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In the Introduction to Part II we explained how naturally the cardinal polysplines appear.
This is especially non-trivial in the case of polysplines with break-surfaces on concentric
spheres. Similarly the notion ofpolyharmonic multiresolution analysisappears in a
natural manner. Let us explain how it happens in the case of polysplines on annuli.

First, recall that every cardinal polyspline on annuli has break-surfaces the spheres
S (0; eν) for all integersν ∈ Z, and possesses an expansion in spherical harmonics of
the form

h (x) =
∞∑

k=0

dk∑
`=1

hk,` (logr) Yk,` (θ) .

For every couple of indexesk and` the functionhk,` (v) is a cardinalL-spline for the
constant coefficients operatorL = Mk,p with knots atν ∈ Z.

What would be more natural than to make multiresolution analysis (MRA) of every
one-dimensional componenthk,` (v) , i.e. of theL-splines for the operatorL = Mk,p?
And the refinement of the knot setZ will be (1/2)Z, etc. Furthermore we are lucky
that the basic elements of wavelet analysis for cardinalL-splines has been created by de
Booret al. [9].1

Having obtained MRA for every componenthk,` it remains only to assemble the
puzzle by means of the above formula (III).2

The above program is easy to describe in general terms but it takes a good deal of
work to accomplish. First, let us recall that in the polynomial case the detailed cardinal
spline wavelet analysis has been carried out by Chui [4], [5]. Accordingly, in Chapter 16
we provide a brief review of his results. This review will be our compass when studying
the cardinalL-spline wavelet analysis. The transition from the polynomial spline case
to theL-spline case is highly non-trivial and we were aware of that in the proof of the
Riesz inequalitiesfor the shifts of theT B-splineQZ+1 in Chapter 14, p. 267.

The CardinalL-spline wavelet analysis which we develop in Chapter 17 uses the
whole machinery of cardinalL-splines which we have developed in Part II. It is amazing
that all the main results of Chui’s approach permit non-trivial generalizations for the
cardinalL-spline wavelet analysis. The dependence on the vector3 is essential and is
emphasized in these results. The Chui’s results are reduced to the special case of the
vector3 = [0, ..., 0] .

Finally in Chapter 18 we obtain the assembled “polyharmonic wavelet”. It has some
interesting properties. Needless to say, it does not satisfy the axioms of the MRA as
established by Y. Meyer and S. Mallat, see [14]. So far it satisfies some of them and also
some other properties which we provide in Theorem 18.9, p. 380. Put in a proper frame-
work these properties may be considered as the axioms of what we callPolyharmonic
Multiresolution Analysis.

1 The Bibliography is at the end of the present Part.
2 As we already mentioned in the Introduction to Part II, due to the lack of space we do not consider in detail

the cardinal Polysplines on strips. For that reason we do not consider here the Wavelet Analysis generated
by Polysplines on strips. We note only that its formulas are simpler than the annular case, in particular the
refinement is by considering parallel hyperplanes having say first coordinatet ∈ 2−jZ, see Definition 9.1,
p. 118.
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It is remarkable that we may preserve the basic scheme of the usual MRA but if we
introduce some proper substitutes to the basic notions:

1. There is norefinement equationbut we have arefinement operator,see Theorem 18.9,
p. 380. This refinement operator is generated by thenon-stationary scaling operator
for theL-splines defined in formula (17.6), p. 328.

2. In Section 18.5, p. 379, we see that there is a unique function which we callfather
wavelet and it generates the spacesPVj of the polyharmonic MRAin a “non-
stationary” way. In a similar way, in Section 18.6, p. 384, we see that there is a
unique function which we callmother waveletwhich generates the wavelet spaces
PWj in a “non-stationary” way.

3. To have the whole picture completed let us recall that we have also thesampling
operatorprovided by formula (14.16), p. 285, of Part II.

Hence, the main conclusion of the present Part is that the attempt to make area-
sonable Multiresolution Analysisby means of a refining sequence of spaces ofcardinal
polysplines (on annuli or strips)leads to a considerable reconsideration of the whole
store of basic notions of MRA.

