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In the Introduction to Part Il we explained how naturally the cardinal polysplines appear.
This is especially non-trivial in the case of polysplines with break-surfaces on concentric
spheres. Similarly the notion gfolyharmonic multiresolution analys&ppears in a
natural manner. Let us explain how it happens in the case of polysplines on annuli.

First, recall that every cardinal polyspline on annuli has break-surfaces the spheres
S (0; ) for all integersv € Z, and possesses an expansion in spherical harmonics of
the form

o0 dk
hxy=>Y"> n5dogr) Y ©).
k=0¢=1

For every couple of indexdsand¢ the function*-¢ (v) is a cardinalL-spline for the
constant coefficients operator= My , with knots atv € Z.

What would be more natural than to make multiresolution analysis (MRA) of every

one-dimensional componeht-¢ (v) , i.e. of theL-splines for the operatdt = My, p?
And the refinement of the knot s&twill be (1/2) Z, etc. Furthermore we are lucky
that the basic elements of wavelet analysis for cardingplines has been created by de

Booretal. [9].1

Having obtained MRA for every componehf-¢ it remains only to assemble the
puzzle by means of the above formula (#1).

The above program is easy to describe in general terms but it takes a good deal of
work to accomplish. First, let us recall that in the polynomial case the detailed cardinal
spline wavelet analysis has been carried out by Chui [4], [5]. Accordingly, in Chapter 16
we provide a brief review of his results. This review will be our compass when studying
the cardinalL-spline wavelet analysis. The transition from the polynomial spline case
to the L-spline case is highly non-trivial and we were aware of that in the proof of the
Riesz inequalitiefor the shifts of thel' B-spline Q 711 in Chapter 14, p. 267.

The CardinalL-spline wavelet analysis which we develop in Chapter 17 uses the
whole machinery of cardindl-splines which we have developed in Parttlls amazing
that all the main results of Chui’'s approach permit non-trivial generalizations for the
cardinal L-spline wavelet analysis. The dependence on the vectsressential and is
emphasized in these results. The Chui’s results are reduced to the special case of the
vectorA =[O0, ...,0].

Finally in Chapter 18 we obtain the assembled “polyharmonic wavelet”. It has some
interesting properties. Needless to say, it does not satisfy the axioms of the MRA as
established by Y. Meyer and S. Mallat, see [14]. So far it satisfies some of them and also
some other properties which we provide in Theorem 18.9, p. 380. Putin a proper frame-
work these properties may be considered as the axioms of what wieotgtarmonic
Multiresolution Analysis.

1 The Bibliography is at the end of the present Part.

2 As we already mentioned in the Introduction to Part II, due to the lack of space we do not consider in detail
the cardinal Polysplines on strips. For that reason we do not consider here the Wavelet Analysis generated
by Polysplines on strips. We note only that its formulas are simpler than the annular case, in particular the
refinement is by considering parallel hyperplanes having say first coordiratg™/Z, see Definition 9.1,

p. 118.
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It is remarkable that we may preserve the basic scheme of the usual MRA but if we
introduce some proper substitutes to the basic notions:

1. There is noefinement equatiobut we have aefinement operatogsee Theorem 18.9,
p. 380. This refinement operator is generated bynthe stationary scaling operator
for the L-splines defined in formula (17.6), p. 328.

2. In Section 18.5, p. 379, we see that there is a unique function which wiatedt
waveletand it generates the spac®d/; of the polyharmonic MRAIn a “non-
stationary” way. In a similar way, in Section 18.6, p. 384, we see that there is a
unigue function which we calhother waveletvhich generates the wavelet spaces
PW; in a “non-stationary” way.

3. To have the whole picture completed let us recall that we have alssathpling
operatorprovided by formula (14.16), p. 285, of Part II.

Hence, the main conclusion of the present Part is that the attempt to nrake a
sonable Multiresolution Analysitsy means of a refining sequence of spacesaodinal
polysplines (on annuli or strips)eads to a considerable reconsideration of the whole
store of basic notions of MRA.

The present Part provides a detailed study of only one example of “spherical polyhar-
monic wavelet analysis”. Similar wavelet analysis may be carried out for other elliptic
differential operators of the form

92 3 1
A(r)m—l-B(r)E—i—r—zAg
which are possibly degenerate at the origin but splitinto infinitely many one-dimensional
operators with constant coefficients.

