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The main purpose of Part II is to find and develop a proper polyspline analog to the
notion of the cardinal splines. By definition, in the one-dimensional case the cardinal
splines are those having knots at the integer points, or somewhat more generally, at the
pointsα + βj wherej ∈ Z, for some fixed numbersα andβ. There is a very beautiful
theory, which was mainly developed by Schoenberg, the main results being summarized
in his short monograph [18].2 The results in this theory may be considered as a part
of harmonic analysisdue to the fact that the basic cardinal splines may be viewed as a
Fourier transform of the function (

sinξ/2

ξ/2

)k

.

Let us start with thepolysplines on strips. Now trying to invent ourpolyspline
Ansatz1 let us imagine that we have polysplines on infinitely many strips, i.e. theknot-
surfacesare infinitely many parallel hyperplanes. It seems very natural to term “cardinal”
those polysplines which have equidistant hyperplanes. It is not very difficult to see that
this is indeed a properAnsatzand one may obtain many results by generalizing the
one-dimensional case.2

Forpolysplines on annuli, i.e. when the knot-surfaces are infinitely many concentric
spheresS(0; rj ), finding the proper Ansatz is a real intellectual challenge. Its answer is
far from evident but it is interesting that it is unique! The hint to the answer is hidden in
the representation of polyharmonic functions in the annulus in Corollary 10.38, p. 173.
By this corollary ifh(x) satisfies1ph(x) = 0 in the annulusArj ,rj+1 and belongs toL2
thenh(x) has the representation

h(x) =
∞∑

k=0

dk∑
`=1

fk,`(logr)Yk,`(θ) for rj < r < rj+1,

where the one-dimensional functionfk,`(v) is a solution to the equation

Mk,p

(
d

dv

)
fk,`(v) = 0 for rj < ev < rj+1.

Recall that by formula (10.26), p. 169, the operatorMk,p has constant coefficients.
Furthermore, we have seen in Part I and more specially in Theorem 9.7, p. 124, thath is
a polyspline if and only if for every two indexesk and` the functionfk,`(v) is anL-spline
for the operatorL = Mk,p! Now the question is whether we have a reasonable “cardinal”
theory of suchL-splines? Yes, we do! It has been developed by Micchelli [12,13]. Some
of the results have been given concise and elementary proofs by Schoenberg [19] in the
same volume.

Eureka! We will callh a “cardinal polyspline on annuli” if all componentsfk,` are
cardinalL-splines with knots atj ∈ Z. Thus we see that the “break-radii” have to satisfy
rj = ej , hence the break-surfaces for the polysplineh will be the spheresS(0; ej ).

1 The meaning ofAnsatzwas discussed in the footnote on p. 32.
2 Due to the lack of space we omit the consideration of the cardinal polysplines on strips. We treat in detail

only the case of the technically more complicated cardinal polysplines on annuli. The reader will be able to
follow the same scheme and produce similar results for the cardinal polysplines on strips.
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It now becomes clear to the reader what the motivation was for the compendium on
representation of polyharmonic functions in the annulus, and further what the motivation
is to have an exposition of the results of Micchelli on cardinalL-splines coming in the
next chapter.

Last but not least the one-dimensional cardinal splines serve as a basic example for
the wavelet analysis. We plan to mimic this construction by usingcardinal polysplines.
Thus a major motivation for the detailed study of the cardinal theory of polysplines in
the present Part is their application to “polyharmonic wavelet analysis” in Part III.

Finally, we want to warn the reader that there will be some weak overlapping of the
notations in some Chapters of the present Part. Following the tradition byL (x) we will
sometimes denote the fundamental spline function of Schoenberg and this may be mixed
with the operatorL for theL-spline. This overlapping is indeed very weak and we prefer
to retain the original notations of Schoenberg. We will eventually repeat this warning at
the proper place.



Chapter 13

Cardinal L-splines according to
Micchelli

In the present chapter we provide an extended study of the cardinalL-splines following
the approach of Ch. Micchelli, including results by I. Schoenberg, Dyn and Ron.1

13.1 Cardinal L-splines and the interpolation problem

The theory of cardinal splines and more specifically cardinalL-splines is a beautiful
area of spline analysis which deserves much attention in view of its recent applications
to wavelet analysis.

Within the general theory of splines thetheory of cardinal splines, or the splines
having only integers as knots, plays a very important and specific role. First, technically
it may be considered more as a subset of harmonic analysis than of the general spline
theory. Indeed, one may view the whole theory as study of Fourier inverse of functions
of the type

(
sinξ/2

ξ/2

)m

=
(

eiξ/2− e−iξ/2

iξ

)m

= eiξm/2

(
1− e−iξ

iξ

)m

.

Let us denote byQm the usual polynomialB-spline of degreem with knots at the points
{0, 1, . . . , m} and with support coinciding with the interval [0, m], and let us introduce
the “centralized” splineMm(x) = Qm(x + m/2), having support [−m/2, m/2] and
knots at{−m/2,−m/2+ 1, . . . , m/2}. Then by the properties of the Fourier transform

1 In view of the terminology that has been established, see Chapter 11 andSchumaker[22], it would be
more appropriate to use the name “cardinal Chebyshev splines” since the theory of Micchlli only concerns
operatorsL having constant coefficients, and the corresponding splines are Chebyshev splines.
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we obtain the following equality [18, pp. 11,12]:

Q̂m(ξ) =
(

1− e−iξ

iξ

)m

= (Q̂1(ξ)
)m

,

M̂m(ξ) = eiξm/2Q̂m(ξ) =
(

2 sin(ξ/2)

ξ

)m

= (M̂1(ξ)
)m

.

By taking the inverse Fourier transform we see that

Qm(x) = Qm−1(x) ∗Q1(x) =
∫ 1

0
Qm−1(x − y) dy, (13.1)

hence, we have a simple constructive and inductive definition of the compactly supported
splineQm(x).

The cardinalL-splines with compact support (TB-splines) which we will study may
also be considered as a part of harmonic analysis since their Fourier transforms are given
by

Q̂m(x) =
∏m

j=1(e
−λj − e−iξ )∏m

j=1(iξ − λj )
,

whereλj are real constants. Thus we have in a similar way

Qm−1(x) = Qm−1(x) ∗Q1(x),

which provides a simple method to generate the most important function of the whole
theory. So far this visual simplicity is only superficial.

The reader should be aware that one may start reading the present chapter from
Section 13.10, where the compactly supported splines are introduced, since for the
majority of standard numerical work one does not need much more. However, as will
become clear in Chapter 14, p. 267, in order to understand the deeper properties of the
functionsQm, which are further necessary for thewavelet analysisin Part III, one really
needs the whole theory developed in the present chapter. In particular, one needs the
notions of Euler polynomialsAm(x; λ) and the Euler–Frobenius polynomials5m(λ) =
Am(0; λ), the location of their zeros etc.

The theory of polynomial cardinal splines, including the theory of theEuler–
FrobeniusandEuler polynomialsrelated to them, was developed mainly by Schoenberg
till the mid-1970s. He has summarized almost all the results in his fascinating book [18].2

During the last decade there has been renewed interest in cardinal splines in view
of their applications towavelet theory. One may even say that the cardinal splines
were reborn in wavelet analysis in the works of Chui, [3], who generalized such a
fundamental notion as the Euler–Frobenius polynomial for an arbitrary scaling function
φ(x) generating amultiresolution analysis.

2 One has to mention also the initiating work of Quade and Collatz [16], and that of Tchakaloff [35] of
which Schoenberg was apparently not aware. More about the beautiful analytic work of Tchakaloff, which
has been published in Bulgarian with a French summary, [2, p. 39].
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As we have already said the theory ofcardinal L-splineshas been developed by
Micchelli and Schoenberg.3 The cardinalL-splines possess most of the advantageous
properties of the usual (polynomial) cardinal splines. However, one important property
which distinguishes theL-splines from the polynomial splines is that they are not scale-
invariant, i.e. iff (x) is anL-spline for some operatorL thenf (αx) is not anL-spline
for the same operator. In the case of constant coefficient operatorsL the functionf (αx)

is still anL-spline, but for another operator. This is essentially used in the theory ofnon-
stationary waveletsdeveloped by de Booret al. ([5] p. 150). The last is a construction
which we will need for the wavelet analysis usingcardinal polysplines on annulito be
treated in Part III of the present book, and for that reason all details of the one-dimensional
construction will be studied here.

CardinalL-splines are a basic tool for our study. For that reason we prefer to give
an independent exposition of the theory, which does not refer to the fundamental theory
of L-splines (and Chebyshev splines) with general knots developed by Schumaker [22],
which we have already used in Part I. Such an exposition will give an opportunity for
a reader who is mainly interested in wavelet analysis to have a complete and logically
closed understanding of the subject. Let us note that the same results may be obtained
[6,7] by following the approach toL-splines of [22].

In the present section we will follow closely the approach and most of Micchelli’s
notations [12,13]. Let us give some basic definitions and notations. Let the real numbers
λ1, . . . , λZ+1 be given. We will consider thenonorderedvector

3 := 3Z+1 := [λ1, λ2, . . . , λZ+1], (13.1a)

where some of the numbersλj may have repetitions. The number of repetitions of a
numberλ in 3 will be termed themultiplicity of λ.

There are different ways to give a good representation of such vectors3 but they are
all overburdened with indices. For example, we might write [22, p. 20]

t1 ≤ t2 ≤ · · · ≤ tm =
l1︷ ︸︸ ︷

τ1, . . . , τ1, . . . ,

ld︷ ︸︸ ︷
τd, . . . , τd ,

where
∑d

i=1 li = m. Another possibility is to put [2, p. 5]

(t1, t2, . . . , tm) = ((τ1, l1), . . . , (τd , ld )).

By using the notation [·] for such a vector we avoid having to describe the multiplicity
of the entries every time. For almost all our purposes the representation by a nonordered
vector3 will be adequate.4

3 Micchelli constructs his theory in a way close to the meditative approach to cardinal splines developed
by Schoenberg. This is based mainly on the Euler exponential spline.

4 We note that a large part of the theory in the present chapter holds for complex numbersλj . In such a case
the so-calledW -property, associated with the name of Polya, holds only for intervals with bounded length, i.e.
the setUZ+1 is not Chebyshev over arbitrary large intervals and one has to keep this in mind. See for examples,
the comment of Schoenberg [19, p. 251]. The results which we need for the cardinal polysplines require no
such generality, while the last would overburden some proofs.
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Further we introduce the polynomial

qZ+1(z) := qZ+1[3](z) :=
Z+1∏
j=1

(z− λj ) (13.2)

and the operatorLZ+1 defined by

LZ+1[3]f (x) := qZ+1

(
d

dx

)
f (x) =

Z+1∏
j=1

(
d

dx
− λj

)
f (x) (13.3)

where, if it is clear from the context, we will drop the dependence on the set3 and
simply writeLZ+1f or qZ+1.5

Let us introduce the set of solutions, sometimes calledL-polynomials, over the
whole real axis:

UZ+1 := UZ+1[3] = {u in C∞(R) : LZ+1[3]u(x) = 0 for x in R}.
As will be discussed in the sections below the fact thatλj are real constants provides

the following important properties:

1. The setUZ+1 is Chebyshev over the whole real axis, i.e. everyϕ ∈ UZ+1 has no more
thanZ real zeros.

2. The setUZ+1 is translation invariant, i.e. ifϕ ∈ UZ+1 then for every real numberα
we haveϕ(x − α) ∈ UZ+1.

3. The classical polynomial case is obtained as a special case, whenλ1 = λ2 = · · · =
λZ+1 = 0. In this case we have the following:

qZ+1(z) = zZ+1, LZ+1[3]f (x) = dZ+1

dxZ+1
f (x),

andUZ+1 is the set of all polynomials of degree≤Z.

We are using the notationZ + 1 in order to make our notation consistent with the
standard one-dimensional polynomial case. As is known, the dimension of the space
UZ+1 is

dimUZ+1 = Z + 1,

but in the polynomial case the degree of the polynomials is≤ Z.

Definition 13.1 The class ofcardinal L-splinesfor the operatorLZ+1[3] is defined
as the set of those functionsu(x) ∈ CZ−1(R) which on every interval(j, j + 1) is a
solution ofLZ+1[3]u(x) = 0, i.e.

