Al —Az41

One checks directly that these constants also satisfy the second equation, hence they

solve the above system.

13.16 The adjoint operator L7, , and
the TB-spline Q% ;(x)

In Section 13.7, p. 236, we introduced the adjoint polynorqurl and the adjoint
operatorﬁ}H for the purposes of the generalized divided difference operators. Here we
will need them again for defining the adjoifiB-spline. It is helpful to work with the

formally adjoint operator timeg—1)%+1

z41
L714[A] (%) = Lz41[—A] <%> 1= Hl <% + )\.j)
J:

with the polynomial
Z+1
05100 = [[+1)) = (D% gza(-2).
j=1
The correspondin@B-spline on the meshZ is given by

Z
0% 1(0) = (=D " pF (jh — x)r
j=0

(13.31)

(13.32)

(13.33)
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where we have put, as in (13.12), p. 235,

Z+1 Z+1
. j Aih
rp(x) = E rjpx! = H(e it —x).
j=0 j=1

We will drop the second index and writg instead ofr; ;, if the context allows.
Proposition 13.47 The polynomials; (x) andsy, (x) are related through the equality

Ay, (3) = (—1)ZHLhGatHhzin) g (x). (13.34)
X

Proof We have evidently

1 Z+1

741
W2y, (}) _ 2zl anl <ex,-h _ 1/x) _ Q(xekjh o

Z+1 Z+1
=exp|n| Y 2 || [[ec—e™M
=1 j=1

which proves the statement. [ |

Due to the properties Qﬁ; proved in Proposition 13.12, p. 229, one may prove
Proposition 13.48.

Proposition 13.48 The following equality holds:

0% 1(Zh+h —x) = Mt Pzl g, (x). (13.35)
Proof Itis clear from
Z+1
0y 1 (Zh+h—x) = (DD gt (x — (Z+1- jhyr,
j=0

that Q7 _ ,(Zh + h — x) is an L-spline for the operatoLz1 with a support in the
half-axisx > 0. By the definition of the polynomial(x), and by Proposition 13.35,
p. 240, applied to the operatm}H[A] = Lz+1[—A], it follows that the support of

’}H(Zh + h — x) coincides with the interval [(Zh + h]. By the uniqueness of such
aT B-spline, which we proved in Proposition 13.35 it follows tf@}H(Zh +h—x)
and Q7. 1(x) are proportional, i.e. for some constant

Q% 1(Zh +h —x) = CO741(x).

In order to obtain this constant it suffices to check this equality fer /.
By the definition of the function®) 71 and¢; we have

Qz41(h) = ¢3 (h)son,

0% .4 = )P et (yrziap.
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It follows that
_ (D%
50,4 '
From the definition of the polynomialg (1) andrj (1) we see directly that

C

son = e~ GatFrziph

Z+1
rzein = (DT

which completes the proof. ]

13.17 The Euler polynomialAz(x; 1) and
the TB-spline Q7 1(x)

For simplicity we consider only the cake= 1. The functiom z (x; 1) and thelB-splines
Q7,4 are related by Proposition 13.49.

Proposition 13.49 The following equality holds:

= (-D% ZJZ=0 Q% 1 +1—x)r

Az(x;4) ey

(13.36)

Proof Let us make the direct expansion

exZ

o0
G = = Mtz
j=0

et — A

hence, by the definition of the functi@, it follows that:

Az(x; 2) =[A1, 22, ..., Az41]:G(2)
=Y Mezx—j-1
j=0
(XFoMeztx—j— D) (X5 r)
B r()
)z YL 00 1+ 1—x)n
r(h)

which completes the proof. |

We now obtain an important representation of teer—Frobeniuspolynomials
Hz(k; 0)
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Proposition 13.50 We have the following symmetric representation of the polynomial
IMz(x;0):

(zh2 Z+1
Mz(:0) = (-7 - AF70/2. atthan. 7 Qz+1< 2 _1) .
I=—(Z-1)/2

(13.37)
Proof By formula (13.14), p. 235, we obtain

Y4
Mz x) i=rMAz(x: ) = (=D Y 051G +1- 0/
j=0

Further we use formula (13.35), i.@} , 1 (Zh + h — x) = e Tz gy 4 (x).
After putting

z-1_._,
2 /7
we obtain the following equalities:
Z .
Mz 0) = (=D Y 0%+ Dl
j=0
z-1 _
= (D% M2 N 9y (2 — )rd
j=0
z-1
Z—-1 Z+1 ;
— (=DZ . Mt thzia i Z T
(=17 -e Y 0z~ —it—5 )4
j=0
(Z-1)/2
Y T S (Z +1 +l) =
I=—(Z—1)/2
(13.38)