The present Part provides a detailed study of only one example of “spherical polyhar-
monic wavelet analysis”. Similar wavelet analysis may be carried out for other elliptic
differential operators of the form

A (r)
∂2

∂r2
+ B (r)

∂

∂r
+ 1

r2
1θ

which are possibly degenerate at the origin but split into infinitely many one-dimensional
operators with constant coefficients.

What might be the area of application of such wavelets which haveby definition
singularities on whole(n− 1)-dimensional surfaces? Let us point out to a possible
application for analyzing, e.g. inR2, images having singularities on curves. The problem
of efficient computational analysis of such images has been indicated by Meyer and
Mallat – the standard wavelet paradigm is not efficient for analyzing images having
(n− 1)-dimensional singularities. This problem has been given a thorough consideration
in a series of papers of D. Donoho with coauthors. In particular, the curvelets by D.
Donoho and E. Candes [2] have been created with the main purpose to solve this problem.
The polyharmonic wavelets may be considered as an alternative approach to this problem.

Finally, let us note that much as we do not like it many of the formulas in the present
Part are overburdened with indexes and arguments which makes it somewhat heavy
to read. On the other hand this detailed exposition would provide the reader with the
opportunity to check the correctness of all formulas.



Chapter 16

Chui’s cardinal spline wavelet
analysis

As is usual in wavelet analysis, we will be working in the spaceL2(R) of square
summable complex valued functions with the scalar product defined by

〈f, g〉 := 〈f, g〉L2(R) :=
∫ ∞
−∞

f (x)g(x) dx (16.1)

for every two functionsf, g ∈ L2(R). We have the norm

‖f ‖2 := ‖f ‖2L2(R) := 〈f, f 〉. (16.2)

16.1 Cardinal splines and the setsVj

Denote byVj the closure inL2(R) of the space of allcardinal polynomial splines
(which are inL2(R)) of polynomial degreem having knots at the points

Z · 2−j =
{

`

2j
: for all ` ∈ Z

}
. (16.3)

By definition their smoothness isCm−1. Evidently, sinceZ · 2−j1 ⊂ Z · 2−j2 for every
two integersj1 andj2 satisfyingj1 < j2, we have the inclusions

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · .

We use the termcardinal in the wider sense, understanding splines with knots at the set
Z · h = {`h : for all ` ∈ Z} for some numberh > 0.

The most important function in the theory of cardinal splines and also of spline
wavelet analysis is the compactly supportedB-splineNm (x) ∈ V0 with support coin-
ciding with the interval [0, m] and with knots at the integers. Following the tradition in
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MRAwe will denote it throughφ(x), i.e.

φ(x) := Nm(x), (16.4)

and we will call it thescaling function. We know thatNm is symmetric around the point
m/2 which is the center of the interval [0, m], i.e.

Nm(x) = Nm(m− x) for x ∈ R.

An important formula is the one providing theFourier transform of Nm

N̂m(ξ) =
(

1− e−iξ

iξ

)m

, (16.5)

[5, p. 53]. It is remarkable that the cardinal splineNm(x) which has knots at the integer
pointsZ generates through shifts not only the spaceV0, i.e.3

V0 = clos
L2(R)
{φ(x − `) : for all ` ∈ Z}, (16.6)

but also the spacesVj . For that purpose one forms the 2j -dilates of the functionNm(x),
namelyNm(2j x), and considers its shifts, thus obtaining for allj ∈ Z, the equality

Vj = clos
L2(R)
{φ(2j x − `) : for all ` ∈ Z}. (16.7)

Actually, this is due to the fact that the functionφ(2j x) = Nm(2j x) is again piecewise
polynomial of degree≤ m but with knots on the meshZ2−j = {`/2j : for all ` ∈ Z}.