SZ+1 := SZ+1[3] := {u in CZ−1(R) : u|(j,j+1) in UZ+1 for all j ∈ Z}. (13.4)

5 As we will see below, the globalC∞ solutions ofLP+1f (x) = 0 are linear combinations of expressions
Rj (x) · eλj x , whereRj (x) is a polynomial with degRj ≤ (multiplicity of tj )−1. For that reason these splines
are sometimes calledexponential. This terminology should not be mixed with the so-called “exponential Euler
spline” of Schoenberg which we will meet below.
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In this definition byg|(j,j+1) we have, as usual, denoted the restriction of the function
g to the interval(j, j + 1). In order to save notation, byg|(j,j+1) ∈ UZ+1 we mean that
g|(j,j+1) is a restriction of an element ofUZ+1.

(We useqZ+1 for the polynomial instead ofpZ+1 of Micchelli [12, 13]. We also
write SZ+1 for the space of splines instead ofSZ. Let us note again that his notation
[12,13] tends to preserve the tradition of the polynomial splines where thedegreeof the
polynomials isZ and the dimension of the space isZ + 1. We put as a central index
Z + 1 instead.)

The main problem solved by Schoenberg for polynomial splines and by Micchelli
for the above introducedL-splines is the so-calledcardinal interpolation problem. They
have found the conditions within which the problem:

u(j + α) = yj for all j in Z, (13.5)

has a solutionu inSZ+1. Hereα is a constant such that 0≤ α < 1.6 In order to formulate
the complete solution for (13.5) we need the class of nullL-splines, which is defined as

S0
Z+1 := {u in SZ+1 : u(j + α) = 0 for all j in Z}.

We always assume thatα is fixed. The following result is basic in Micchelli [12,13,
p. 204], and Schoenberg [19]. It generalizes the classical result of Schoenberg about
cardinal interpolation through polynomial splines from his book [18].

Theorem 13.2 1. The spaceS0
Z+1 has dimension

dim(S0
Z+1) =

{
m = Z − 1 for α = 0,

m = Z for 0 < α < 1.

2. The spaceS0
Z+1 is spanned bym eigensplinesS1, S2, . . . , Sm which satisfy the

equation
Si(x + 1) = τiSi(x) for i = 1, . . . , m,

where the constantsτi (called the eigenvalues of the problem) satisfy

τ1 < τ2 < · · · < τm < 0.

3. Letτi 6= −1 for i = 1, . . . , m. Then there exists a fundamental cardinalL-spline
L(x) ∈ SZ+1, i.e. a spline such that7

L(j + α) =
{

0 for j 6= 0,

1 for j = 0.

6 The results about solubility of this problem are extended by Schoenberg [19] without any extra effort to
the cardinal grid{jh+ α : for all j in Z}, whereh > 0 is an arbitrary constant.

7 As we said already in the Introduction to this Part, the reader does not have to mix thisL with the operator
L. We have preserved Schoenberg’s original notation which was also used by Micchelli and Chui.
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There exist positive constantsA, B such that

|L(x)| ≤ Ae−B|x| for all x in R.

4. Letτi 6= −1 for i = 1, . . . , m. Let the sequenceyj be of power growth, i.e. for
someγ ≥ 0 it satisfiesyj = O(|j |γ ). Then there exists a uniqueu ∈ SZ+1 which has
a power growth, i.e.

|u(x)| = O(|x|γ ) for all x in R,

and which interpolates the datayj , i.e.

u(j + α) = yj for all j in Z.

We have the representation

u(x) =
∞∑

i=−∞
yjL(x − j).

Later, in Theorem 13.33, p. 238, we will provide another criterion for solving the
cardinal interpolation problem. One of our main purposes in Part II will be to find an
analog to the above theorem for cardinal polysplines.

13.2 Differential operators and their solution setsUZ+1

Let us introduce some operators decomposing the operatorLZ+1 of Section 13.1.
When the nonordered vector3 = [λ1, λ2, . . . , λZ+1] is given we define the

following operators:

Dj f (x) :=
(

d

dx
− λj

)
f (x) = eλj x

d

dx
e−λj xf (x) for j = 1, . . . , Z + 1, (13.6)

D0f (x) := f (x).

Evidently, for every integers ≥ 1 we have

[Dj ]sf (x) = eλj x
ds

dxs
e−λj xf (x).

For every integers ≥ 1 we will define the following differential operators:

Lsf (x) := D1 · · ·Dsf (x),

L0f (x) := f (x).

As was said above, the space ofC∞ solutions of the equation

LZ+1f (x) = 0 for x in R,

which we have denoted byUZ+1[3] will be important.



Micchelli’s cardinalL-splines 227

In order to develop some intuition in the reader who is not experienced in differential
equations, we provide the following simple, standard facts from the theory of ODEs
concerning the spaceUZ+1[3], see Pontryagin [15].

Example 13.3 dimUZ+1 = Z + 1.

Example 13.4 If
λ1 = λ2 = · · · = λZ+1 = 0

then

LZ+1f (x) = dZ+1

dxZ+1
f (x)

andUZ+1 is the set of all algebraic polynomials of degree≤ Z, i.e.

UZ+1 = {1, x, x2, . . . , xZ}lin .

Here{·}lin denotes the linear hull of the set of functions inside the brackets.

Example 13.5 If all λj are pairwise different, i.e.λi 6= λj for i 6= j , then

UZ+1 = {eλ1x, eλ2x, . . . , eλZ+1x}lin .

Example 13.6 The constants belong to the setUZ+1[3] if and only if there exists an
indexj for whichλj = 0.

Example 13.7 If
λ1 = λ2 = · · · = λZ+1

then the setUZ+1[3] coincides with all algebraic polynomials of degree≤ Z, times
eλ1x , i.e.

UZ+1[3] = {eλ1x, xeλ1x, . . . , xZeλ1x}lin
= {R(x)eλ1x : R is a polynomial ofdegR ≤ Z}.

Example 13.8 More generally, let the set3 be given by

3 =
τ1, τ1, . . . , τ1︸ ︷︷ ︸

m1

, τ2, τ2, . . . , τ2︸ ︷︷ ︸
m2

, . . . , . . . , . . . , τ`, τ`, . . . , τ`︸ ︷︷ ︸
m`

,

wherem1+m2+ · · · +m` = Z + 1. Then

UZ+1[3] = {R1(x)eτ1x, R2(x)eτ2x, . . . , R`(x)eτ`x}lin
where the polynomialsRj satisfy

degR1(x) ≤ m1− 1, degR2(x) ≤ m2− 1, . . . , degR`(x) ≤ m` − 1.
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13.3 Variation of the setUZ+1[3] with 3 and other
properties

Let us see how the setUZ+1[3] changes with the variation of3. If all values of
λj are pairwise different, we have seen in Example 13.5, p. 227, thatUZ+1[3] =
{eλ1x, eλ2x, . . . , eλZ+1x}lin . Now letλ2→ λ1. Obviously, forλ2 6= λ1 we have

UZ+1[λ1, λ2, λ3, . . . , λZ+1] =
{

eλ1x,
eλ1x − eλ2x

λ1− λ2
, eλ3x, . . . , eλZ+1x

}
lin

,

which in the limitλ2→ λ1 gives

UZ+1[λ1, λ1, λ3, . . . , λZ+1] = {eλ1x, xeλ1x, eλ3x, . . . , eλZ+1x}lin .

In this way we obtain the setsUZ+1 in Examples 13.7 and 13.8.
This kind of limiting process will often be used below – the reason is that several

formulas are much simpler to write in the case of pairwise differentλj s. Then, using the
above limiting argument, we will also obtain the result in the case of arbitraryλj s.

Theorem 13.9 The spaceUZ+1[3] is translation invariant, i.e. ifϕ(x) belongs to
UZ+1[3] thenϕ(x−c) belongs toUZ+1[3] for every real numberc. The spaceUZ+1[3]
is not scaling invariant, i.e. ifϕ(x) belongs toUZ+1[3] then in general it does not follow
thatϕ(hx) belongs toUZ+1[3] for arbitrary real numberh.

The first statement is due to the fact that

eλj (x−c) = e−λj c · eλj x belongs toUZ+1[3],

and the last is true since only forh = λi/λj , we have

ehλj x belongs toUZ+1[3].

So far, if we consider another operator, namely

LZ+1[hT ] =
Z+1∏
j=1

(
d

dx
− htj

)
,

then evidently
ehtj x belongs toUZ+1[hT ].

Here we have used the notation for the nonordered vector

hT := [ht1, . . . , htZ+1].

This simple fact will be used further in the wavelet analysis.

Theorem 13.10The spaceUZ+1[3] is Chebyshevon the whole real line, i.e. ifϕ(x)

belongs toUZ+1[3] thenϕ has no more thanZ real zeros.
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Theorem 13.10 is in fact a reformulation of Theorem 11.4, p. 188, and is important
to us.

Exercise 13.11Prove Theorem 13.10 in the case of pairwise differentλj s.
Hint: If someϕ(x) ∈ UZ+1[3] hasZ + 1 different zerosx1, . . . , xZ+1, then on

every interval(xj , xj+1) we have a pointξj whereϕ′(ξj ) = λ1ϕ(ξj ). Indeed, on the
interval (xj , xj+1) the continuous functionϕ′(x) changes its sign. However, on the
same interval the continuous functionλ1ϕ(x) is zero at both endpoints. It follows that
the functionϕ′(x)− λ1ϕ(x) changes sign on the interval(xj , xj+1), hence, by Rolle’s
theorem there exists aξj ∈ (xj , xj+1) such thatϕ′(ξj ) = λ1ϕ(ξj ). Now the function
ϕ′(x) − λ1ϕ(x) belongs toUZ+1[λ2, λ3, . . . , λZ+1]. Proceed further using inductive
reasoning.

13.4 The Green functionφ+Z (x) of the operatorLZ+1

Here we introduce the so-called Green function associated with the operatorLZ+1. This
function is the analog to the function(x − t)Z+ in the polynomial case. We put

φZ(x) := [λ1, λ2, . . . , λZ+1]ze
xz,

where the index of thedivided difference[λ1, λ2, . . . , λZ+1]z means that it is taken with
respect to the variablez. Let us note that, using the equivalent definition of divided
difference through residuum, see Chapter 11, formula (11.12), p. 193, we have

φZ(x) =
∫
0

exz

qZ+1(z)
dz, (13.7)

where the contour0 in the complex plane surrounds the zeros of the polynomialqZ+1(z).
In particular, in the case of pairwise differentλj s we obtain

φZ(x) =
Z+1∑
j=1

eλj x

q ′
Z+1(λj )

. (13.8)

We define the functionφ+Z (x) as follows:

φ+Z (x) :=
{

φZ(x) for x ≥ 0,

0 for x < 0.

The following result shows that the functionφ+Z (x) is the Green function for the
operatorLZ+1.

Proposition 13.12 The functionφ+Z (x) is theGreen functionfor the operatorLZ+1,
i.e. it satisfies the following three equivalent properties.
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1. φ+Z (x) belongs toCZ−1(R).
2. The following equalities hold:{

D0D1 · · ·D`φZ(x)|x=0+ = 0 for ` = 0, . . . , Z − 1,

D0D1 · · ·DZφZ(x)|x=0+ = 1,
(13.9)

where the operatorsDj were defined in (13.6), p. 226.
3. The equalities in (13.9) are equivalent to the following:

d`

dx`
φZ(x)|x=0+ = 0 for ` = 0, . . . , Z − 1,

dZ

dxZ
φZ(x)|x=0+ = 1.

The functionφZ(x) is also the unique element inUZ+1 which satisfies these equalities.

Proof By the residuum representation (13.7), p. 229, we obtain, for` =
0, . . . , Z − 1, the equalities

D0D1 · · ·D`φZ(x)|x=0+ =
[∫

0

D0D1 · · ·D`e
xz

qZ+1(z)
dz

]
|x=0+

=
∫
0

∏̀
j=1

(z− λj )
1

qZ+1(z)
dz.