What might be the area of application of such wavelets which lhgvdefinition
singularities on wholgnr — 1)-dimensional surfaces? Let us point out to a possible
application for analyzing, e.g. iR?, images having singularities on curves. The problem
of efficient computational analysis of such images has been indicated by Meyer and
Mallat — the standard wavelet paradigm is not efficient for analyzing images having
(n — 1)-dimensional singularities. This problem has been given a thorough consideration
in a series of papers of D. Donoho with coauthors. In particular, the curvelets by D.
Donoho and E. Candes [2] have been created with the main purpose to solve this problem.
The polyharmonic wavelets may be considered as an alternative approach to this problem.

Finally, let us note that much as we do not like it many of the formulas in the present
Part are overburdened with indexes and arguments which makes it somewhat heavy
to read. On the other hand this detailed exposition would provide the reader with the
opportunity to check the correctness of all formulas.



Chapter 16

Chur’s cardinal spline wavelet
analysis

As is usual in wavelet analysis, we will be working in the spdcgR) of square
summable complex valued functions with the scalar product defined by

o0
(8= 9w = [ Fwietodx (16.1)
—0oQ
for every two functionsf, g € Lo(R). We have the norm

LI = 11wy = (o ). (16.2)

16.1 Cardinal splines and the set¥/;

Denote byV; the closure inL,(R) of the space of altardinal polynomial splines
(which are inLo(R)) of polynomial degree: having knots at the points

; 14
7-27/ Z{E: foralleeZ}. (16.3)
By definition their smoothness &” 1. Evidently, sinceZ - 2=/ c Z - 2772 for every
two integersj; and j satisfyingj; < j2, we have the inclusions
-CVoCcV_icVoCcViCcVoC:---.

We use the termardinal in the wider sense, understanding splines with knots at the set
Z-h = {th: forall £ € Z} for some numbek > 0.

The most important function in the theory of cardinal splines and also of spline
wavelet analysis is the compactly suppor@dpline Ny, (x) € Vo with support coin-
ciding with the interval [0m] and with knots at the integers. Following the tradition in
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314 Multivariate polysplines

MRAwe will denote it throughp (x), i.e.
¢ (x) = Ny (x), (16.4)

and we will call it thescaling function. We know thatv,,, is symmetric around the point
m/2 which is the center of the interval [@], i.e.

Ny (x) = Nypy(m —x) forx e R.
An important formula is the one providing tik@urier transform of N,
— 1— e i6 "
Nm(§) = (—ié ) , (16.5)

[5, p. 53]. It is remarkable that the cardinal spliNg (x) which has knots at the integer
pointsZ generates through shifts not only the spagei.e 3

Vo = clos{¢(x — ¢): forall ¢ € Z}, (16.6)
Lo(R)

but also the spacég;. For that purpose one forms thé-dilates of the functiomv,, (x),
namelyN,, (2/ x), and considers its shifts, thus obtaining for ak Z, the equality

V: = clos{¢(2/x —¢): forall¢ e Z}. 16.7
j LZ(R){¢( X ) € 7} ( )

Actually, this is due to the fact that the functigi2/ x) = N, (2/x) is again piecewise
polynomial of degree< m but with knots on the mesh2—/ = {¢/2/: forall ¢ € Z)}.

SinceVp C V1 we have, [4, p. 91, formula (4.3.2)] the central relation in MRA called
thetwo-scale relationor refinement equatiorf* for ¢ (x), namely

o0

px)= > pjpx—j), (16.8)

j=—00

where in fact the sequengg; } is finite and is given by the coefficients of the polynomial

P@ =35 pi7 :=< JZFZ) . (16.9)
=0

In order to make clear thimost fundamental relatioim wavelet theory, let us show
that it is easy to prove. After taking the Fourier transform of (16.8), we obtain

~ 1& . ~
D) = > Z pje—u(S/z) ¢ <%> , (16.10)
Jj=0

3 The notation C|O§2(R> means the linear and topological hull in the normigfRR).

41n the setting of some authors these prewaveletgde Booret al. [9]), in the setting of Chui these are
semi-orthogonal wavelets.
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and by substituting the explicit formula for the Fourier transform (16.5) above we obtain
1-e7i\" 1-e7i6/2\"
— ] =P — ] .
i O\ T

(1— e Eym = (1 _ e—iS/Z)m <1+ e—is/z>’"

Now the identity

implies (16.9).