SinceV0 ⊂ V1 we have, [4, p. 91, formula (4.3.2)] the central relation in MRA called
the two-scale relationor refinement equation4 for φ(x), namely

φ(x) =
∞∑

j=−∞
pjφ(2x − j), (16.8)

where in fact the sequence{pj } is finite and is given by the coefficients of the polynomial

P(z) := 1

2

m∑
j=0

pjz
j :=

(
1+ z

2

)m

. (16.9)

In order to make clear thismost fundamental relationin wavelet theory, let us show
that it is easy to prove. After taking the Fourier transform of (16.8), we obtain

φ̂(ξ) = 1

2

m∑
j=0

pje
−ij (ξ/2) · φ̂

(
ξ

2

)
, (16.10)

3 The notation closL2(R) means the linear and topological hull in the norm ofL2(R).
4 In the setting of some authors these areprewavelets(de Booret al. [9]), in the setting of Chui these are

semi-orthogonal wavelets..
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and by substituting the explicit formula for the Fourier transform (16.5) above we obtain(
1− e−iξ

iξ

)m

= P(z)

(
1− e−iξ/2

iξ/2

)m

.

Now the identity

(1− e−iξ )m =
(
1− e−iξ/2

)m (
1+ e−iξ/2

)m

implies (16.9).
The principal property of the scaling functionφ is that the set of shifts

{φ(x − `) : for all ` ∈ Z} is aRiesz basisof V0. The notion of Riesz basis has become
a replacement condition for orthogonal basis since every Riesz basis may be orthonor-
malized and many properties of the orthogonal basis are preserved. By the definition
of a Riesz basis there exist two constantsA, B with 0 < A ≤ B < ∞, and for every
sequence{cj } ∈ `2 holds

A

∞∑
j=−∞

|cj |2 ≤
∥∥∥∥∥∥
∞∑

j=−∞
cjφ(x − j)

∥∥∥∥∥∥
L2(R)

≤ B

∞∑
j=−∞

|cj |2. (16.11)

The constantsA, B are calledRiesz bounds. An equivalent conditionfor a basis to be
Riesz is that

bφc :=
∞∑

j=−∞

∣∣φ̂(ξ + 2πj)
∣∣2 <∞ a.e. inR. (16.12)

Below we will find an explicit expression for this infinite sum.

16.2 The wavelet spacesWj

Thewavelet spacesWj are defined uniquely through the properties holding for allj in
Z, namely:

Vj+1 = Vj ⊕Wj,

Wj ⊂ Vj+1,

or, equivalently,
Wj := Vj+1	 Vj for all j in Z. (16.13)

Here⊕means the orthogonal sum of two linear spaces, and in the context above we
have two mutually orthogonal subspaces,Vj andWj ; their usual sum givesVj+1. The
last means that inVj+1 = Vj ⊕Wj we have a sum but not simply isomorphism!

Since

clos
L2(R)

 ∞⋃
j=−∞

Vj

 = L2(R) (16.14)
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we obtain the expansion

L2(R) =
∞⊕

j=−∞
Wj . (16.15)

Any function may be expanded in ageneralized Fourier series

f (x) =
∞∑

j=−∞
wj with wj ∈ Wj for all j ∈ Z. (16.16)

The major factor contributing to the charm of theclassical cardinal spline wavelets5

is that, roughly speaking, one has only one generating functionψ for all spacesWj .
More precisely,ψ is called the motherwavelet if its shifts generateW0, i.e.

W0 = clos
L2(R)
{ψ(x − `) : for all ` ∈ Z} (16.17)

and the 2j -dilates

ψj,`(x) := 2j/2ψ(2j x − `)

generate the spacesWj , i.e.

Wj = clos
L2(R)
{ψj,`(x) : for all ` ∈ Z}. (16.18)

The norming of the functionsψj,`(x) is important since it preserves theL2-norm of
linear combinations at every levelj for j ∈ Z, namely

∞∫
−∞

∣∣∣∣∣ ∞∑
`=−∞

c`2j/2ψ(2j x − `)

∣∣∣∣∣
2

dx =
∫ ∞
−∞

∣∣∣∣∣ ∞∑
`=−∞

c`ψ(x − `)

∣∣∣∣∣
2

dx,

hence the set of shifts{ψj,`(x)}`∈Z has the same Riesz constantsA, B as the shifts
of ψ(x).