Taking for0 the large circle0R = {R · eiθ : 0 ≤ θ < θ}, we obtain the estimate

|D0D1 · · ·D`φZ(x)|x=0+| ≤
∫ 2π

0

∣∣∣∣∣∣
∏̀
j=1

(z− λj )
1

qZ+1(z)

∣∣∣∣∣∣R dθ

≤
∫ 2π

0

C

RZ+1−`
R dθ = 2πC

RZ−`

which after lettingR −→∞ proves the first part of (2).
Since [D0D1 · · ·DZexz

qZ+1(z)

]
|x=0+

= 1

z− λZ+1
,

and by the Cauchy residuum theorem∫
0

1

z− λZ+1
dz = 2πi,

we obtain the second equality in (2).
Point (3) follows easily by induction ins since

s∏
j=1

(
d

dx
− λj

)
= ds

dxs
+

s−1∑
j=0

cj
dj

dxj
.

The uniqueness as stated follows since the dimension of the spaceUZ+1(3) isZ+1. �
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Let us denote byφ+Z [λ1 + γ, . . . , λZ+1 + γ ](x) the Green function corresponding
to the nonordered vector

3+ γ := [λ1+ γ, λ2+ γ, . . . , λZ+1+ γ ].

Proposition 13.13 The Green functionφ+Z satisfies the following identity:

φ+Z [3+ γ ](x) = eγ xφ+Z [3](x).

Proof Since the functioneγ x isC∞ it follows thateγ xφ+Z [λ1, λ2, . . . , λZ+1](x) ∈
CZ−1(R), hence, the functioneγ xφ+Z [λ1, λ2, . . . , λZ+1](x) satisfies the first row of
conditions in (13.9), p. 230. The last condition in (13.9) is satisfied owing to the Leibnitz
formula for differentiation of a product Z∏

j=1

(
d

dx
− λj

) [eγ xφ+Z [λ1, λ2, . . . , λZ+1](x)]|x=0+

=
 dZ

dxZ
+

Z−1∑
j=0

cj
dj

dxj

 [eγ xφ+Z [λ1, λ2, . . . , λZ+1](x)]|x=0+

= dZ

dxZ
[eγ xφ+Z [λ1, λ2, . . . , λZ+1](x)]|x=0+

=
[
eγ x dZ

dxZ
φ+Z [λ1, λ2, . . . , λZ+1](x)

]
|x=0+

= 1,

which completes the proof. �

Exercise 13.14Prove the above theorem without residuum, assuming for simplicity that
all λj are pairwise different.

Hint: Then

φZ(x) =
Z+1∑
j=1

1

q ′Z(λj )
eλj x .

and it follows that

D0D1 · · ·DZφZ(x)|x=0+ =
Z∏

j=1

(λZ+1− λj ) · 1

q ′Z(λZ+1)
· [eλZ+1x ]|x=0+

=
Z∏

j=1

(λZ+1− λj ) · 1

q ′Z(λZ+1)

= 1.
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In Theorem 11.25, p. 200, we provided the basic result about the one-sided basis
generated by the Green function for general Chebyshev splines. Here we specify that
general result for the case of the cardinal splinesSZ+1 defined in (13.4), p. 224.

Theorem 13.15Let us denote bySZ+1[a, b] theL-splines inSZ+1 having break-points
in the interval[a, b] wherea, b are integers. Then the set of shifts{φ+Z [3](x − j) : j =
a − 1, . . . , b} is a linear basis for the spaceSZ+1[a, b].

This is a classic result in spline theory and is proved simply by counting dimensions.

Corollary 13.16 The functionφ+Z (x) ∈ L2(R) if and only if λj < 0 for all j =
1, . . . , Z + 1.

This will be used later in wavelet analysis usingL-splines.

Exercise 13.17Prove Corollary 13.16.Hint: Use representation (13.8), p. 229, ofφZ(x)

in the case of pairwise differentλj . Another possibility is to use representation (13.7).

Remark 13.18 1. Let us note that the functionφ+Z (x) may be considered as anL-spline
with the only knot the point0. Since the dimension ofUZ+1 is Z + 1 (as we have seen
in Proposition 13.12, p. 229) this is the onlyL-spline with a knot at0. This corollary
means, roughly speaking, that the space of splines inL2(R) with the only knot0 has
dimension zero or one, and both cases are described.

2. Let us note that due to the translation invariance of the spaceUZ+1 it follows
that the functionφ+Z [3](x− y) is theGreen function associated with the operatorLZ+1
in the most general sense of this notion, see Section 11.3.1, especially formula (11.18)
on p. 198.

13.5 The dictionary: L-polynomial case

In order to make the transition from the classical polynomial case to the case of solu-
tions of the operatorLZ+1 calledL-polynomials we provide the following dictionary of
notions:

dZ+1

dxZ+1
−→

Z+1∏
j=1

(
d

dx
− λj

)
,

πZ −→ UZ+1,

(x − t)Z+ −→ φ+Z (x − t),

where, as usual,πZ denotes the set of polynomials of degree≤ Z.

13.6 The generalized Euler polynomialsAZ(x; λ)

In the classical theory of cardinal splines the so-calledEuler andEuler–Frobeniuspoly-
nomials, see Schoenberg [18, p. 21], play a major role. These two notions may be
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generalized to the case of the differential operatorsLZ+1, and they also play an analogous
role in the theory of cardinalL-splines.

Lemma 13.19 Let λ 6= eλi for i = 1, . . . , Z + 1. If for some functionu in UZ+1 we
haveu(j)(1) = λu(j)(0) for j = 0, 1, . . . , Z, thenu ≡ 0.

Proof ForZ = 0 we have3 = [λ1] and the spaceU1[3] is one-dimensional with
elementsCeλ1x for an arbitrary constantC. Hence,u(1) = u(0) implies λ = eλ1 if
C 6= 0.

ForZ ≥ 1 we obtain from the first two conditions

u(1) = u(0), u′(1) = u′(0),

that (
d

dx
− λZ+1

)
u(1) =

(
d

dx
− λZ+1

)
u(0).

However,((d/dx)− λZ+1)u(x) belongs toUZ[λ1, . . . , λZ], which shows that we may
proceed inductively. �

Let us note that the above proof is similar to the proof of the equivalence of points(2)

and(3) in Proposition 13.12, p. 229, and we can see that conditionsu(j)(1) = λu(j)(0)

are equivalent to conditionsD0D1 · · ·D`u(1) = λD0D1 · · ·D`u(0).
Thanks to the above lemma we may introduce the very important functionA(x; λ)

of the theory developed by Micchelli which is a generalization of the classicalEuler
polynomialconsidered by Schoenberg [18, p. 21].8 Let us first put

G(z; x, λ) := exz

ez − λ
.

Definition 13.20 Let λ 6= eλi for i = 1, . . . , Z + 1. Then the functionAZ(x; λ) =
AZ[3](x; λ) is defined as the unique element inUZ+1 = UZ+1[3] which is a solution
of the boundary value problem

A
(j)
Z (1; λ) = λA

(j)
Z (0; λ) for j = 0, . . . , Z − 1,

A
(Z)
Z (1; λ) = λA

(Z)
Z (0; λ)+ 1.

It will be called theEuler polynomial.

In fact AZ(x; λ) is L-polynomial. Where necessary we will writeAZ[3](x; λ)

or AZ[λ1, λ2, . . . , λZ+1](x; λ) in order to stress the dependence in the nonordered
vector3.

Recalling the operatorsDj defined in (13.6), p. 226, we can state the most important
properties of the functionA(x; λ).

8 We have taken the notationA(x; λ) from Schoenberg.
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Theorem 13.21The functionAZ[3](x; λ) satisfies the following properties:

1.

{
LiAZ(1; λ) = λLiAZ(0; λ) for i = 0, 1, . . . , Z − 1, and

LZAZ(1; λ) = λLZAZ(0; λ)+ 1.

2. DZ+1AZ[λ1, λ2, . . . , λZ+1](x; λ) = AZ−1[λ1, λ2, . . . , λZ](x; λ).

3. AZ(x; λ) = [λ1, λ2, . . . , λZ+1]zG(z; x, λ), the last being the divided difference with
respect to the variablez.

4. AZ(x + 1; λ)− λAZ(x; λ) = φZ(x).

Exercise 13.22Prove properties (1) and (2).
Hint: Use induction as in the proof of Lemma 13.19, p. 233.

Proof Let us prove properties (3) and (4).
Assuming for simplicity thatλj 6= λi for j 6= i, we see that the spaceUZ+1 is

spanned by the exponentialseλj x , hence, for some constantsσj we have

AZ(x; λ) =
Z+1∑
j=1

σj e
λj x .

Now the conditions in Definition 13.20 give

Z+1∑
j=1

σjλ
i
j (e

λj − λ) = 0 for i = 0, . . . , Z − 1,

Z+1∑
j=1

σjλ
Z
j (eλj − λ) = 1,

which is a linear system with respect toσj which has a determinant, multiple of the
Vandermonde

Z+1∏
j=1

(eλj − λ) · det[λi
j ]Z,Z+1

i=0,j=1 =
Z+1∏
j=1

(eλj − λ) ·
∏
i<j

(λi − λj ).

The solution is given by

σj = 1

(eλj − λ)
· 1

q ′
Z+1(λj )

,

which proves

AZ(x; λ) =
Z+1∑
j=1

1

q ′
Z+1(λj )

· eλj x

(eλj − λ)
(13.10)

which is exactly (3). From this formula property (4) follows directly. �
Exercise 13.23Prove (3) by checking directly that all conditions of Definition 13.20,
p. 233, are satisfied by the function[λ1, λ2, . . . , λZ+1]zG(z; x, λ).
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We have the following useful corollary.

Corollary 13.24 For everyλ such thatλ 6= eλj for all j = 1, 2, . . . , Z+1, the function
AZ(x; λ) permits the residuum representation

AZ(x; λ) = 1

2πi

∫
0

1

qZ+1(z)

exz

ez − λ
dz, (13.11)

where the closed contour0 surrounds the zeros ofqZ+1(z), i.e. all elements of3 =
[λ1, λ2, . . . , λZ+1], and excludes the zeros of the functionexp(xz)/(ez − λ).

The proof is due to the Frobenius representation of divided difference as residuum,
see formula (11.12), p. 193.

Let us put

r(λ) :=
Z+1∏
j=1

(eλj − λ) =
Z+1∑
j=0

rj λ
j , (13.12)

s(λ) :=
Z+1∏
j=1

(e−λj − λ) =
Z+1∑
j=0

sj λ
j . (13.13)

We have the following important representation of the functionAZ(x; λ).

Corollary 13.25 The expression

5Z(λ; x) := r(λ)AZ(x; λ) (13.14)

is a polynomial of degree≤ Z in λ. The polynomial5Z(λ; 0) has degree≤ Z − 1.

The polynomial5Z(λ := 5Z(λ; 0) is known as theEuler–Frobenius polynomial.
Corollary 13.25 follows directly from formula (13.10). We obtain the representation

5Z(λ; x) = φZ(x)λZ + · · · + eλ1+···+λZ+1φZ(x − 1).

We see that the pointsλ = eλj are singular for the functionAZ(x; λ). However, the
polynomials5Z(λ; x) also make sense for such values of the parameterλ.

Proposition 13.26 Assume that allλs ∈ 3 are pairwise different. Then for everyx ∈ R
and for everyλs ∈ 3 we have the following equality:

5Z(eλs ; x) = −r ′(eλs ) · eλsx

q ′
Z+1(λs)

. (13.15)

Proof By the definition of the function in formula (13.14) we obtain

5Z(λ; x) = r(λ)AZ(x; λ) =
Z+1∏
j=1

(eλj − λ) ·
Z+1∑
j=1

1

q ′
Z+1(λj )

· eλj x

eλj − λ

=
Z+1∑
j=1

eλj x

q ′
Z+1(λj )

·
Z+1∏

`=1,` 6=j

(eλ` − λ). (13.16)
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Hence,

5Z(eλs ; x) = −r ′(eλs ) · eλsx

q ′
Z+1(λs)

,

which completes the proof. �
Exercise 13.27Find an expression for5Z(λ; x) when the values ofλj are not pairwise
different as in equality (13.16). Consider the case whenZ+1= 2p withλ1 = · · · = λp

andλp+1 = · · · = λ2p.

13.7 Generalized divided difference operator

In the general theory of Chebyshev splines presented in Section 11.2, p. 191, we have
a divided difference operator which is not uniquely determined. It is important for the
cardinalL-splines that the coefficients of the polynomialsr(λ) ands(λ) determine an
elegant expression for adivided difference operator.