Since the functiorQ z+1(x + (Z + 1)/2) is symmetrized around zero in the sense that
its support is the intervaH (Z + 1)/2, (Z + 1)/2] it follows that

(Zz-1)/2
Mz(;0) = (D% AP D2 Jttiza. N 0, 0((Z+1D)/2- DA,
I=—(Z-1)/2

which completes the proof. |

Note that in the polynomial case we hav@z, 1((Z+1)/2 — ¢) =
07z+1((Z+1)/2 + ¢) for everyt € Z, which plays a key role for the symmetry of
the zeros of the polynomidilz(i1). The above result will be used in Section 13.23,
p. 261, to prove a remarkable symmetry property of the zerd$afi; 0) in the spe-
cial case when the numbexs arise through the spherical operators. We have the same
symmetry so far in the case of a nonordered vegtavhich is symmetric.
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Theorem 13.51 Let the nonordered vectak be symmetric, i.eA = —A. Then for
every numbex € R we have

07:1[A] (ZT“ - x) — 0alA] (ZT“ + x) , (13.39)

or, equivalently,
Qz+1[AI(Z +1—x) = Qz+1[A](x).

Proof Assuming for simplicity that all. ;s are different, on every interval,[¢ + 1]
we have the representation

Z+1

Qz11[Al(x) = Y aje,
j=1

which implies that the functio® z1+1[A](Z 4+ 1 — x) is againL-spline since

Z+1
OzplAl(Z+1—x) =) ajehi@H=
j=1

Z+1
— Z e}\,j(Z-‘rl)aje—)ujx
=i

on every interval{, ¢ + 1]. The functionQz4+1[A](Z + 1 — x) has the same support
[0, Z + 1]. Due to the uniqueness of the compactly suppoftespline Oz 1[A](x) it
follows that

O711[ANZ +1—-x) =CQz1[A](x)

for some constantC. After puttingx = (Z+1)/2 we obtainC = 1, since
0z+1[AI(Z+1)/2) #0. [ |

Proposition 13.52 Let A% (x; 1) be the function corresponding by Definition 13.20,
p. 233, to the polynomiaj_ ;. Then

1
Ay (1 —x X) = (D% Ay (;n) for0<x <1 (13.40)

If the nonordered vectoh = [A1, Ao, ..., Az4+1] iS Symmetric with respect to zero, i.e.
A = —A, then the unique zero of equatioty, (x; —1) = 0 satisfyingd < x < 1is
equal to1/2 for odd Z, and is equal td for evenz.14

141n Micchelli’s paper [13, p. 216, Remark 2.3], the last statement is obviously wrong since the formula is
wrong; it is correct on p. 213 and on p. 224 of the paper. Itis correct in Schoenberg’s papaptines [19,
p. 268].
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Proof (1) Assuming for simplicity that alk ;s are different we apply formula
(13.10), p. 234, and obtain

. Z+1 1 e—)»jx (_1)Z Z+1 1 e(l_x))‘j
Apa) =3 — = ' 7 T
j=1 qZ+1(_)\'j) e —A A j=1 CIZ_HL()‘-]') 1/)\ — e
-1 Z-1 1
=87, (l—x; ->.
A A

(2) Now if A = —A it follows that A% (x; A) = Az (x; A), hence
Az —x; =) = (D% Az(x; -1).

If Z is even it follows thatAz(1 — x; —1) = Az(x; —1). Forx = O this gives
Az (1, —1) = Az(0; —1). On the other hand by the very definition (Definition 13.20,
p.233) ofAz (x; A) we haved 7 (1, —1) = —Az(0; —1), whichimpliesA 7 (0; —1) = 0.

(3) Let Z be odd. It follows thatA 7 (1 — x; —1) = —Az(x; —1). Forx = 1/2 we
obtainAz(1/2; —1) = —Az(1/2; —1) which implies thatdA z(1/2; —1) = 0. |

We immediately obtain the following useful corollary.
Corollary 13.53 If the nonordered vectah is symmetric, i. eA = —A, then the zeros
of the equatiorflz (1) = 0, which have been defined in Theorem 13.31, p. 237, are all
different from—1, i.e.I1z(—1) # 0.