Let us note that the polynomial spline wavelets owe their algorithmic effectiveness
to the fact that the polynomial splines are scale-invariant. That is: iff (x) is a polynomial
spline, then for every numberh the functionf (hx) is also a polynomial spline. In some
sense, dilations do not change the physical nature of the basic space of functions used
to construct MRA. It is important to note that in a similar way all classical wavelet
constructions and the axioms of MRA rely upon this principle [8, 14], namely that the
physical natureof the dilated functionf (hx) is the same as that of the original function
f (x). We will see that this is not the case for the generalL-spline wavelets.

5 In the setting of some authors these areprewavelets(de Booret al. [9]), in the setting of Chui these are
semi-orthogonal wavelets.
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16.3 The mother waveletψ

There is anexplicit formula for the functionψ in cardinal spline wavelet analysis.
SinceW0 ⊂ V1, we have the representation

ψ(x) =
∞∑

j=−∞
rjφ(2x − j), (16.19)

whererj are the coefficients of a Laurent polynomialR(z). A Laurent polynomial also
has negative exponents. We have

R(z) = 1

2
·
∞∑

j=−∞
rj z

j .

An important property is that only a finite number of the coefficientsrj are non-zero,
henceψ has acompact support. Indeed, if we pass to the Fourier images (in the
frequency variableξ ), we obtain

ψ̂(ξ) = R
(
e−iξ/2

)
φ̂

(
ξ

2

)
for all ξ in R. (16.20)

On the other hand,ψ⊥V0. These two conditions and the fact thatψ has shifts
{ψ (x − `) : for all ` ∈ Z} which are the basis ofW0 determineψ uniquely up to a
constant factor

R(z) = −z2m−1P

(
−1

z

)
Eφ

(
−1

z

)
.

Here we have denoted byEφ(z) the so-calledEuler–Frobenius polynomial (which is
a Laurent polynomial) which was introduced by Schoenberg. It is given by

Eφ(z) =
m−1∑

`=−m+1

φ2m(m+ `)z`; (16.21)

where again
φ2m(x) := N2m(x).

We see thatR(z) is a classical polynomial (it does not contain negative exponents ofz)
and its degree is evidently 3m−2. Hence, we easily prove by equality (16.19), p. 317, that
the wavelet functionψ(x) has a compact support coinciding with the interval [0, 2m−1].

The polynomialEφ(z) is thekey functionto the whole approach. Let us note the
important equality

bφc =
∞∑

`=−∞

∣∣φ̂(ξ + 2π`)
∣∣2 = Eφ(e−iξ ), (16.22)

where we have used the notation for this norm introduced above in (16.12), p. 315. Since
the functionEφ(z) has no zeros on the unit circle|z| = 1, owing to the Riesz inequalities
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(16.11) and the norm in (16.12), p. 315, this might be considered as a proof that the shifts
of the functionφ(x) provide a Riesz basis inV0. Due to the symmetry of the cardinal
splineN2m(x) around the pointm we see that

Eφ(z) = Eφ

(
1

z

)
.

16.4 The dual mother wavelet̃ψ

Another important property of the functionψ(x)whichmakes it a waveletis the existence
of thedual wavelet ψ̃(x). The dual wavelet function gives rise to the functions

ψ̃j,`(x) := 2j/2ψ̃(2j x − `), (16.23)

which satisfy the basicbi-orthogonality property, for all indexesj, j1, `, `1 ∈ Z,
namely6

〈ψ̃j,`, ψj1,`1〉 :=
∫ ∞
−∞

ψ̃j,`(x)ψj1,`1(x) dx = δj,j1 · δ`,`1.

Now if the generalized Fourier series representation (16.16), p. 316, is written as
follows, see Chui [5, p. 89]:

f (x) =
∞∑

j,`=−∞
dj,`ψj,`(x),

we see that after taking the scalar product withψ̃j,`(x) for every two indexesj and` in
Z we obtain

dj,` = 〈f, ψ̃j,`〉 for all j, ` in Z.

Let us denote
W̃j := clos

L2(R)

{
ψ̃j,` : for all j, ` in Z

}
.