Let us consider the polynomial

q∗Z+1[3](z) := q∗Z+1(z) := qZ+1[−3](z) =
Z+1∏
j=1

(z+ λj ),

which evidently satisfiesq∗
Z+1(z) = (−1)Z+1qZ+1(−z) by the definition ofq∗

Z+1(z) in
(13.2), p. 224.

Naturally, we will define byU∗
Z+1[3] the space ofC∞-solutions of the equation

L∗Z+1[3]f := q∗Z+1[3]

(
d

dx

)
f (x) = 0 for x in R.

We have the followingdivided difference operatorsfor cardinalL-splines.

Proposition 13.28 If the coefficientsrj andsj are those defined, respectively, in (13.12)
and (13.13), p. 235, then for every functionf (x) in UZ+1[3]

Z+1∑
j=1

rj f (j) = 0. (13.17)

Also, for everyf in U∗
Z+1[3]

Z+1∑
j=1

sj f (j) = 0. (13.18)

Proof For simplicity, we first assume that allλj are pairwise different. In such a
case every solution toLZ+1f (x) = 0 is a linear combination of simple exponents

f (x) =
Z+1∑
l=1

σle
λlx .
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But for everyl = 1, . . . , Z + 1

Z+1∑
j=1

rj e
λlj =

Z+1∑
j=1

rj (e
λl )j = r(eλl ) = 0

holds, hence
∑Z+1

j=1 rj f (j) = 0.
For arbitrary values ofλj let us note that all the equalities above depend continuously

on the parametersλj , j = 1, . . . , Z + 1. We proceed by perturbing the coincidingλj s
so that the perturbed values do not coincide and then we apply a limiting argument in
all the above equalities. In a similar way we prove the second part, since the solutions
of L∗

Z+1(d/dx)f (x) = 0 are linear combinations of exponents of the typee−λj x . �

13.8 Zeros of the Euler–Frobenius polynomial5Z(λ)

Recall that we have termed the polynomial

5Z (λ) := 5Z (λ; 0)

Euler–Frobenius polynomial
From formula (13.10), p. 234, we see that the valuesλ = eλi are generally speaking

singular for the functionAZ(x; λ). Lemma 13.29 gives an answer to what happens if
λ = eλi for somei. It plays a central role in solving thecardinal interpolation problem
(13.5), p. 225.

Lemma 13.29 LetUZ+1[3] = {u1, . . . , uZ+1}lin .
For anyα with 0 ≤ α < 1 the system of equations

y(i)(1) = λy(i)(0) for i = 0, . . . , Z − 1,

y(α) = 0,

has a nontrivial solutiony in UZ+1 if and only ifλ 6= eλi for i = 1, . . . , Z + 1 and
AZ(α; λ) = 0.

More precisely, the determinant of the above linear system with respect to the
variablescj , wherey(x) =∑Z+1

j=1 uj (x), is proportional toAZ(α; λ).

Exercise 13.30Prove the above lemma.Hint: Follow a way similar to the one we used
to obtain formula (13.10), p. 234.

We will not prove the following fundamental theorem since its proof will not be
necessary later in our study.

Theorem 13.311. If λ ≥ 0 andλ 6= eλi for i = 1, . . . , Z + 1, then as a function of
x, AZ(x; λ) has no zeros in the interval(0, 1). If λ < 0 thenAZ(x; λ) has exactly one
simple zero in the interval[0, 1).

2. Let us fixα with 0 < α < 1. Then as a function ofλ, AZ(α; λ) has exactlyZ
different zeros

τ1(α) < · · · < τZ(α) < 0

which interlace the zeros ofAZ−1(α, λ) = AZ−1[λ1, . . . , λZ](α, λ).
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3. For Z ≥ 2 the polynomial5Z(λ) = r(λ)AZ(0; λ) has exactlyZ − 1 negative
zeros which interlace theZ − 2 zeros

τ1(0) < · · · < τZ−1(0) < 0

of AZ−1(0; λ) = AZ−1[λ1, . . . , λZ](0, λ).

Micchelli proves this theorem by applying a generalized Budan–Fourier-type result
for the zeros ofL-polynomials [13, pp. 210–211]. Schoenberg has provided a more
elementary proof of the above result [19, p. 256, Theorems 1 and 2, pp. 258, Lemma 1].

13.9 The cardinal interpolation problem for L-splines

In view of the above results we see that for everyα with 0 < α < 1 there exist precisely
Z solutions of the zero interpolation problem (13.5), p. 225, i.e. elements of the space
S0

Z. They correspond to the different solutions of equationAZ(α, λ) = 0.

Proposition 13.32 For everyα satisfying0 < α < 1 the dimension ofS0
Z is exactlyZ,

while forα = 0 it is Z − 1.

For the proof see the illuminating explanation by Schoenberg either in his book [18,
Lecture 4, pp. 35, 36], or in his paper [19, p. 269].

We put
Sj (x) := AZ(x, τj (α)) for 0 ≤ x ≤ 1

and extend it for everyx in R by means of the functional equation

Sj (x + 1) = τj (α)Sj (x).

We proceed in a similar way forα = 0 but there we use theZ − 1 zeros ofAZ(0; λ).
Let us note that all these elements have an exponential growth. Indeed, if−1 <

τj (α) < 0 then due to

Sj (m) = τm
j (α)Sj (0) for all m in Z,

for all m < 0 we have an exponential growth form→∞. If τj (α) < −1 then we obtain
exponential growth for allm > 0 for m→−∞.

Let us denote byξ the unique simple zero ofAZ(x;−1) satisfying 0≤ ξ < 1. Thus,
if α 6= ξ an elementS0

Z of power growth does not exist.
This obtains the main result of the cardinal interpolation.

Theorem 13.33Letξ be, as above, the unique zero ofAZ(x;−1) in the interval[0, 1).
Then for everyα with 0 ≤ α < 1 such thatα 6= ξ and any bi-infinite sequence of power
growth{yj }∞j=−∞ there exists a unique splineu(x) in SZ of power growth for which

u(α + j) = yj for all j in Z,
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andu(x) is given by the cardinal series

u(x) =
∞∑

j=−∞
yjL(x − j).

HereL(·) is the fundamental cardinalL-spline of Theorem 13.2, p. 225.

13.10 The cardinal compactly supportedL-splinesQZ+1

One of the important features of Micchelli’s approach to cardinalL-splines is the simple
and natural way in which the cardinalT B-spline9 functions are obtained, compared with
the general construction of theT B-splines in Section 11.4.1, p. 201.

We will consider a more general situation by taking the meshhZ instead ofZ. This
will be particularly important when we studyL-spline wavelets.

We assume as usual that the nonordered vector3 = [λ1, λ2, . . . , λZ+1] of the real
numbers is fixed. We will consider thecardinal mesh

hZ := {jh : all j in Z}

where we have taken some fixed numberh > 0.10 The reader may simplify the results
below by puttingh = 1.

Definition 13.34 The (forward) T B-spline for the cardinalL-spline spaceSZ(3) is
defined by

QZ+1(x) := QZ+1[3;h](x) :=
Z+1∑
j=0

φ+Z (x − jh)sj,h (13.19)

where

sh(x) := sh[3](x) :=
Z+1∏
j=1

(e−λjh − x) =
Z+1∑
j=0

sj,hxj . (13.20)

The notationQZ+1 = QZ+1[3;h] = Q[3;h] will be used on equal rights depend-
ing on what we want to emphasize. Obviously the notationQZ+1[3;h] is redundant
since3 will normally haveZ + 1 elements, but if this is not the case we will use this
notation.

In the caseZ = 0 we obtain

sh(x) = e−λ1h − x = s0+ s1x, with

s0 = e−λ1h, s1 = −1.

9 The notionT B-spline is the generalization of the polynomialB-spline. It means anL-spline with a
minimal compact support.

10 Such a cardinal mesh is considered by Schoenberg [19]. The case considered by Micchelli [12,13] is that
of h = 1.
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By the properties ofφZ(x) in Proposition 13.12, p. 229, we have

φ0(x) = eλ1x,

hence,
Q1(x) = e−λ1heλ1xχ[0,h](x), (13.21)

whereχ[0,h](x) is the characteristic function of the interval [0, h], i.e. by definition

χ[0,h](x) :=
{

1 for 0≤ x ≤ h,

0 elsewhere.
(13.22)

Here is the most central result of classical spline theory but formulated in ourL-
spline setting (see the case of general Chebyshev splines in Theorem 11.29, p. 201):

Proposition 13.35 1. The splineQZ+1(x) = QZ+1[3;h](x) defined by formula
(13.19) is aT B-spline for the operatorLZ+1[3] on the meshhZ, i.e. it is a nonnegative
function, has a minimal compact support in the sense that no (nonzero)L-spline with
smaller support exists, and it is the uniqueL-spline up to a multiplicative constant with
support[0, Ph+ h]. The above means that{

QZ+1(x) > 0 for 0 < x < Ph+ h,

QZ+1(x) = 0 for x ≤ 0 or x ≥ Ph+ h.

Proof We prove only that the support ofQZ+1(x) is contained in the interval
[0, Ph+ h].

Assuming for simplicity that all values ofλj are pairwise different, by the definition
of the functionφZ(x) in formula (13.8), p. 229, we obtain

φZ(x − jh) =
Z+1∑
l=1

1

q ′
Z+1(λl)

eλl(x−jh),

hence, forx ≥ Z + 1 we have

QZ+1(x) =
Z+1∑
j=0

φZ(x − jh)sj

=
Z+1∑
j=0

(
Z+1∑
l=1

1

q ′
Z+1(λl)

eλl(x−jh)

)
sj

=
Z+1∑
l=1

1

q ′
Z+1(λl)

eλlx

Z+1∑
j=0

e−λljhsj


=

Z+1∑
l=1

1

q ′
Z+1(λl)

eλlx · sh(e−λlh) = 0.

Thus forx ≤ 0, QZ+1(x) = 0 follows immediately from the definition of the function
φ+Z (x). �
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Exercise 13.36Prove the above result by using the residuum representation ofφ+Z (x)

in formula (13.7), p. 229.

Exercise 13.37This is another classic result in spline theory. Prove the minimality of
the support forQZ+1(x) stated in Proposition 13.35.

Hint: Recall that the dimension ofUZ+1 is Z + 1 and check that the number of
smoothness conditions onQZ+1(x) (noteQZ+1(x) belongs toCZ−1(R)) is (Z + 2)Z.
Count the dimensions.

Theorem 13.38 is the most basic of all results about compactly supported spline, (for
the general Chebyshev splines see Theorem 11.30, p. 202).

Theorem 13.38Take for simplicityh = 1.
1. No element of the set of shifts

{QZ+1(x − j) : for all j in Z}
is a finite linear combination of the others.

2. Denote bySZ(3)[a, b] the space of cardinalL-splines inSZ(3) which have their
support only in the interval[a, b] wherea, b are two integers. Then the set of shifts

{QZ+1(x − j) : for j = a − Z, . . . , b + Z}
forms a linear basis ofSZ(3)[a, b]. All elements in this set of shifts are linearly
independent.

13.11 Laplace and Fourier transform of the cardinal
TB-splineQZ+1

Since the functionφ+Z (x) has no compact support we may not consider its Fourier trans-
form in the classical sense. On the other hand the functionQZ+1(x) = QZ+1[3;h](x)

is a linear combination of shifts (integer translates) ofφ+Z (x) but has a compact support
and for that reason its Fourier transform is defined in a classical sense. Because of this
we first compute theLaplace transformL[φ+Z ](z) which makes sense for some subdo-
main of the complex plane and after that we extend by analytical argument the formula
obtained forL[QZ+1](z). Then we use the fact that theFourier transform is obtained
through theLaplace transformat the pointz = iξ .

Proposition 13.39 The Laplace transform of the functionQZ+1 is given by

L[QZ+1[3;h]](z) =
∫ ∞
∞

QZ+1(x)e−xzdx = sh(e−zh)

qZ+1(z)
=
∏Z+1

j=1 (e−λjh − e−zh)∏Z+1
j=1 (z− λj )

for every complex numberz ∈ C. The Fourier transform is, respectively,

̂QZ+1[3;h](ξ) = L[QZ+1](iξ) = sh(e−iξh)

qZ+1(iξ)
=
∏Z+1

j=1 (e−λjh − e−iξh)∏Z+1
j=1 (iξ − λj )

. (13.23)
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Proof Assuming for simplicity that allλj s are pairwise different, we can easily see
that

L[φ+Z (x)](z) =
∫ ∞
∞

φ+Z (x)e−xz dx (13.24)

= 1

qZ+1(z)
for Rez > max

j=1,...,Z+1
λj ,

which follows directly from the representation of the functionφ+Z (x), formula (13.8),
p. 229. Indeed, we have∫

eλj xe−zx dx = −1

λj − z
for Rez > max

j=1,...,Z+1
λj

and ∫ ∞
∞

φ+Z (x)e−xz dx =
Z+1∑
j=1

1

q ′
Z+1(λj )

1

z− λj
= 1

qZ+1(z)
.