Proof By Proposition 13.52, p. 252, we find thiat= 1/2 is the only zero of the

equationAz(x; —1) = 0. Let somer; be a solution td1z(z;) = 0, andr; = —1. Then
by Iz (L) = r(A)Az(0; 1) it follows that Az (0; —1) = 0. This contradiction proves
the corollary. |

Remark 13.54 Sincer(—1) = ]_[(e’\f + 1) > Oit follows that the zeros ol z andIl,
are the same.

13.18 The leading coefficient of the Euler—Frobenius
polynomial IT(A)

We will now compute the leading coefficient of the Euler—Frobenius polynomial

z(A) =Tz(*; 0).

Sincellz(A;0) = r(A)Az(0; 1) and Q}H(Z + 1) = 0 we find from formula
(13.36), p. 250, that the leading coefficientldf (1; 0) is

(D% Q% (2 h



254 Multivariate polysplines

By formula (13.35), p. 249, we obtain the equalities:

0%.1(Z) = Mt Tz010, (D),

0z41(1) = ¢S (1) - s,

50 = e—)»l—---—kz+17

Z+1 A

Py =)

j=1 q741(2))

which imply
Z+1 A
e’
07.1(2) = e
D=3 s
Hence,
Z+1 A-
Mz(;0) = (=17 Z ]‘[(x (13.41)
—14 Z+1()‘)

wherev; are the zeros of the polynomialz (1; 0) which, we will see, are all real and
negative.

13.19 Schoenberg’s “exponential” EulerL-spline
Dy(x; M) and Az(x; L)

The wordexponentials used in a different sense by Schoenberg [20, 21, p. 256] where
he introduces “exponentidl-splines of basig.”. This sense has nothing to do with the
exponential splines used by other authors [17]. For that reason we have put it in quotation
marks and used the expression “exponential” Euler.

Now we will obtain an expression for tfiexponential” Euler L-spling through the
basic functiond z (x; A).

The “exponential” Euler L-splineis defined in a natural way, generalizing the
polynomial case of Schoenberg by putting

Pz = Y MOzl — . (13.42)

j==o00

It is always a convergent series since only a finite number of terms are nonzero. It
evidently has the remarkableXponential property(and for that reason Schoenberg
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has called it exponential):

Pzx+LA= Y MOzux+1-)) (13.43)

j==o0c

=1 Y M0z -G -D)

j=—00
=ADz(x; M);

it reminds us of the property of the exponential functidnwhich satisfies the same

equation
A=

Since Qz+1(x) is differentiableZ — 1 times, if we differentiate the above equality
(13.43)! times wherd < Z — 1, and putx = 0, it follows that:
oD@ =200 1) fori=01,...,z-1

Hence, by Definition 13.20, p. 233, and Lemma 13.19, p. 233, fer @ < 1 the
function®y (x; 1) is proportional toA 7 (x; A).

Now we establish a link between these two fundamental functidnsx; A) and
Az(x; A).

Proposition 13.55 The following relation holds fod < x < 1:
(=1”
%4

(-1)”
= —As (k_l) Az (x;A).

Proof Now let us use equality (13.35), p. 249, naszH(Zh +h—x) =
eMt-+rzs)h g, 4 (x) for h = 1. In (13.36), p. 250, we have obtained the equality

Dy (x;4) = e MTTAZH T, (x; M) (13.44)

¢TI (M) Az (x5 1)

Z
Az ) = D7 [r Y 054G +1- 0.
j=0

Hence for every satisfying O< x < 1, we obtain

(_1)Zeh+---+kz+1

Z
A0z +Z—

A A =
z(x:2) ey 2
-1 Z A+t Azn 2 .
_ &b er(A) Az -j;oo)»f Qz+1(x — )

(_1)Zek1+"-+)»z+1
r(d)

AL Dy N). (13.45)
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By the definition of the polynomidll; in formula (13.51), p. 261, we obtain

(-1?

Az e TR T (x; ).

Dz(x; 1) =

We have the following symmetry property.