The principal property of the scaling functiop is that the set of shifts
{p(x —¢): forall ¢ € Z} is aRiesz basiof Vp. The notion of Riesz basis has become
a replacement condition for orthogonal basis since every Riesz basis may be orthonor-
malized and many properties of the orthogonal basis are preserved. By the definition
of a Riesz basis there exist two constaatsB with 0 < A < B < oo, and for every
sequencéc;} € £, holds

A e Y ea—p| =B Y It (16.11)

j==eo j==oo Ly® ~— =%

The constantg, B are calledRiesz bounds An equivalent conditiorfior a basis to be

Riesz is that
o0

16):= Y [¢GE +21)° <co ae.ink. (16.12)

j=—00

Below we will find an explicit expression for this infinite sum.

16.2 The wavelet spaceW;

Thewavelet spacedV; are defined uniquely through the properties holding foy afi
Z, namely:

Vit =V oW,

or, equivalently,
W;.:=V;p10V; foralljinZ. (16.13)

Hered means the orthogonal sum of two linear spaces, and in the context above we
have two mutually orthogonal subspac®&g,andW;; their usual sum give¥; 1. The
last means thati; 1 = V; @ W; we have a sum but not simply isomorphism!
Since
o.¢]

cos{ |J vjt=La® (16.14)

L® | ;2
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we obtain the expansion

LR = B w;. (16.15)

j=—00

Any function may be expanded ingeeneralized Fourier series

o0
f= > w; withw; e W;forall j € Z. (16.16)

j=—o0

The major factor contributing to the charm of ttlassical cardinal spline wavelets
is that, roughly speaking, one has only one generating fungtidar all spacesW;.
More preciselyy/ is called the mothewaveletif its shifts generatéVy, i.e.

Wo = clos —0): forallt ez 16.17
0 LZ(R){llf(x ) } ( )

and the 2-dilates
Vje(x) =212y 20 x — 0)

generate the spac#s;, i.e.

W; = Lc!gkg{wj,g(x): forall ¢ € Z}. (16.18)

The norming of the functiong ; ¢(x) is important since it preserves tfie-norm of
linear combinations at every levglfor j € Z, namely
2

/ o=

—0o0
hence the set of shiftg/; ¢(x)}¢cz has the same Riesz constadtsB as the shifts
of ¥ (x).

Let us note that the polynomial spline wavelets owe their algorithmic effectiveness
to the fact that the polynomial splines are scale-invariant. That j&xif is a polynomial
spline, then for every numbérthe functionf (hx) is also a polynomial spline. In some
sense, dilations do not change the physical nature of the basic space of functions used
to construct MRA. It is important to note that in a similar way all classical wavelet
constructions and the axioms of MRA rely upon this principle [8, 14], namely that the
physical natureof the dilated functionf (hx) is the same as that of the original function
f(x). We will see that this is not the case for the genéraipline wavelets.

2
dx,

e8]

Z ce2/?y 27 x — 0)

{=—o00

e8]

Y oy -0

{=—o00

5In the setting of some authors these prewavelet§de Booret al. [9]), in the setting of Chui these are
semi-orthogonal wavelets.
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16.3 The mother wavelet)

There is anexplicit formula for the functiony in cardinal spline wavelet analysis
SinceWg C Vi, we have the representation

o0

Y = Y g2 —j). (16.19)

j=—00

wherer; are the coefficients of a Laurent polynomiilz). A Laurent polynomial also
has negative exponents. We have

[0.°]

1 .
R(Z)ZE' Z erJ.

j=—00

An important property is that only a finite number of the coefficientare non-zero,
hencey has acompact support Indeed, if we pass to the Fourier images (in the
frequency variablég), we obtain

v(E) =R (f"é/z) 5(%) for all £ in R. (16.20)

On the other handy LVp. These two conditions and the fact th@t has shifts
{y (x — ¢): forall ¢ € Z} which are the basis oWy determiney uniquely up to a

constant factor . L
o= () ().
Z Z

Here we have denoted Wy, (z) the so-callecEuler—Frobenius polynomial (which is
a Laurent polynomial) which was introduced by Schoenberg. It is given by

m—1

Eg()= Y ¢on(m+0:5 (16.21)
l=—m+1

where again
$2m (x) == Nopy (x).