The last equality is a standard result in the representation of a rational polynomial through
simple fractions, easily checked by multiplying with(z − λj ) and substitutingz = λj

thereafter.
Hence, by the standard properties of theLaplacetransform we obtain

∫ ∞
∞

QZ+1(x)e−xz dx =
Z+1∑

j=0

sj e
−zjh

 · ∫ ∞
∞

φ+Z (x)e−xzdx = sh(e−zh)

qZ+1(z)

which is now true for every complex numberz ∈ C sinceQZ+1(x) has a compact
support and we extend the right-hand side analytically. For coincidingλj s the result
follows by a continuity argument. �

From the above there immediately follows a relationship between theT B-spline for
differenthZ, which shows that we may reduce the study ofQZ+1[3;h] to the case of
h = 1. For that reason it makes sense to introduce a simplified notation forh = 1,

namely
QZ+1 [3] (x) := QZ+1 [3; 1] (x) . (13.24a)

By formula (13.23) we obtain, through simple transformations,

̂QZ+1[3;h](ξ) =
∏Z+1

j=1 (e−λjh − e−iξh)∏Z+1
j=1 (iξ − λj )

(13.25)

= hZ+1

∏Z+1
j=1 (e−λjh − e−iξh)∏Z+1

j=1 (ihξ − hλj )

= hZ+1 · ̂QZ+1[h3](hξ).

Taking the inverse Fourier transform we obtain Proposition 13.40.
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Proposition 13.40 The T B-spline QZ+1[h3] on the meshZ and the T B-spline
QZ+1[3;h](x) on the meshhZ are related by the equality:

QZ+1[3;h](x) = hZ ·QZ+1[h3]
(x

h

)
. (13.26)

It should be noted that the last function has singularities athj, j ∈ Z, since the function
QZ+1[h3](y) has singularities atj ∈ Z.

Exercise 13.41Prove Proposition 13.40 by using the residuum representation ofφZ(x)

in formula (13.7), p. 229.

13.12 Convolution formula for cardinal TB-splines

Here we will prove an important generalization of the inductive convolution formula
known for the polynomial cardinal splines, see Schoenberg [18, p. 12, formula (1.9)],
which we have mentioned in the introduction as formula (13.1), p. 220.

Assume that we are given the nonordered vector3 = [λ1, . . . , λN ] and let us
denote bymj the number of entries in3 for the numberλj , i.e. mj is the multiplic-
ity of λj .11 As above we denote byQ [3] (x) = QN+1 [3] (x) the L−spline onZ
which corresponds, according to formula (13.19), p. 239, to the set3. ”. We denote by
Q[3](x) = QN+1[3](x) theL-spline which corresponds according to formula (13.19),
p. 239, to the set3. Here we drop the subindexN +1 of Q as inessential for the present
consideration.

The Fourier transform ofQ[3](x) which we have by formula (13.23), p. 241, is
equal to

Q̂[3](ξ) =
∏N

j=1(e
−λj − e−iξ )∏N

j=1(iξ − λj )
.

Assume that asubdivisionof the nonordered vector3 be given, i.e. two other nonordered
vectors31 and32 are determined by31 = [u1, . . . , uN1] and32 = [v1, . . . , vN2] with
N = N1 + N2, and the number of entries ofλj in 31 plus the number of entries ofλj

in 32 is equal tomj . Evidently, we have

Q̂[3](ξ) = Q̂[31](ξ) · Q̂[32](ξ).

By taking the inverse Fourier transform and using a basic property of the Fourier trans-
form, namely to convert the convolution between two functions into their product, see
(12.7), p. 212, we obtain

̂Q[31] ∗Q[32](ξ) = Q̂[31](ξ) · Q̂[32](ξ).

This completes the proof.

11 See the conventions about non–ordered vectors3 on p. 223.
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Proposition 13.42 If the sets31, 32 and3 are defined as above then the corresponding
T B-splines satisfy the following equality:

Q[3](x) = Q[31](x) ∗Q[32](x).

In particular,

Q[µ, λ1, . . . , λs ](x) = e−µh ·
∫ h

0
Q[λ1, . . . , λs ](x − y) · eµydy, (13.27)

and

Q[λ1, . . . , λs ](x) = Q[λ1](x) ∗Q[λ2](x) ∗ · · · ∗Q[λN ](x). (13.28)

Let us recall that in the last equalityQ[λj ](x) is theTB-spline corresponding to the
vector3 = [λj ] which has a unique element and which by formula (13.21), p. 240, is
given by

Q[λj ](x) = e−λjheλj xχ[0,h](x)

or in the case of the meshZ is given byQ[λj ](x) = e−λj eλj xχ[0,1](x). It has the Fourier
transform

Q̂[λj ](ξ) = e−λjh

∫ h

0
eλj xe−iξx dx = e−λjh · e

(λj−iξ)h − 1

λj − iξ

which coincides with the general formula (13.23), p. 241.

13.13 Differentiation of cardinal TB-splines

We now prove Theorem 13.43 by means of the convolution formula for different order
TB-splines.

Theorem 13.43 If we use the notation for theTB-spline as in (13.19), p. 239, for the
meshhZ, then the following formula holds:(

d

dx
− µ

)
Q[µ, λ1, . . . , λs ](x)

= −e−µh(Q[λ1, . . . , λs ](x − h) · eµh −Q[λ1, . . . , λs ](x))

= e−µhQ[λ1, . . . , λs ](x)+Q[λ1, . . . , λs ](x − h).

Proof In formula (13.27), p. 244, we have proved that

Q[µ, λ1, . . . , λs ](x) = e−µh ·
∫ h

0
Q[λ1, . . . , λs ](x − y) · eµy dy.
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Let us differentiate it. We obtain after integration by parts, and using the fact that
(d/dx)g(x − y) = −(d/dy)g(x − y), the following equality:

d

dx
Q[µ, λ1, . . . , λs ](x)

= −e−µh ·
∫ h

0

d

dy
Q[λ1, . . . , λs ](x − y) · eµy dy

= −e−µh

(
Q[λ1, . . . , λs ](x − y) · eµy |y=h

y=0−µ

∫ h

0
Q[λ1, . . . , λs ](x − y) · eµy dy

)
= −e−µh(Q[λ1, . . . , λs ](x − h) · eµh −Q[λ1, . . . , λs ](x))

+ µ

∫ h

0
Q[µ, λ1, . . . , λs ](x − y) · eµydy,

which completes the proof. �

13.14 Hermite–Gennocchi-type formula

We may easily derive an analog to the classical Hermite–Gennocchi formula [2, p. 9].
In order to be able to apply the Fourier transform we have to work at least temporarily

with functions inL2(R). For an arbitrary functionf ∈ L1,loc(R)∩L2(R) let us consider

I :=
∫ ∞
−∞

f (x)Q[3](x) dx.

Using the Parseval identity (12.5), p. 212, and the convolution formula (13.28), p. 244,
we obtain

I = 1

2π

∫ ∞
−∞

f̂ (ξ) · Q̂[3](ξ) dξ

= 1

2π

∫ ∞
−∞

f̂ (ξ) · Q̂[λ1](ξ) · Q̂[λ2](ξ) · . . . · Q̂[λN ](ξ) dξ

= 1

2π

∫ ∞
−∞

f̂ (ξ) ·
 N∏

j=1

e−λjh

 ·
 N∏

j=1

∫ h

0
eλj xeiξxdx

 dξ

= 1

2π

 N∏
j=1

e−λjh

 ·
∫ h

0
· · ·
∫ h

0︸ ︷︷ ︸
N

∫ ∞
−∞

f̂ (ξ) ·
N∏

j=1

eλj xj eiξxj dx1 · · · dxN dξ

= 1

2π

 N∏
j=1

e−λjh

·
∫ h

0
· · ·
∫ h

0︸ ︷︷ ︸
N

N∏
j=1

eλj xj ·
∫ ∞
−∞

f̂ (ξ)·eiξ(x1+···+xN )dξ dx1 · · · dxN .
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Further we apply the inverse Fourier transformF−1, see (12.4), p. 212. By formula
(12.6), p. 212, it has the property thatF−1F = id, which implies the equality:

I =
 N∏

j=1

e−λjh

 ·
∫ h

0
· · ·
∫ h

0︸ ︷︷ ︸
N

N∏
j=1

eλj xj · f (x1+ · · · + xN) dx1 · · · dxN .

Let us note that both sides also make sense for functions inL1,loc(R), and by the
approximation argument we may prove it for all functions inL1,loc(R).

Thus we have proved thegeneralized Hermite–Gennocchi formula12.

Theorem 13.44 If the nonordered vector3 = [λ1, . . . , λN ] is given and the function
f belongs toL1,loc(R) (i.e.f belongs toL1(a, b) for every finite interval(a, b)). Then
the correspondingT B-splineQ[3](x) defined on the meshhZ satisfies the identity

∫ ∞
−∞

f (x)Q[3](x) dx

=
 N∏

j=1

e−λjh

 ·
∫ h

0
· · ·
∫ h

0︸ ︷︷ ︸
N

N∏
j=1

eλj xj · f (x1+ · · · + xN) dx1 · · · dxN . (13.29)

Exercise 13.45Recall that the left-hand side of equality (13.29) is equal to the divided
difference of a functiong for whichL∗

P+1g = f , which will be proved in Theorem
13.59, p. 258. Combining both results we obtain the equality which is usually known
as theHermite–Gennocchiformula. Prove the above result for noncardinalL-splines
whenQ[3](x) is the corresponding compactly supportedT B-spline without using the
Fourier transform.

13.15 Recurrence relation for theTB-spline

As an application of the Fourier transform of theT B-splineQ[3](x) we may easily
prove a recurrence relation which expresses the values ofQ[3] through values of lower
orderT B-splines.[14]13

12 This result has been proved by Dyn and Ron [7].
13 This result was first proved by Dyn and Ron [6,7].
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Theorem 13.46 If λ1 6= λZ+1 then the following recurrence relation holds:

Q[λ1, λ2, . . . , λZ+1](x) = e−λZ+1

λ1− λZ+1
Q[λ2, . . . , λZ+1](x)

+ −e−λ1

λ1− λZ+1
Q[λ1, . . . , λZ](x)

+ −1

λ1− λZ+1
Q[λ2, . . . , λZ+1](x − 1)

+ 1

λ1− λZ+1
Q[λ1, . . . , λZ](x − 1). (13.30)

Proof By assumptionλ1 6= λZ+1. We will be looking for the constants in the
equality

Q[λ1, λ2, . . . , λZ+1](x) = C1Q[λ2, . . . , λZ+1](x)+ C2Q[λ1, . . . , λZ](x)

+ C3Q[λ2, . . . , λZ+1](x − 1)+ C4Q[λ1, . . . , λZ](x − 1).

We carry out some algebraic operations. First, we take the Fourier transform on both
sides and obtain∏Z+1

j=1 (e−λj − e−iξ )∏Z+1
j=1 (iξ − λj )

= C1

∏Z+1
j=2 (e−λj − e−iξ )∏Z+1

j=2 (iξ − λj )
+ C2

∏Z
j=1(e

−λj − e−iξ )∏Z
j=1(iξ − λj )

+ C3e
−iξ

∏Z+1
j=2 (e−λj − e−iξ )∏Z+1

j=2 (iξ − λj )
+ C4e

−iξ

∏Z
j=1(e

−λj − e−iξ )∏Z
j=1(iξ − λj )

.

Then we divide the last by
(∏Z

j=2(e
−λj − e−iξ )

)/(∏Z
j=2(iξ − λj )

)
, after putting

z = e−iξ , T1 = e−λ1, T2 = e−λZ+1,

we obtain

(T1− z)(T2− z)

(iξ − λ1)(iξ − λZ+1)

= (C1+ C3z)(iξ − λZ+1)(T1− z)+ (C2+ C4z)(iξ − λ1)(T2− z)

(iξ − λ1)(iξ − λZ+1)
.