Theorem 13.56 If the nonordered vectaa is symmetric, i.eA = —A, then

Z+1 1 Z+1
¢z<;">=¢z< + ;z) forall zin C. (13.46)

2 'z 2
Proof In Theorem 13.51, p. 252, we have proved
07+1(Z+1—x)=Qz41(x) forallxinR,

and in equality (13.42), p. 254, we have

®7(0;2) = Z ZQz11(=))
j:—OO
Z+1
= 2 Qz11()).
i=o

These imply by the exponential property®f; the following:

741 z41 o
Dz ( > ;z> =N 0510z
=0

Z+1 '
= 2N 0501002,
j=0
which completes the proof. ]
We immediately obtain the following useful corollary.

Corollary 13.57 If the nonordered vectorA is symmetric, i.e.A = —A, then
®4(0; z) # 0for all complex numbers, with |z| = 1.

The proof follows directly from Corollary 13.53, p. 253, and the relation between
I1z and®z given by formula (13.44), p. 255, above.

Let us apply formula (13.44). We use the relationXor ¢*s, 1 <s < Z + 1. This
gives the equality

7 (x; e?».v) — (_1)Ze—(l1+--~+)»z+1)e—)tsz T (x: e)\s).
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By formula (13.15), p. 235, we see that in the case of pairwise differente obtain:
—r/(e*) )

q/z+1()~s)

sX

Mz(x:eh) =r(eh) - Az(xieh) =

Hence,

(A
r'(e™s) e

®(x; e)‘-s) — (_1)Zef(l1+"'+}tz+1)€*}~sz - .
QZJ,_]_()"S)

(13.47)

13.20 Marsden’s identity for cardinal L-splines

There is animportamtormalizationproperty which is analogous to the classidarsden
identity for polynomial splines.

Proposition 13.58 Assume that alk; are pairwise different. Then for every in A
and for everyr in R we have the following identity:

D M0zl — )= dz(xie™) (13.48)

fr—
As
— (_l)Z+le—()\.l+“'+)\-Z+l)e_)\._yz . r/(e ) X
q/z+1()‘s)

It is clear that the sum on the left-hand side is finite oysatisfying 0< x — j <
Z + 1. The proof is obtained by applying the above formuladgr(x; 1) in (13.47),
p. 257. This result is useful for estimating the normaf ;1.

13.21 Peano kernel and the divided difference operator
in the cardinal case

Here we provide a direct proof that tfiB-splineQ z 1 (x) is indeed the Peano kernel for
the divided difference operator defined informula (13.18), p. 236, through the polynomial
s(A).

We compute the divided difference in the case of diffeveyst. First, we recall the
adjoint operator of formula (13.31), p. 248,

d Z+1 | |1 d Z+1 '
* — — — —_—— — . P— *
Z+1 (dx) =D i1 ( dx AJ) =D /I Ilpj

WhereDjf = —(d/dx) — j is the operator formally adjoint to the operatb;, =
d/dx — 1 defined in formula (13.6), p. 226.

15These operators differ from those of Dyn and Ron [7, p. 5]. However, the difference between the operators
L%, is not large
P+1 :
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Recalling the properties of the functiogg (x) in Proposition 13.12, p. 229, and the
definition of theT B-spline 0z 1 in (13.19), p. 239, now we have the followifgano
identityfor thegeneralized divided difference operatgiven by formula (13.18), p. 236:

Theorem 13.59 We assume that the functighis C°°. Then the following Peano-type
identity holds:

Z+1

/ 07410y ,1 f(dx = (PS5 f(). (13.49)
. 2

Proof First, recall the properties of the functigr (x) which are stated in Propo-
sition 13.12, p. 229. We assume without restricting the generality/thests a compact
support. By the definition o) 741 in (13.19), p. 239, we obtain

= [ 0zt afeds

_ (—pZH [ 0741()D; Dy, 1 f(x) dx

Z+1 00
= VY sy [ DrDigr = DS dx
=0 Ji

Z+1 00 d
=D ) SJf Dz-- Digz(x — j) (E +/\z+1) fx)dx.
j=0 “J

Further we integrate by parts and apply the properties of the fungtian Proposition
13.12, p. 229,

Z+1 B
I=(1") sjDz---Dipz(x = j)- fFO[;Z5,
j=0
Z+1 o 4
+ (D2 s (—f —-Dz++ Dagz(x — ) (x) dx
Jj=0 joax

+/ Dz ---Digz(x — j))»z+1f(X)dX)
J
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Z+1 Z+1 00
=(DPEY s fD+H (DF Y / Dz41Dz - Digz(x — j) f(x) dx

Z+1
= (DY s £
j=0
which completes the proof. |

13.22 Two-scale relation (refinement equation) for the
TB-splinesQ 1 1[A; h]

Assuming the nonordered vectar given, we denote by) 7 1[A](x) the TB-spline
defined according to formula (13.19), p. 239, for the méslAs before we denote, by
Qz+1[tA; h](x) the TB-spline for the mestZ and for the nonordered vectoA =
[tA1, ..., tAz4+1]. Up to now we have mainly used the notation

0741(x) = Qz41[A](x)

without indicating the dependence bri® We note again that the indéx+ 1 is redundant
but useful to have.