We see thaR(z) is a classical polynomial (it does not contain negative exponenis of
and its degree is evidently3— 2. Hence, we easily prove by equality (16.19), p. 317, that
the wavelet function (x) has a compact support coinciding with the interval@ — 1].

The polynomialEy(z) is thekey functionto the whole approach. Let us note the
important equality

161 = D |6 +210)| = Ege™™), (16.22)

{=—o00

where we have used the notation for this norm introduced above in (16.12), p. 315. Since
the functionEy (z) has no zeros on the unit cirdlg = 1, owing to the Riesz inequalities
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(16.11) and the normin (16.12), p. 315, this might be considered as a proof that the shifts
of the function¢ (x) provide a Riesz basis iHy. Due to the symmetry of the cardinal
spline Ny, (x) around the point: we see that

1
Ey(z) = Ey (E) .

16.4 The dual mother Waveletfﬁ

Anotherimportant property of the functign(x) whichmakes it awaveles the existence
of thedual wavelet ¢ (x). The dual wavelet function gives rise to the functions

Vje(x) = 2012920 x — 1), (16.23)

which satisfy the basibi-orthogonality property, for all indexey, j1,¢,¢1 € Z,
namely

~ w ~ S ——
(Vje ¥jnen) 1=/ Vi eV e, (x)dx =38j j, - 6g.¢,-
—o0

Now if the generalized Fourier series representation (16.16), p. 316, is written as
follows, see Chui [5, p. 89]:

f =Y djeyje),

Jjl=—00

we see that after taking the scalar product \nﬁyy (x) for every two indexeg and¢ in
7. we obtain

dje=(f, 1;]"[) forall j, ¢in Z.
Let us denote
W = clos {y ¢: forall j,¢inZ}.
J LZ(R){ Js J }

Then the following orthogonality properties are satisfied:

W;Lv; foralljeZ,
W;LlVv; forallj e Z.

(16.24)

There is an explicit expression for thanique dual waveletn terms of its Fourier
transform R
_ V)

Y0t oo W (& +210) 2

<)

&)

6 Heres is the Kronecker symbol defined &g = 1fora = Bandsy, =0.
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The last expression makes sense since the sum is convergent, and we have the following
elegant explicit expression [5, p. 106, formula (5.3.11)]:

Wl= Y 1WE+210% = |R@IPEy() + IR(—2)|?Eg(—2) (16.25)

{=—00

= E4(2)Eg(—2)Eg(z%) forallz = ¢ '5/2,

The last is nonzero since the Euler—Frobenius polynomjat) has no zeros on the unit
circle|z| = 1. Thisremark provides a proof that the set of sHiftéx —¢) : for all £ € Z}
is a Riesz basis oWy by applying the criterion for a Riesz basis using the Fourier
transform ofyr. It is similar to that for the scaling functiaofi(x) which we have seen in
(16.11) and (16.12), p. 315.

Another important identity is

Ep(z%) = |P)IPE4(2) + |P(=2)|PEg(—2). (16.26)

16.5 The dual scaling function;ﬁ

Now we consider thelual scaling function $(x) € Vp. It satisfies the orthogonality
property ~
(Px — j), p(x — ) =8;, forall j,¢inZ.

There is an explicit expression f¢i(x) in terms of its Fourier transform

AG) )

PE = YR LpE+2n0)2 T EpleiE)

(16.27)

If we denote _ _
Vi = clos{¢(x — ¢): forall £ € Z},
L2(R)

then we obtain

~

VjZVj

and also the following orthogonality relations which together with the relations in (16.24)
read as follows:

~

W;LV;, W;Llv;, W;Lv; forall;inZ.

16.6 Decomposition relations

Since theEuler—Frobenius polynomial E4 (z) does not take on zero values on the unit
circle |z] = 1, there always exists the inverse Laurent polynomial which is convergent
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near the unit circle, and we may put

E¢(z) = Z Bz’

j=—00
1 O :
= aizl.
Ey(z) j;oo J

The coefficientsy; decay exponentially. By taking the inverse Fourier transform in
equality (16.27) we see that we may express the badig of both directions

Px) = Y ajplx— ).