By comparing both sides as polynomials ofz we obtain the system:

C1(iξ − λZ+1)T1+ C2(iξ − λ1)T2 = T1T2,

−C1(iξ − λZ+1)+ C3(iξ − λZ+1)T1− C2(iξ − λ1)+ C4(iξ − λ1)T2 = −(T1+ T2),

−C3(iξ − λZ+1)− C4(iξ − λ1) = 1.
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Now we compare the coefficients in front of the variableξ in the first and the third
equations which gives

C1T1+ C2T2 = 0,

C3+ C4 = 0,

which again gives, using the first and the third equations, the solution

C1 =
T2

λ1− λZ+1
= e−λZ+1

λ1− λZ+1
,

C2 = −
C1T1

T2
= − −T1

λ1− λZ+1
= −e−λ1

λ1− λZ+1
,

C3 =
−1

λ1− λZ+1
,

C4 =
1

λ1− λZ+1
.

One checks directly that these constants also satisfy the second equation, hence they
solve the above system. �

13.16 The adjoint operatorL∗Z+1 and
the TB-splineQ∗Z+1(x)

In Section 13.7, p. 236, we introduced the adjoint polynomialq∗
Z+1 and the adjoint

operatorL∗
Z+1 for the purposes of the generalized divided difference operators. Here we

will need them again for defining the adjointTB-spline. It is helpful to work with the
formally adjoint operator times(−1)Z+1

L∗Z+1[3]

(
d

dx

)
:= LZ+1[−3]

(
d

dx

)
:=

Z+1∏
j=1

(
d

dx
+ λj

)
(13.31)

with the polynomial

q∗Z+1(λ) :=
Z+1∏
j=1

(λ+ λj ) = (−1)Z+1qZ+1(−λ). (13.32)

The correspondingTB-spline on the meshhZ is given by

Q∗Z+1(x) := (−1)Z+1
Z∑

j=0

φ+Z (jh− x)rj (13.33)
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where we have put, as in (13.12), p. 235,

rh(x) :=
Z+1∑
j=0

rj,hxj =
Z+1∏
j=1

(eλjh − x).

We will drop the second index and writerj instead ofrj,h if the context allows.

Proposition 13.47 The polynomialsrh(x) andsh(x) are related through the equality

xZ+1rh

(
1

x

)
= (−1)Z+1eh(λ1+···+λZ+1) · sh(x). (13.34)

Proof We have evidently

xZ+1rh

(
1

x

)
= xZ+1

Z+1∏
j=1

(
eλjh − 1/x

)
=

Z+1∏
j=1

(xeλjh − 1)

= exp

h

Z+1∑
j=1

λj

 · Z+1∏
j=1

(x − e−λjh)

which proves the statement. �
Due to the properties ofφ+Z proved in Proposition 13.12, p. 229, one may prove

Proposition 13.48.

Proposition 13.48 The following equality holds:

Q∗Z+1(Zh+ h− x) = e(λ1+···+λZ+1)h ·QZ+1(x). (13.35)

Proof It is clear from

Q∗Z+1(Zh+ h− x) = (−1)Z+1
Z+1∑
j=0

φ+Z (x − (Z + 1− j)h)rj

that Q∗
Z+1(Zh + h − x) is anL-spline for the operatorLZ+1 with a support in the

half-axisx ≥ 0. By the definition of the polynomialr(x), and by Proposition 13.35,
p. 240, applied to the operatorL∗

Z+1[3] = LZ+1[−3], it follows that the support of
Q∗

Z+1(Zh+ h− x) coincides with the interval [0, Zh+ h]. By the uniqueness of such
aT B-spline, which we proved in Proposition 13.35 it follows thatQ∗

Z+1(Zh+ h− x)

andQZ+1(x) are proportional, i.e. for some constant

Q∗Z+1(Zh+ h− x) = CQZ+1(x).

In order to obtain this constant it suffices to check this equality forx = h.
By the definition of the functionsQZ+1 andφ+Z we have

QZ+1(h) = φ+Z (h)s0,h,

Q∗Z+1 = (−1)Z+1φ+Z (h)rZ+1,h.
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It follows that

C = (−1)Z+1rZ+1,h

s0,h
.

From the definition of the polynomialssh(λ) andrh(λ) we see directly that

s0,h = e−(λ1+···+λZ+1)h,

rZ+1,h = (−1)Z+1,

which completes the proof. �

13.17 The Euler polynomialAZ(x; λ) and
the TB-splineQZ+1(x)

For simplicity we consider only the caseh = 1. The functionAZ(x; λ)and theTB-splines
Q∗

Z+1 are related by Proposition 13.49.

Proposition 13.49 The following equality holds:

AZ(x; λ) = (−1)Z

∑Z
j=0 Q∗

Z+1(j + 1− x)λj

r(λ)
. (13.36)

Proof Let us make the direct expansion

G(z) = exz

ez − λ
=
∞∑

j=0

λj e−(j+1−x)z,

hence, by the definition of the functionφZ it follows that:

AZ(x; λ) = [λ1, λ2, . . . , λZ+1]zG(z)

=
∞∑

j=0

λjφZ(x − j − 1)

=
(∑∞

j=0 λjφZ(x − j − 1)
) · (∑Z+1

j=0 rj λ
j
)

r(λ)

= (−1)Z ·
∑Z

j=0 Q∗
Z+1(j + 1− x)λj

r(λ)

which completes the proof. �

We now obtain an important representation of theEuler–Frobeniuspolynomials
5Z(λ; 0).
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Proposition 13.50 We have the following symmetric representation of the polynomial
5Z(λ; 0) :

5Z(λ; 0) = (−1)Z · λ(Z−1)/2 · eλ1+···+λZ+1 ·
(Z−1)/2∑

l=−(Z−1)/2

QZ+1

(
Z + 1

2
− l

)
λl.

(13.37)

Proof By formula (13.14), p. 235, we obtain

5Z(λ; x) := r(λ)AZ(x; λ) = (−1)Z ·
Z∑

j=0

Q∗Z+1(j + 1− x)λj .

Further we use formula (13.35), i.e.,Q∗
Z+1(Zh+ h− x) = e(λ1+···+λZ+1)h ·QZ+1(x).

After putting
Z − 1

2
− j = l

we obtain the following equalities:

5Z(λ; 0) = (−1)Z ·
Z∑

j=0

Q∗Z+1(j + 1)λj

= (−1)Z · eλ1+···+λZ+1 ·
Z−1∑
j=0

QZ+1(Z − j)λj

= (−1)Z · eλ1+···+λZ+1

Z−1∑
j=0

QZ+1

(
Z − 1

2
− j + Z + 1

2

)
λj

= (−1)Z · λZ−1/2 · eλ1+···+λZ+1 ·
(Z−1)/2∑

l=−(Z−1)/2

QZ+1

(
Z + 1

2
+ l

)
λ−l .

(13.38)

Since the functionQZ+1(x + (Z + 1)/2) is symmetrized around zero in the sense that
its support is the interval [−(Z + 1)/2, (Z + 1)/2] it follows that

5Z(λ; 0) = (−1)Z · λ(Z−1)/2 · eλ1+···+λZ+1 ·
(Z−1)/2∑

l=−(Z−1)/2

QZ+1((Z + 1)/2− l)λl,

which completes the proof. �
Note that in the polynomial case we haveQZ+1((Z + 1)/2 − `) =

QZ+1((Z + 1)/2+ `) for every` ∈ Z, which plays a key role for the symmetry of
the zeros of the polynomial5Z(λ). The above result will be used in Section 13.23,
p. 261, to prove a remarkable symmetry property of the zeros of5Z(λ; 0) in the spe-
cial case when the numbersλj arise through the spherical operators. We have the same
symmetry so far in the case of a nonordered vector3 which is symmetric.
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Theorem 13.51Let the nonordered vector3 be symmetric, i.e.3 = −3. Then for
every numberx ∈ R we have

QZ+1[3]

(
Z + 1

2
− x

)
= QZ+1[3]

(
Z + 1

2
+ x

)
, (13.39)

or, equivalently,

QZ+1[3](Z + 1− x) = QZ+1[3](x).

Proof Assuming for simplicity that allλj s are different, on every interval [`, `+1]
we have the representation

QZ+1[3](x) =
Z+1∑
j=1

αj e
λj x,

which implies that the functionQZ+1[3](Z + 1− x) is againL-spline since

QZ+1[3](Z + 1− x) =
Z+1∑
j=1

αj e
λj (Z+1−x)

=
Z+1∑
j=1

eλj (Z+1)αj e
−λj x

on every interval [̀, ` + 1]. The functionQZ+1[3](Z + 1− x) has the same support
[0, Z + 1]. Due to the uniqueness of the compactly supportedL-splineQZ+1[3](x) it
follows that

QZ+1[3](Z + 1− x) = CQZ+1[3](x)

for some constantC. After putting x = (Z + 1)/2 we obtainC = 1, since
QZ+1[3]((Z + 1)/2) 6= 0. �

Proposition 13.52 Let A∗Z(x; λ) be the function corresponding by Definition 13.20,
p. 233, to the polynomialq∗

Z+1. Then

AZ

(
1− x; 1

λ

)
= (−1)Z−1λA∗Z(x; λ) for 0 ≤ x ≤ 1. (13.40)

If the nonordered vector3 = [λ1, λ2, . . . , λZ+1] is symmetric with respect to zero, i.e.
3 = −3, then the unique zero of equationAZ(x;−1) = 0 satisfying0 ≤ x < 1 is
equal to1/2 for oddZ, and is equal to0 for evenZ.14

14 In Micchelli’s paper [13, p. 216, Remark 2.3], the last statement is obviously wrong since the formula is
wrong; it is correct on p. 213 and on p. 224 of the paper. It is correct in Schoenberg’s paper onL-splines [19,
p. 268].
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Proof (1) Assuming for simplicity that allλj s are different we apply formula
(13.10), p. 234, and obtain

A∗Z(x; λ) =
Z+1∑
j=1

1

q∗′
Z+1(−λj )

e−λj x

e−λj − λ
= (−1)Z

λ
·
Z+1∑
j=1

1

q ′
Z+1(λj )

e(1−x)λj

1/λ− eλj x

= (−1)Z−1

λ
AZ

(
1− x; 1

λ

)
.

(2) Now if 3 = −3 it follows thatA∗Z(x; λ) = AZ(x; λ), hence

AZ(1− x;−1) = (−1)ZAZ(x;−1).

If Z is even it follows thatAZ(1 − x;−1) = AZ(x;−1). For x = 0 this gives
AZ(1;−1) = AZ(0;−1). On the other hand by the very definition (Definition 13.20,
p. 233) ofAZ(x; λ) we haveAZ(1;−1) = −AZ(0;−1), which impliesAZ(0;−1) = 0.

(3) Let Z be odd. It follows thatAZ(1− x;−1) = −AZ(x;−1). Forx = 1/2 we
obtainAZ(1/2;−1) = −AZ(1/2;−1) which implies thatAZ(1/2;−1) = 0. �

We immediately obtain the following useful corollary.

Corollary 13.53 If the nonordered vector3 is symmetric, i. e.3 = −3, then the zeros
of the equation5Z(λ) = 0, which have been defined in Theorem 13.31, p. 237, are all
different from−1, i.e.5Z(−1) 6= 0.

Proof By Proposition 13.52, p. 252, we find thatξ = 1/2 is the only zero of the
equationAZ(x;−1) = 0. Let someτi be a solution to5Z(τi) = 0, andτi = −1. Then
by 5Z(λ) = r(λ)AZ(0; λ) it follows thatAZ(0;−1) = 0. This contradiction proves
the corollary. �

Remark 13.54 Sincer(−1) =∏(eλj + 1) > 0 it follows that the zeros ofAZ and5Z

are the same.

13.18 The leading coefficient of the Euler–Frobenius
polynomial 5Z(λ)

We will now compute the leading coefficient of the Euler–Frobenius polynomial
5Z(λ) = 5Z(λ; 0).