It is important forwavelet analysiso consider the relation between tfB-spline
Q741 for the cardinalL-splines on the mest?Z := {jh: for j in Z} and theTB-spline
on the mesh 27 := {2jh: for j in Z}, where as abové is a fixed positive number.
One says thatZ is arefinementof 2hZ. We have seen in Section 13.10, p. 239, that
the 7B-spline Q z1[ A; h] has support on the interval [@4 + k] and break-pointgh
forj =0,1,...,Z + 1. In a similar way on the mestZ the compactly supported
T B-spline Qz11[A; 2h] has a support [(Z + 1)2h] with break-points;j2h for all
j=0,1,..., Z+1. Onthe other hand, obviousyz . 1[ A; 2h](x) is also arnL.-spline on
the mesttZ. According to Theorem 13.38, p. 241, the integer stiffs 1[A; h](x —£h)
form a basis for all compactly supported splines®yhence it is possible to express
Qz+1[A; 2h] as alinear combination of the shifgsz 1[A; A](x — £h). Theorem 13.60
provides the exact linear combination.

Theorem 13.60 We have the representation, called th-scale relatioor refinement
equation
Z+1

Qz+1[A; 20](¥) = ) veQz4alA; h](x — £h), (13.50)
£=0

where thewo-scale sequends
ve=(—Dbs; fore=0,1,...,Z+1,

and thetwo-scale symbois Z (e ~6") = s, (—e~i5") 17

181n the notation of de Boocet al. [5], we haveQ z1[A](x) = Ny (x).
17see Part Il for this terminology.
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Proof Let us take the Fourier transform on both sides of the equality (13.50). Due
to

QZ+1[mx —Lh)(&) = / Qz1[A; h](x — eh)e—igx dx
= e QAT HI®),

we obtain
- Z+1 ) .
Qz11[A; 210 €)= Y vee 5" Q7 a[A; B ().
(=0

We obtain from formula (13.25), p. 242,

Z+1 ‘ .
0z alA: 20]@) = [] ™" +e7 M) 07 A h](©)
j=1

= sp(—e M) Q4 A[A; h](&).

Since
. Z+1 4 Z+1 ,
sn(=eM) = sp(=e T = Y s (= Dfe N,
¢=0 (=0
the proof will be completed by taking the inverse Fourier transform. |

Theorem 13.60 is another interpretation of Proposition 13.40, p. 243, where we
have established a relation between the Fourier transform@Qfi[A; 2h] and of
Qz+1[A; h].

This relation is quite close to being understood aemeralized two-scale relation
Anyway, we have a simple transition from one level to the other in the wavelet spaces,
which will be much exploited in Part Ill.

Remark 13.61 Due to the translation invariance we have the same coefficients for all
shiftsQ z11(x — 2[h).

Remark 13.62 If A =0, ..., 0], which corresponds to the usual polynomial case, we
see that due ta A = A it follows that:

0zl h() = h? - Qz4[A] (5).

which provides us with a scale invariant set of compactly supported functions. Chui [3]
uses this in his cardinal spline wavelet analysis. For the nonzero veéctee have the
nonstationary wavelet analysis of de Baairal [5].
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13.23 Symmetry of the zeros of the Euler—Frobenius
polynomial TTz())

We now consider the special case of the nonordered vectohich is generating the
spherical operata¥/y ,,, see formula (10.26), p. 169. We will prove a remarkable sym-
metry property of the compactly supported spli@e 1 and of theEuler—Frobenius
polynomial ITz (1) = ITz(x; 0) which are available due to the “almost” symmetry
properties of the corresponding vector= [, A2, ..., A2p].

We consider the operatdr = My ,. We have

Z=2p-1
and the nonordered vectar = [A1, A2, ..., A2,] is given by
M=-n—-k+2 r=-n—k+4, ..., Ap=-n—k+2p,
! 2 P P (1351
Apr1 =k, )‘P+2=k+2’ cee, )»zp=k+2p—2.

By the definition of the Euler—Frobenius polynomial and by the proof of Proposition
13.50, p. 250, namely equality (13.38) we have

Z
Mz =Mtz ()% .Y 079G/ (13.52)
j=0
zZ—1
=Mtz ()% Y 0002 — P
j=0

Let us note that in the case of arbitrary symmetric se= —A we will have
0z+1(J) = Qz+1(Z + 1 — j). Indeed, in such a case the function

0z+1(Z+1-x)
is a piecewise linear combination of

.y Y Y by
(e "M% .., e MY = (MY e ZHYY

hence, due to the uniqueness of the compactly supp@rBedpline Q 7.1 with support
[0, Z + 1] it follows that:

Qz41(Z+1-x)=C-0z41(%)

for some constan€ > 0. But forx = (Z+1)/2 we obtainQz.+1((Z +1)/2) =
C-0z+1((Z+1)/2), henceC = 1. Thus by Proposition 13.50, p. 250, we obtain

My =A%, (%)

Hence
my(A) =0
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implies

()0

We will see that for the above special choice of the veeton (13.51) we have
a rather similar picture since the sget*symmetrizes” fork — oco. We know that the
functionQz11(Z + 1 — x) is a piecewise linear combination of the functions

{e™M1% emheX e hapXy

)

Due to the “almost” symmetry of the vectax we see that after multiplying with
e 11+22p)¥ the basis fo- A changes into the basis far, namely

e()»l—i-)\_zp)x . {e—klx’ e—)»zx’ o e—)»ZPX} — {e)»lx’ e)\.zx ) e)“ZPX}.

9 o s e

We have used the equalities

MAAryp=-—n—k+2+k+2p—2=-n+2p,

—Aj+A1+Ar2p =k+2(p—))

=Apgp—j forj=1...,p,

—AppjtArr+Arypy=—n—k+2(p+1-))
=Aipy1-; forj=1,...,p.
Thus by the uniqueness of the compactly supported spline we obtain
W07 1(Z+1-2)=C - Q741 ().

By puttingx = (Z + 1)/2 it follows that

C = ¢M1t22p)(Z4+D/2 _ ,Oathzp)p — (~n+2p)p.
Thus we have proved the following result about the symmetry of the compactly supported
T B-spline.
Theorem 13.63 For the special choice of the satgiven by (13.51), p. 261, we have

Qz41(Z +1—x) = MH2IP = CrH2DX 0 (x) (13.53)

— (nt+2p)(p—x) | Q741(x).

It should be noted that this result is independenkof
Now we will draw some consequences about the symmetry of the polyndmial
and its zeros. We obtain from (13.52) the equalities
Z .
Mz =M 20 (1% Y " 079()r"
j=0

Y4
= Mtz ()2 p=(=nt2p)p Z 20, (Z 41— HAET.
j=0
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Letusrecallthatsinc®z,1(Z+1) = Othe termwithj = Ois zero. Ifwe put = Z—
orj = Z — i we see that

Z
M, (1;0) = oMt thzan (_]_)Z e~ (nt2p)p Ze(*nJrZP)(Z*i)QZ_'_l(i + 1)ki
i=0

~1
=( + ) PJrtethzi | (L1)Z  (nt20p | (-n+2p)Z
e—n+2p

Z A i+1
i+ 1) ——
x ;O Qz41( +1) (e_mp)

— (sz> Mtz (_1)2 Lo~ (=nt2p)p | (—n+2p)Z
=

Z e~ t2p Z—-(+D
x ZO 0z41(i+1) | —
1=

—n+2p

for a constanC which may be defined by the above and it is clear that 0. We find
this constant by putting = v'e~+2p_ This gives

Mz(x:0)=2%"1.C- Mz 0),
hence sincélz (A; 0) has only negative zeros we obtain

C = ¢~ P(—n+2p)/2

By the general theory, see Theorem 13.31, p. 237, we know thatall = 2p — 2
zeros ofl1 (A; 0) satisfy
Uz_1<---<u1 <0,
hence we see that all zeros separate into two groups. Thus we have proved Theorem
13.64.

Theorem 13.64 For the special choice of\ given by (13.51), p. 261, we have the
symmetry

—n+2p
Mz(x; 0) = 2271 e7PCnt2p)/2 (e - ;0).

If for somei £ 0 we have
Hz()»; O) =0

e—n+2p
IT ;0] =0.
“\

then also
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Hence, theZz — 1 = 2p — 2 zeros of the equatioR z (; 0) = O satisfy
Wil2p—2—j+1 = e t2p forj=1,...,p—1,

and
sz_2<...<ﬂp<—\2/m<up_l<...<ul<o_

We see again themarkable fact that this symmetry is completely independeht of
in particular the constantve(—"+21) is independent of.

These results will be used in the cardinal interpolation with polysplines in Section
15.7.

13.24 Estimates of the functionsAz(x; A) and Q7. 1(x)

We will provide some important estimates of the functiofx; 1) for the special choice
of the setA above in (13.51), p. 261, and the somewhat more general cases considered
in [9].
Using the residuum representation (13.11), p. 235, of the fundtian i) we prove
the following.

Theorem 13.65 Let the vector\ be the one given by (13.51), p. 261. kebe a compact
subset of the complex plar®e¢ K and hence’/ ¢ K for largek. Then for every > 0
there exist a constarf > 0 and an integekg such that for allk > kg, forall A € K,
and for all x satisfyingd < x < 1, the following estimate holds:

C
[Az(x; A)] < Wz (13.54)

Proof We will prove the estimate first for all satisfying 0< x < 1 — § for every
smalls > 0. Then it will follow for all 0 < x < 1 by the symmetry property (13.40),
p. 252, i.e.

1
Ay (1— x: X) = ()% A0 forO<x <1

For simplicity we consider the cage= 2,Z = 2p — 1 = 3, andK = {|A| = 1}.
By formula (13.11), p. 235, we have

1 dz
AN =0 fr 4a2) (e — 1)’

whereT is a contour (or a sum of contours with the same orientation) in the complex
plane which surrounds all points, . . ., tg} and does not surround the poingsfor real
¢ such thae’® = A.

We will choosel™ = I'1 UT'», wherel'1 is a circle which surrounds the poirits, Ao,
andI's is a circle which surrounds the poirits, A4, namely we put

I'j:={zeC:lz—zj|=R;} forj=12
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where
A A
zlizgz—n—k+3,
2
Ri=|z1l - 2=+4+n+k+1,
and
A3+ A
221=%=k+1,

Ry '=|zp— A3l +1=2.

As will become clear, we have chosen these circles in order to obtain the best possible
estimate.
Indeed, for largé& and some constat; > 0 we have the inequality

lga(z)| = C1/2k — 1)? forz € T,.
On the other hande* — A| > |e*| — |A| implies for largek the inequality
le? — Al > et —2 forzelpandi € K.
The above inequalities imply

[ —
r, qa(z)(e? —A) | T C1|2k — 1|2(ek-1 - 2)°

This estimate provides exponential decay for the integral bydor k — oo.
On the other hand for the integral over the cir€le for an appropriate constant
Co > 0 we have

lga(z)| = C2RZ25 forz e Ty,

le? —Al>1—e2 forzeTljandieK,

and obtain for an appropriat&, > 0 the estimate

/ dz ‘ , 1 , n+k—1
= Cz = Lo .
r; 94(z)(e* —A) k#e=2 — 1| k#e=2 -1

SinceAs(x; A) is the sum of the two integrals the statement of the theorem follows.
|

We can now provide an optimal estimate for the compactly supported spline.
Accordingtoformulas (13.42) and (13.44) we obtainfor & < 1therepresentation

> 0zl — j) = (=DFe TR Tz, L (DA (x: 1),

j==00
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Taking all terms in the sum we see that

maxQz1(x) < e 727 Az, 4 (1)) max |Az(x; D).
xeR x€[0,1]

Theorem 13.66 Let the compactly supported splige, 1 (x) correspond to the vector
A of (13.51), p. 261. Then fdr — oo it satisfies the asymptotic order

m X o 13.55
ax ~ . .
QZ+1( ) kz ( )

Proof The estimate of maxo,1] |Az(x; 1)| comes from the above theorem. Since
Aj—0forj=12 ..., pandr; - ocoforj=p+1,...,2p, the estimate of the
asymptotic order ofz1(1) is

zZ+1
rzea@l < [ 1e% — 11 < ce*.
j=1

This completes the proof. |