Then the following orthogonality properties are satisfied:{
W̃j⊥Vj for all j ∈ Z,

Wj⊥Vj for all j ∈ Z.
(16.24)

There is an explicit expression for theunique dual waveletin terms of its Fourier
transform ̂̃ψ(ξ) = ψ̂(ξ)∑∞

`=−∞ |ψ̂(ξ + 2π`)|2 .

6 Hereδ is the Kronecker symbol defined asδαβ = 1 for α = β andδαα = 0 .
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The last expression makes sense since the sum is convergent, and we have the following
elegant explicit expression [5, p. 106, formula (5.3.11)]:

bψc =
∞∑

`=−∞
|ψ̂(ξ + 2π`)|2 = |R(z)|2Eφ(z)+ |R(−z)|2Eφ(−z) (16.25)

= Eφ(z)Eφ(−z)Eφ(z2) for all z = e−iξ/2.

The last is nonzero since the Euler–Frobenius polynomialEφ(z) has no zeros on the unit
circle|z| = 1. This remark provides a proof that the set of shifts{ψ(x−`) : for all ` ∈ Z}
is a Riesz basis ofW0 by applying the criterion for a Riesz basis using the Fourier
transform ofψ . It is similar to that for the scaling functionφ(x) which we have seen in
(16.11) and (16.12), p. 315.

Another important identity is

Eφ(z2) = |P(z)|2Eφ(z)+ |P(−z)|2Eφ(−z). (16.26)

16.5 The dual scaling functioñφ

Now we consider thedual scaling function φ̃(x) ∈ V0. It satisfies the orthogonality
property

〈φ(x − j), φ̃(x − `)〉 = δj,` for all j, ` in Z.

There is an explicit expression for̃φ(x) in terms of its Fourier transform

̂̃φ(ξ) = φ̂(ξ)∑∞
`=−∞ |φ̂(ξ + 2π`)|2 =

φ̂(ξ)

Eφ(e−iξ )
. (16.27)

If we denote
Ṽj := clos

L2(R)
{φ̃(x − `) : for all ` ∈ Z},

then we obtain
Ṽj = Vj

and also the following orthogonality relations which together with the relations in (16.24)
read as follows:

Wj⊥Ṽj , W̃j⊥Vj , Wj⊥Vj for all j in Z.

16.6 Decomposition relations

Since theEuler–Frobenius polynomialEφ(z) does not take on zero values on the unit
circle |z| = 1, there always exists the inverse Laurent polynomial which is convergent
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near the unit circle, and we may put

Eφ(z) =
∞∑

j=−∞
βj z

j ,

1

Eφ(z)
=

∞∑
j=−∞

αj z
j .

The coefficientsαj decay exponentially. By taking the inverse Fourier transform in
equality (16.27) we see that we may express the basis ofV0 in both directions

φ̃(x) =
∞∑

j=−∞
αjφ(x − j),

φ(x) =
∞∑

j=−∞
βj φ̃(x − j).

Since
V1 = V0⊕W0,

it is obvious that the functionsφ(2x) andφ (2x − 1) may be represented as

φ(2x) =
∞∑

s=−∞
{a−2sφ(x − s)+ b−2sψ(x − s)},

φ(2x − 1) =
∞∑

s=−∞
{a1−2sφ(x − s)+ b1−2sψ(x − s)},

by means of the sequencesa2j , b2j anda2j+1, b2j+1, respectively. We may combine
these two representations in one called thedecomposition relation, distinguishing only
the case of odd and even index`, namely

φ(2x − `) =
∞∑

s=−∞
{a`−2sφ(x − s)+ b`−2sψ(x − s)}. (16.28)

For the sequencesaj andbj we define the corresponding symbols by putting

A(z) = 1

2
·
∞∑

j=−∞
aj z

j , (16.29)

B(z) = 1

2
·
∞∑

j=−∞
bj z

j . (16.30)

The functionsA(z) andB(z), which are Laurent polynomials, may be found as a solution
of the following algebraic system:

P(z)A(z)+ R(z)B(z) = 1 for all |z| = 1,

P (−z)A(z)+ R(−z)B(z) = 0 for all |z| = 1.
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They may be found explicitly by applying identities (16.25) and (16.26), p. 319.