Since5Z(λ; 0) = r(λ)AZ(0; λ) andQ∗
Z+1(Z + 1) = 0 we find from formula

(13.36), p. 250, that the leading coefficient of5Z(λ; 0) is

(−1)ZQ∗Z+1(Z)λZ−1.
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By formula (13.35), p. 249, we obtain the equalities:

Q∗Z+1(Z) = eλ1+···+λZ+1QZ+1(1),

QZ+1(1) = φ+Z (1) · s0,

s0 = e−λ1−···−λZ+1,

φ+Z (1) =
Z+1∑
j=1

eλj

q ′
Z+1(λj )

,

which imply

Q∗Z+1(Z) =
Z+1∑
j=1

eλj

q ′
Z+1(λj )

.

Hence,

5Z(λ; 0) = (−1)Z
Z+1∑
j=1

eλj

q ′
Z+1(λj )

·
Z−1∏
j=1

(λ− vj ), (13.41)

wherevj are the zeros of the polynomial5Z(λ; 0) which, we will see, are all real and
negative.

13.19 Schoenberg’s “exponential” EulerL-spline
8Z(x; λ) and AZ(x; λ)

The wordexponentialis used in a different sense by Schoenberg [20, 21, p. 256] where
he introduces “exponentialL-splines of basisλ”. This sense has nothing to do with the
exponential splines used by other authors [17]. For that reason we have put it in quotation
marks and used the expression “exponential” Euler.

Now we will obtain an expression for the“exponential” EulerL-spline, through the
basic functionAZ(x; λ).

The “exponential” Euler L-spline is defined in a natural way, generalizing the
polynomial case of Schoenberg by putting

8Z(x; λ) =
∞∑

j=−∞
λjQZ+1(x − j). (13.42)

It is always a convergent series since only a finite number of terms are nonzero. It
evidently has the remarkable “exponential property” (and for that reason Schoenberg
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has called it exponential):

8Z(x + 1; λ) =
∞∑

j=−∞
λjQZ+1(x + 1− j) (13.43)

= λ

∞∑
j=−∞

λj−1QZ+1(x − (j − 1))

= λ8Z(x; λ);
it reminds us of the property of the exponential functionλx which satisfies the same
equation

λx+1 = λ · λx.

SinceQZ+1(x) is differentiableZ − 1 times, if we differentiate the above equality
(13.43)l times wherel ≤ Z − 1, and putx = 0, it follows that:

8
(l)
Z (1; λ) = λ8

(l)
Z (0; λ) for l = 0, 1, . . . , Z − 1.

Hence, by Definition 13.20, p. 233, and Lemma 13.19, p. 233, for 0≤ x ≤ 1 the
function8Z(x; λ) is proportional toAZ(x; λ).

Now we establish a link between these two fundamental functions,8Z(x; λ) and
AZ(x; λ).

Proposition 13.55 The following relation holds for0 ≤ x ≤ 1:

8Z (x; λ) = (−1)Z

λZ
e−λ1−...−λZ+1 ·5Z (x; λ) (13.44)

= (−1)Z

λZ
e−λ1−...−λZ+1r (λ) AZ (x; λ)

= −λs
(
λ−1

)
AZ (x; λ) .

Proof Now let us use equality (13.35), p. 249, namelyQ∗
Z+1(Zh + h − x) =

e(λ1+···+λZ+1)h ·QZ+1(x) for h = 1. In (13.36), p. 250, we have obtained the equality

AZ(x; λ) = (−1)Z · [r(λ)]−1 ·
Z∑

j=0

Q∗Z+1(j + 1− x)λj .

Hence for everyx satisfying 0≤ x ≤ 1, we obtain

AZ(x; λ) = (−1)Zeλ1+···+λZ+1

r(λ)
· λZ ·

Z∑
j=0

QZ+1(x + Z − j)λj−Z

= (−1)Zeλ1+···+λZ+1

r(λ)
· λZ ·

∞∑
j=−∞

λjQZ+1(x − j)

= (−1)Zeλ1+···+λZ+1

r(λ)
· λZ ·8Z(x; λ). (13.45)
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By the definition of the polynomial5Z in formula (13.51), p. 261, we obtain

8Z(x; λ) = (−1)Z

λZ
e−λ1−···−λZ+1 ·5Z(x; λ).

�

We have the following symmetry property.

Theorem 13.56 If the nonordered vector3 is symmetric, i.e.3 = −3, then

8Z

(
Z + 1

2
; 1

z

)
= 8Z

(
Z + 1

2
; z
)

for all z in C. (13.46)

Proof In Theorem 13.51, p. 252, we have proved

QZ+1(Z + 1− x) = QZ+1(x) for all x in R,

and in equality (13.42), p. 254, we have

8Z(0; z) =
∞∑

j=−∞
zjQZ+1(−j)

=
Z+1∑
j=0

z−jQZ+1(j).

These imply by the exponential property of8Z the following:

8Z

(
Z + 1

2
; z
)
= z(Z+1)/2

Z+1∑
j=0

QZ+1(j)z−j

= z−(Z+1)/2
Z+1∑
j=0

QZ+1(j)zj ,

which completes the proof. �

We immediately obtain the following useful corollary.

Corollary 13.57 If the nonordered vector3 is symmetric, i.e.3 = −3, then
8Z(0; z) 6= 0 for all complex numbersz, with |z| = 1.

The proof follows directly from Corollary 13.53, p. 253, and the relation between
5Z and8Z given by formula (13.44), p. 255, above.

Let us apply formula (13.44). We use the relation forλ = eλs , 1≤ s ≤ Z+ 1. This
gives the equality

8Z(x; eλs ) = (−1)Ze−(λ1+···+λZ+1)e−λsZ ·5Z(x; eλs ).
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By formula (13.15), p. 235, we see that in the case of pairwise differentλj we obtain:

5Z(x; eλs ) = r(eλs ) · AZ(x; eλs ) = −r ′(eλs )

q ′
Z+1(λs)

· eλsx .

Hence,

8Z(x; eλs ) = (−1)Ze−(λ1+···+λZ+1)e−λsZ · −r ′(eλs )

q ′
Z+1(λs)

· eλsx . (13.47)

13.20 Marsden’s identity for cardinal L-splines

There is an importantnormalizationproperty which is analogous to the classicalMarsden
identity for polynomial splines.

Proposition 13.58 Assume that allλj are pairwise different. Then for everyλs in 3

and for everyx in R we have the following identity:

∞∑
j=−∞

ejλs ·QZ+1(x − j) = 8Z(x; eλs ) (13.48)

= (−1)Z+1e−(λ1+···+λZ+1)e−λsZ · r ′(eλs )

q ′
Z+1(λs)

· eλsx .

It is clear that the sum on the left-hand side is finite overj satisfying 0< x − j <

Z + 1. The proof is obtained by applying the above formula for8Z(x; λ) in (13.47),
p. 257. This result is useful for estimating the norm ofQZ+1.

13.21 Peano kernel and the divided difference operator
in the cardinal case

Here we provide a direct proof that theTB-splineQZ+1(x) is indeed the Peano kernel for
the divided difference operator defined in formula (13.18), p. 236, through the polynomial
s(λ).

We compute the divided difference in the case of differentλj s. First, we recall the
adjoint operator of formula (13.31), p. 248,

L∗Z+1

(
d

dx

)
:= (−1)Z+1

Z+1∏
j=1

(
− d

dx
− λj

)
= (−1)Z+1

Z+1∏
j=1

D∗j

whereD∗j = −(d/dx) − λj is the operator formally adjoint to the operatorDj =
d/dx − λj defined in formula (13.6), p. 226.15

15 These operators differ from those of Dyn and Ron [7, p. 5]. However, the difference between the operators
L∗P+1 is not large.
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Recalling the properties of the functionsφZ(x) in Proposition 13.12, p. 229, and the
definition of theT B-splineQZ+1 in (13.19), p. 239, now we have the followingPeano
identityfor thegeneralized divided difference operatorgiven by formula (13.18), p. 236:

Theorem 13.59We assume that the functionf is C∞. Then the following Peano-type
identity holds:

∫ ∞
−∞

QZ+1(x)L∗Z+1f (x)dx = (−1)Z+1
Z+1∑
j=0

sj · f (j). (13.49)

Proof First, recall the properties of the functionφZ(x) which are stated in Propo-
sition 13.12, p. 229. We assume without restricting the generality thatf has a compact
support. By the definition ofQZ+1 in (13.19), p. 239, we obtain

I :=
∫ ∞
−∞

QZ+1(x)L∗Z+1f (x) dx

= (−1)Z+1
∫ ∞
−∞

QZ+1(x)D∗1 · · ·D∗Z+1f (x) dx

= (−1)Z+1
Z+1∑
j=0

sj

∫ ∞
j

DZ · · ·D1φZ(x − j)D∗Z+1f (x) dx

= (−1)Z
Z+1∑
j=0

sj

∫ ∞
j

DZ · · ·D1φZ(x − j)

(
d

dx
+ λZ+1

)
f (x) dx.

Further we integrate by parts and apply the properties of the functionφZ in Proposition
13.12, p. 229,

I = (−1)Z
Z+1∑
j=0

sjDZ · · ·D1φZ(x − j) · f (x)
∣∣x=∞
x=j+

+ (−1)Z
Z+1∑
j=0

sj

(
−
∫ ∞
j

d

dx
DZ · · ·D1φZ(x − j)f (x) dx

+
∫ ∞
j

DZ · · ·D1φZ(x − j)λZ+1f (x) dx

)
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= (−1)Z+1
Z+1∑
j=0

sj · f (j)+ (−1)Z+1
Z+1∑
j=0

sj

∫ ∞
j

DZ+1DZ · · ·D1φZ(x − j)f (x) dx

= (−1)Z+1
Z+1∑
j=0

sj · f (j),

which completes the proof. �

13.22 Two-scale relation (refinement equation) for the
TB-splinesQZ+1[3;h]

Assuming the nonordered vector3 given, we denote byQZ+1[3](x) the TB-spline
defined according to formula (13.19), p. 239, for the meshZ. As before we denote, by
QZ+1[t3;h](x) the TB-spline for the meshhZ and for the nonordered vectort3 =
[tλ1, . . . , tλZ+1]. Up to now we have mainly used the notation

QZ+1(x) = QZ+1[3](x)

without indicating the dependence onh.16 We note again that the indexZ+1 is redundant
but useful to have.

It is important forwavelet analysisto consider the relation between theTB-spline
QZ+1 for the cardinalL-splines on the meshhZ := {jh : for j in Z} and theTB-spline
on the mesh 2hZ := {2jh : for j in Z}, where as aboveh is a fixed positive number.
One says thathZ is a refinementof 2hZ. We have seen in Section 13.10, p. 239, that
theTB-splineQZ+1[3;h] has support on the interval [0, Zh+ h] and break-pointsjh

for j = 0, 1, . . . , Z + 1. In a similar way on the mesh 2hZ the compactly supported
T B-splineQZ+1[3; 2h] has a support [0, (Z + 1)2h] with break-pointsj2h for all
j = 0, 1, . . . , Z+1. On the other hand, obviouslyQZ+1[3; 2h](x) is also anL-spline on
the meshhZ. According to Theorem 13.38, p. 241, the integer shiftsQZ+1[3;h](x−`h)

form a basis for all compactly supported splines onR, hence it is possible to express
QZ+1[3; 2h] as a linear combination of the shiftsQZ+1[3;h](x−`h). Theorem 13.60
provides the exact linear combination.

Theorem 13.60We have the representation, called thetwo-scale relationor refinement
equation

QZ+1[3; 2h](x) =
Z+1∑
`=0

γ`QZ+1[3;h](x − `h), (13.50)

where thetwo-scale sequenceis

γ` = (−1)`s` for ` = 0, 1, . . . , Z + 1,

and thetwo-scale symbolis Z(e−iξh) = sh(−e−iξh).17

16 In the notation of de Booret al. [5], we haveQZ+1[3](x) = N3(x).
17 See Part III for this terminology.
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Proof Let us take the Fourier transform on both sides of the equality (13.50). Due
to

̂QZ+1[3;h](x − `h)(ξ) =
∫ ∞
−∞

QZ+1[3;h](x − `h)e−iξx dx

= e−iξ`h ̂QZ+1[3;h](ξ),

we obtain

̂QZ+1[3; 2h](ξ) =
Z+1∑
`=0

γ`e
−iξ`h ̂QZ+1[3;h](ξ).

We obtain from formula (13.25), p. 242,

̂QZ+1[3; 2h](ξ) =
Z+1∏
j=1

(e−λjh + e−iξh) ̂QZ+1[3;h](ξ)

= sh(−e−iξh) ̂QZ+1[3;h](ξ).