j=—00

px)= Y Biblx— ).
j=—00
Since
Vi =Vo&® W,

it is obvious that the functiong(2x) and¢ (2x — 1) may be represented as

¢2x) = Y fa_2¢(x —5) +b oY (x — )},

§=—00

¢ —1) = Y {ar 2¢(x —5) + b1 oY (x — )},

§=—00

by means of the sequences;, bo; anday; 1, b2j 11, respectively. We may combine
these two representations in one calleddeeomposition relation distinguishing only
the case of odd and even indexnamely
o0
$2x—0) = Y {ap-20¢(x — ) +by_oY (x —5)). (16.28)

§=—00

For the sequences andb; we define the corresponding symbols by putting

1 & .
A@) =3 > ajd, (16.29)
j=—00
1 & .
B(2) =3 - > bjzl. (16.30)
J=—00

The functionsA (z) andB(z), which are Laurent polynomials, may be found as a solution
of the following algebraic system:

P(z2)A(Z)+ R(z)B(z) =1 forall|z] =1,
P(—2)A(@) + R(—2)B(Z) =0 forall|z] = 1.
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They may be found explicitly by applying identities (16.25) and (16.26), p. 319.

Ey(2)
E¢(Z2)

B = p ( 1)
¢ E (z2) z)’
Evidently, A(z) and B(z) are Laurent polynomials.
Itis interesting that the symbol$(z) and B(z) also provide théwo-scale relations

for ¢> andxp (which are the “dual” relations to the two-scale relationsdgoand ¢ in
(16.8), p. 314, and (16.19), p. 317, respectively, by

A(z) = P(z),

) = A (£/2),
{¢<s> @)% /2) (16.31)

V(&) = BQ$ (E/2).

16.7 Decomposition and reconstruction algorithms

Let us return to the main point of MRA. Assume that we are given an arbitrary function
f € La(R). Then for every > 0 we find an approximatioyiy € Vy for a sufficiently
large N such that

ILf = fall <e.

We consider the expansion of the functign(x) € Vy given by

o
N = > enep@Vx—0).
Jj=—00
Due to
VN =VN-1® Wn-_1, (16.32)

we have the representation

Inx) = fy—1(x) + gn—1(x)
with fy_1 € Vy_1 andgy_1 € Wxy_1. Then the coefficients in the representations
o

e = ) en-109@V T —0),

j=—o0

en-10) = Y dy 1@V —0),

j=o0
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may be computed by applying the above decomposition relations. We obtain the
decomposition algorithm, holding for alls in Z, namely

o0

CN-1s = Z ag—2sCN.¢,
{=—00

o0
dy-1,5 = Z be—25dn ¢

f=—00

Conversely, we have the representation for the coefficienfgydby means of the
coefficients offy_1 andgy_1, which is known as theeconstruction algorithm, and
for everys € Z given by

o0
cNs = Y {Ps—aven—1.0+rs—2edn-_1.). (16.33)

{=—00

The “reconstruction algorithm” is practically reasonable since the sequeneesi
r; are finite. However, from this point of view the “decomposition algorithm” is not very
practical since the sequenegsandb ; are infinite. For that reason, for the decomposition
it is better to apply the dual representationfaf, namely

> nep@Vx —0)

j=—00

Sy ()

x o0
Y v @ =0+ > dy @V — o).

j=—00 Jj=—00

Now thanks to the dual two-scale relations (16.31), p. 321, we obtaindtaé
decomposition algorithpholding for alls in Z, namely

00

ON-1s= Y, P2iCNes
l=—00

~ S ~
dy-1s= Y racedn.c.
£=—00

Note that the order of the indices of the coefficiepfsandr; has changed.

16.8 Zero moments

An important property of the spline wavelets is that they ham® momentsup to order
m,i.e.

o0
/ xy(x)dx =0 fore=0,...,m, (16.34)

—0o0
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the last being equivalent to the fact tHély L Vg [5, p. 59, p. 61]. This is due to the
fact that every compactly supported spline is a finite linear combination of the shifts of
the functiong (x). An equivalent statement is that for every integet m and for every
compact intervald, b] we have the representation

o0

xt = Z agi(x —i),

i=—00

whereqy ; is a finite sequence.

16.9 Symmetry and asymmetry

Thesymmetry and theantisymmetry properties distinguish the cardinal spline wavelets

from other wavelets. Namely, if we put; (x) = (x + 2’”7—1> then we have

_ f ,
Y100 = {W ¥ forevemm (16.35)
—y1(—x) foroddm.