A(z) = Eφ(z)

Eφ(z2)
P (z),

B(z) = − z2m−1

Eφ(z2)
P

(
−1

z

)
.

Evidently,A(z) andB(z) are Laurent polynomials.
It is interesting that the symbolsA(z) andB(z) also provide thetwo-scale relations

for φ̃ andψ̃ (which are the “dual” relations to the two-scale relations forφ andψ in
(16.8), p. 314, and (16.19), p. 317, respectively, by

̂̃φ(ξ) = A(z)̂φ̃ (ξ/2),̂̃ψ(ξ) = B(z)̂φ̃ (ξ/2).
(16.31)

16.7 Decomposition and reconstruction algorithms

Let us return to the main point of MRA. Assume that we are given an arbitrary function
f ∈ L2(R). Then for everyε > 0 we find an approximationfN ∈ VN for a sufficiently
largeN such that

‖f − fN‖ < ε.

We consider the expansion of the functionfN(x) ∈ VN given by

fN(x) =
∞∑

j=−∞
cN,`φ(2Nx − `).

Due to

VN = VN−1⊕WN−1, (16.32)

we have the representation

fN(x) = fN−1(x)+ gN−1(x)

with fN−1 ∈ VN−1 andgN−1 ∈ WN−1. Then the coefficients in the representations

fN−1(x) =
∞∑

j=−∞
cN−1,`φ(2N−1x − `),

gN−1(x) =
∞∑

j=−∞
dN−1,`ψ(2N−1x − `),
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may be computed by applying the above decomposition relations. We obtain the
decomposition algorithm, holding for alls in Z, namely

cN−1,s =
∞∑

`=−∞
a`−2scN,`,

dN−1,s =
∞∑

`=−∞
b`−2sdN,`.

Conversely, we have the representation for the coefficients offN by means of the
coefficients offN−1 andgN−1, which is known as thereconstruction algorithm, and
for everys ∈ Z given by

cN,s =
∞∑

`=−∞
{ps−2`cN−1,` + rs−2`dN−1,`}. (16.33)

The “reconstruction algorithm” is practically reasonable since the sequencespj and
rj are finite. However, from this point of view the “decomposition algorithm” is not very
practical since the sequencesaj andbj are infinite. For that reason, for the decomposition
it is better to apply the dual representation offN , namely

fN(x) =
∞∑

j=−∞
c̃N,`φ̃(2Nx − `)

=
∞∑

j=−∞
c̃N−1,`φ̃(2N−1x − `)+

∞∑
j=−∞

d̃N−1,`ψ̃(2N−1x − `).

Now thanks to the dual two-scale relations (16.31), p. 321, we obtain thedual
decomposition algorithm, holding for alls in Z, namely

c̃N−1,s =
∞∑

`=−∞
p2s−`c̃N,`,

d̃N−1,s =
∞∑

`=−∞
r2s−`d̃N,`.

Note that the order of the indices of the coefficientspj andrj has changed.

16.8 Zero moments

An important property of the spline wavelets is that they havezero momentsup to order
m, i.e. ∫ ∞

−∞
x`ψ(x) dx = 0 for ` = 0, . . . , m, (16.34)
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the last being equivalent to the fact thatW0 ⊥ V0 [5, p. 59, p. 61]. This is due to the
fact that every compactly supported spline is a finite linear combination of the shifts of
the functionφ(x). An equivalent statement is that for every integer` ≤ m and for every
compact interval [a, b] we have the representation

x` =
∞∑

i=−∞
a`,iφ(x − i),

wherea`,i is a finite sequence.

16.9 Symmetry and asymmetry

Thesymmetryand theantisymmetry properties distinguish the cardinal spline wavelets

from other wavelets. Namely, if we putψ1 (x) = ψ
(
x + 2m−1

2

)
then we have

ψ1(x) =
{

ψ1(−x) for evenm,

−ψ1(−x) for oddm.
(16.35)