Since

sh(−e−iξh) =
Z+1∑
`=0

s`(−e−iξh)` =
Z+1∑
`=0

s`(−1)`e−iξ`h,

the proof will be completed by taking the inverse Fourier transform. �

Theorem 13.60 is another interpretation of Proposition 13.40, p. 243, where we
have established a relation between the Fourier transforms ofQZ+1[3; 2h] and of
QZ+1[3;h].

This relation is quite close to being understood as ageneralized two-scale relation.
Anyway, we have a simple transition from one level to the other in the wavelet spaces,
which will be much exploited in Part III.

Remark 13.61 Due to the translation invariance we have the same coefficients for all
shiftsQZ+1(x − 2lh).

Remark 13.62 If 3 = [0, . . . , 0], which corresponds to the usual polynomial case, we
see that due toh3 = 3 it follows that:

QZ+1[3;h](x) = hZ ·QZ+1[3]
(x

h

)
,

which provides us with a scale invariant set of compactly supported functions. Chui [3]
uses this in his cardinal spline wavelet analysis. For the nonzero vector3 we have the
nonstationary wavelet analysis of de Booret al. [5].
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13.23 Symmetry of the zeros of the Euler–Frobenius
polynomial 5Z(λ)

We now consider the special case of the nonordered vector3 which is generating the
spherical operatorMk,p, see formula (10.26), p. 169. We will prove a remarkable sym-
metry property of the compactly supported splineQZ+1 and of theEuler–Frobenius
polynomial 5Z(λ) = 5Z(λ; 0) which are available due to the “almost” symmetry
properties of the corresponding vector3 = [λ1, λ2, . . . , λ2p].

We consider the operatorL = Mk,p. We have

Z = 2p − 1

and the nonordered vector3 = [λ1, λ2, . . . , λ2p] is given by

λ1 = −n− k + 2, λ2 = −n− k + 4, . . . , λp = −n− k + 2p,

λp+1 = k, λp+2 = k + 2, . . . , λ2p = k + 2p − 2.
(13.51)

By the definition of the Euler–Frobenius polynomial and by the proof of Proposition
13.50, p. 250, namely equality (13.38) we have

5Z(λ) = eλ1+···+λZ+1 · (−1)Z ·
Z∑

j=0

QZ+1(j)λZ−j (13.52)

= eλ1+···+λZ+1 · (−1)Z ·
Z−1∑
j=0

QZ+1(Z − j)λj .

Let us note that in the case of arbitrary symmetric set3 = −3 we will have
QZ+1(j) = QZ+1(Z + 1− j). Indeed, in such a case the function

QZ+1(Z + 1− x)

is a piecewise linear combination of

{e−λ1x, . . . , e−λZ+1x} = {eλ1x, . . . , eλZ+1x},
hence, due to the uniqueness of the compactly supportedT B-splineQZ+1 with support
[0, Z + 1] it follows that:

QZ+1(Z + 1− x) = C ·QZ+1(x)

for some constantC > 0. But for x = (Z + 1)/2 we obtainQZ+1((Z + 1)/2) =
C ·QZ+1((Z + 1)/2), henceC = 1. Thus by Proposition 13.50, p. 250, we obtain

5Z(λ) = λZ−15Z

(
1

λ

)
.

Hence
5Z(λ) = 0
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implies

5Z

(
1

λ

)
= 0.

We will see that for the above special choice of the vector3 in (13.51) we have
a rather similar picture since the set3 “symmetrizes” fork → ∞. We know that the
functionQZ+1(Z + 1− x) is a piecewise linear combination of the functions

{e−λ1x, e−λ2x, . . . , e−λ2px}.
Due to the “almost” symmetry of the vector3 we see that after multiplying with
e(λ1+λ2p)x the basis for−3 changes into the basis for3, namely

e(λ1+λ2p)x · {e−λ1x, e−λ2x, . . . , e−λ2px} = {eλ1x, eλ2x, . . . , eλ2px}.
We have used the equalities

λ1+ λ2p = −n− k + 2+ k + 2p − 2= −n+ 2p,

−λj + λ1+ λ2p = k + 2(p − j)

= λp+p−j for j = 1, . . . , p,

−λp+j + λ1+ λ2p = −n− k + 2(p + 1− j)

= λp+1−j for j = 1, . . . , p.

Thus by the uniqueness of the compactly supported spline we obtain

e(λ1+λ2p)xQZ+1(Z + 1− x) = C ·QZ+1(x).

By puttingx = (Z + 1)/2 it follows that

C = e(λ1+λ2p)(Z+1)/2 = e(λ1+λ2p)p = e(−n+2p)p.

Thus we have proved the following result about the symmetry of the compactly supported
T B-spline.

Theorem 13.63For the special choice of the set3 given by (13.51), p. 261, we have

QZ+1(Z + 1− x) = e(−n+2p)p · e−(−n+2p)x ·QZ+1(x) (13.53)

= e(−n+2p)(p−x) ·QZ+1(x).

It should be noted that this result is independent ofk.
Now we will draw some consequences about the symmetry of the polynomial5Z

and its zeros. We obtain from (13.52) the equalities

5Z(λ) = eλ1+···+λZ+1 · (−1)Z ·
Z∑

j=0

QZ+1(j)λZ−j

= eλ1+···+λZ+1 · (−1)Z · e−(−n+2p)p ·
Z∑

j=0

e(−n+2p)jQZ+1(Z + 1− j)λZ−j .
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Let us recall that sinceQZ+1(Z+1) = 0 the term withj = 0 is zero. If we puti = Z−j

or j = Z − i we see that

5Z(λ; 0) = eλ1+···+λZ+1 · (−1)Z · e−(−n+2p)p ·
Z∑

i=0

e(−n+2p)(Z−i)QZ+1(i + 1)λi

=
(

λ

e−n+2p

)−1

eλ1+···+λZ+1 · (−1)Z · e−(−n+2p)p · e(−n+2p)Z

×
Z∑

i=0

QZ+1(i + 1)

(
λ

e−n+2p

)i+1

=
(

λ

e−n+2p

)−1+Z

eλ1+···+λZ+1 · (−1)Z · e−(−n+2p)p · e(−n+2p)Z

×
Z∑

i=0

QZ+1(i + 1)

(
e−n+2p

λ

)Z−(i+1)

= λZ−1 · C ·5Z

(
e−n+2p

λ
; 0
)

for a constantC which may be defined by the above and it is clear thatC 6= 0. We find
this constant by putting̃λ =

√
e−n+2p. This gives

5Z(̃λ; 0) = λ̃Z−1 · C ·5Z(̃λ; 0),

hence since5Z(λ; 0) has only negative zeros we obtain

C = e−p(−n+2p)/2.

By the general theory, see Theorem 13.31, p. 237, we know that allZ− 1= 2p− 2
zeros of5Z(λ; 0) satisfy

µZ−1 < · · · < µ1 < 0,

hence we see that all zeros separate into two groups. Thus we have proved Theorem
13.64.

Theorem 13.64For the special choice of3 given by (13.51), p. 261, we have the
symmetry

5Z(λ; 0) = λZ−1 · e−p(−n+2p)/2 ·5Z

(
e−n+2p

λ
; 0
)

.

If for someλ 6= 0 we have
5Z(λ; 0) = 0

then also

5Z

(
e−n+2p

λ
; 0
)
= 0.
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Hence, theZ − 1= 2p − 2 zeros of the equation5Z(λ; 0) = 0 satisfy

µjµ2p−2−j+1 = e−n+2p for j = 1, . . . , p − 1,

and
µ2p−2 < · · · < µp < − 2

√
e(−n+2p) < µp−1 < · · · < µ1 < 0.

We see again theremarkable fact that this symmetry is completely independent ofk,
in particular the constant− 2√

e(−n+2p) is independent ofk.
These results will be used in the cardinal interpolation with polysplines in Section

15.7.

13.24 Estimates of the functionsAZ(x; λ) and QZ+1(x)

We will provide some important estimates of the functionA(x; λ) for the special choice
of the set3 above in (13.51), p. 261, and the somewhat more general cases considered
in [9].

Using the residuum representation (13.11), p. 235, of the functionA(x; λ) we prove
the following.

Theorem 13.65Let the vector3 be the one given by (13.51), p. 261. LetK be a compact
subset of the complex plane,0 /∈ K and henceeλj /∈ K for largek. Then for everyε > 0
there exist a constantC > 0 and an integerk0 such that for allk ≥ k0, for all λ ∈ K,
and for allx satisfying0 ≤ x ≤ 1, the following estimate holds:

|AZ(x; λ)| ≤ C

kZ
. (13.54)

Proof We will prove the estimate first for allx satisfying 0≤ x ≤ 1− δ for every
smallδ > 0. Then it will follow for all 0 ≤ x ≤ 1 by the symmetry property (13.40),
p. 252, i.e.

AZ

(
1− x; 1

λ

)
= (−1)Z−1λA∗Z(x; λ) for 0 ≤ x ≤ 1.

For simplicity we consider the casep = 2, Z = 2p − 1 = 3, andK = {|λ| = 1}.
By formula (13.11), p. 235, we have

A3(0; λ) = 1

2πi

∫
0

dz

q4(z)(e
z − λ)

,

where0 is a contour (or a sum of contours with the same orientation) in the complex
plane which surrounds all points{t1, . . . , t8} and does not surround the pointsiϕ for real
ϕ such thateiϕ = λ.

We will choose0 = 01∪02, where01 is a circle which surrounds the pointsλ1, λ2,
and02 is a circle which surrounds the pointsλ3, λ4, namely we put

0j := {z ∈ C : |z− zj | = Rj } for j = 1, 2,
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where

z1 := λ1+ λ2

2
= −n− k + 3,

R1 := |z1| − 2= +n+ k + 1,

and

z2 := λ3+ λ4

2
= k + 1,

R2 := |z2− λ3| + 1= 2.

As will become clear, we have chosen these circles in order to obtain the best possible
estimate.

Indeed, for largek and some constantC1 > 0 we have the inequality

|q4(z)| ≥ C1|2k − 1|2 for z ∈ 02.

On the other hand,|ez − λ| ≥ |ez| − |λ| implies for largek the inequality

|ez − λ| ≥ ek−1− 2 for z ∈ 02 andλ ∈ K.

The above inequalities imply

I2 :=
∣∣∣∣∫

02

dz

q4(z)(e
z − λ)

∣∣∣∣ ≤ R2

C1|2k − 1|2(ek−1− 2)
.

This estimate provides exponential decay for the integral over02 for k→∞.
On the other hand for the integral over the circle01 for an appropriate constant

C2 > 0 we have

|q4(z)| ≥ C2R
2
1λ2

3 for z ∈ 01,

|ez − λ| ≥ 1− e−2 for z ∈ 01 andλ ∈ K,

and obtain for an appropriateC′2 > 0 the estimate

I1 :=
∣∣∣∣∫

01

dz

q4(z)(e
z − λ)

∣∣∣∣ ≤ C′2
R1

k4|e−2− 1| = C′2
n+ k − 1

k4|e−2− 1| .

SinceA3(x; λ) is the sum of the two integrals the statement of the theorem follows.
�

We can now provide an optimal estimate for the compactly supported spline.
According to formulas (13.42) and (13.44) we obtain for 0≤ x ≤ 1 the representation

∞∑
j=−∞

QZ+1(x − j) = (−1)Ze−λ1−λ2−···−λZ+1rZ+1(1)AZ(x; 1).
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Taking all terms in the sum we see that

max
x∈R

QZ+1(x) ≤ e−λ1−λ2−···−λZ+1|rZ+1(1)| max
x∈[0,1]

|AZ(x; 1)|.

Theorem 13.66Let the compactly supported splineQZ+1(x) correspond to the vector
3 of (13.51), p. 261. Then fork→∞ it satisfies the asymptotic order

max
x∈R

QZ+1(x) ≈ epk

kZ
. (13.55)

Proof The estimate of maxx∈[0,1] |AZ(x; 1)| comes from the above theorem. Since
λj → 0 for j = 1, 2, . . . , p, andλj →∞ for j = p + 1, . . . , 2p, the estimate of the
asymptotic order ofrZ+1(1) is

|rZ+1(1)| ≤
Z+1∏
j=1

|eλj − 1| ≤ Cepk.

This completes the proof. �


