Advanced Numerical Methods for Financial Problems Pricing of Derivatives

Krasimir Milanov

krasimir.milanov@finanalytica.com

Department of Research and Development FinAnalytica Ltd.

Seminar: Signal Analysis and Mathematical Finance, 2006

 ϕ_a FinAnalytica

イロト イポト イヨト イヨト

Outline

Motivation

- Financial Problems
- The Basic Problem That We Studied
- Previous Work
- 2 Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

3 Appendix

Example Definition

Financial Problems The Basic Problem That We Studied Previous Work

Outline

Motivation

- Financial Problems
- The Basic Problem That We Studied
- Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation
- 3 Appendix
 - Example Definition

Financial Problems The Basic Problem That We Studied Previous Work

Pricing of derivatives. Black-Scholes Theory.

- Equity Options: American, Bermudan, etc.
- Hybrid Derivatives: Convertible Bonds (CBs).
- Fixed-Income Products: Callable Bonds, Putable Bonds and Callable/Putable Bonds
- Credit Risk Derivative: CBs TF model.
- Gaussian underling driven process:
 - Log-normal process

$$d\mathbf{S}_t = \mu \mathbf{S}_t dt + \sigma \mathbf{S}_t dW_t.$$

Ornstein-Uhlenbeck process

$$dr_t = (b - ar_t)dt + \sigma dW_t.$$

Financial Problems The Basic Problem That We Studied Previous Work

Pricing of derivatives. Partial Differential Equations (PDE).

- Black-Scholes type equations parabolic PDEs:
 - heat equations with zero right hand side

$$u_t = u_{xx}.$$
 (1)

heat equations with non-zero right hand side

$$u_t = u_{xx} + f. \tag{2}$$

(日)

- Solve the problems when the initial data are non-smooth.
- Derivatives with embedded features (options) and constraints involve non-close form solution for its pricing:
 - early exercise both American and Bermudan Options.
 - call-back, put and conversion features of CBs.
 - hard/soft-call provision of CBs.

Financial Problems The Basic Problem That We Studied Previous Work

Need for Numerical Methods

T wo main directions: to find (reproduce) by the natural manner the so called advanced two and three time-level FDS and explain the advantages and disadvantages of them from a point of view of the financial math.

- Finite Difference Schemes (FDS):
 - Two time-level FDS (θ-method family):
 - Euler's schemes: explicit and implicit
 - Crank-Nicholson (CN)
 - Douglas (2TLD)
 - Tree time-level FDS (Douglas).
- Truncation Error Estimation
- Numerical Methods for algebraic systems: Gauss-Seidel, SOR, PSOR.
 Diamonda FinAna

Financial Problems The Basic Problem That We Studied Previous Work

(日)

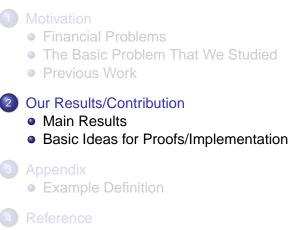
FDS for Financial Problems.

Usage Technics and Applications.

- The Operator Approach (Mitchell and Griffiths).
- The optimal(kill)-value for 2TLD scheme is $\alpha = \frac{1}{\sqrt{20}}$ (Wiliam Shaw and may be Saulev about 1958).
- American Options (Wilmott, Hull, Shaw)
 - Over BS-equation (Wilmott and Hull).
 - Especially 3TLD over (1) (William Shaw).
- Convertible Bonds (CBs).
 - Binomial Model J. Hull, 2000.
 - Over BS-equation P. Wilmott, 2000.
 - Euler's and CN standard FDS over couple BS-equations from Tsiveriotis-Fernandes model - Lucy Xingven Li, 2005.

Main Results Basic Ideas for Proofs/Implementation

Outline



Krasimir Milanov krasimir.milanov@finanalytica.com Finite Difference Schemes

Main Results Basic Ideas for Proofs/Implementation

List of results. Page One.

- The optimal(kill)-value for 2TLD scheme is $\alpha = \frac{1}{\sqrt{12}}$.
- Reproduce FDS by the natural manner and explain the advantages/disadvantages in general.
- Develop end implement a method for CBs evaluation with smallest "bad" effects in the following directions:
 - Convergence to the conversion state.
 - Description of influence of the coupons and the features: put, call-back and conversion.
 - Spurious oscillations (Fig.1).
 - Stability: (2TLD Fig.2) and (Binary Tree Fig.3).
 - Provide fine mesh in the most important and difficult for description phases credit risk, investment and hybrid, and produce non-fine mesh in the phase of conversion, which is a line (Fig.4).

Main Results Basic Ideas for Proofs/Implementation

inAna

Advantages and disadvantages for considered FDSs:

• In general θ -method family

The obtained Pricing is continuous w.r.t. time. Theta is left-cont. and inappropriate for prediction. Pricing is smooth w.r.t. the underling-stock.

• In general 3-time level Douglas

The obtained Pricing is continuous w.r.t. time. Theta is cont. and appropriate for prediction. Pricing is smooth w.r.t. the underling-stock.

Main Results Basic Ideas for Proofs/Implementation

E >

Elimination of Oscillatory Terms.

Based on Tsiveriotis-Fernandes Math Model

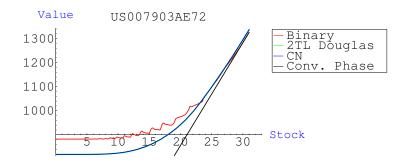


Figure: Methods based on CN and 2TLD eliminate the oscillations.

Main Results Basic Ideas for Proofs/Implementation

Stability of the Method.

Based on 2-time level Douglas.

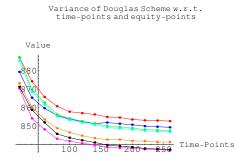


Figure: Magenta for 160 equity points; Blue for 180 equity points; Red for 200 equity points; Orange for 250 equity points; Green for 300 equity points; Cyan for 350 equity points; Black for points: points.

Main Results Basic Ideas for Proofs/Implementation

Stability of the Method. Based on Binary Tree.

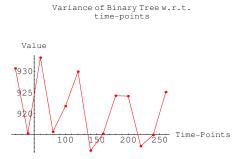


Figure: This figure shows the variance of the Binary Tree method w.r.t. the time-points (time-level).

< 🗇 >

Main Results Basic Ideas for Proofs/Implementation

Distribution of Spatial Points.

Based on 2-time level Douglas.

 17 points for conversion phase (in the range from 20 to 120), and 178 points for the other 3 phases (in the range from 0 to 20)

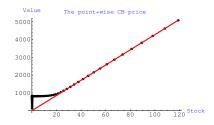


Figure: By a grid with 20 time-points and 195 equity points

< 17 ▶

Main Results Basic Ideas for Proofs/Implementation

The kill-value in 2TLD. Step One

NFORMALLY speaking, any definition of truncation error gives a measure of the extant to which an exact solution of the differential equation fails to satisfy the difference equation. Let's an exact solution we denote with $u : (t, x) \rightarrow u(t, x)$. When *u* satisfy the difference equation of θ -method, for its left hand side *L* and its right hand side *R* we have, respectively

$$L = \tau \left(\partial_t u_n^m + \frac{1}{2} \tau \partial_t^2 u_n^m + \frac{1}{6} \tau^2 \partial_t^3 u_n^m + O(\tau^3) \right)$$

$$R = \tau \left(\partial_x^2 u_n^m + \tau \theta \partial_t \partial_x^2 u_n^m + \frac{1}{12} h^2 \partial_x^4 u_n^m + \frac{1}{2} \tau^2 \theta \partial_t^2 \partial_x^2 u_n^m + \frac{1}{12} h^2 \tau \theta \partial_t \partial_x^4 u_n^m + \theta O(\tau^3) + \frac{1}{12} h^2 \theta O(\tau^2) + O(h^4) \right).$$

ъ

Main Results Basic Ideas for Proofs/Implementation

FinAnalytica

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

The kill-value in 2TLD.

Now, by the choice of Douglas: $\theta = \frac{1}{2} - \frac{1}{12\alpha}$, we obtain

$$\left(\partial_t - \partial_x^2\right)u_n^m + \frac{\tau}{2}\partial_t\left(\partial_t - \partial_x^2\right)u_n^m + \frac{\hbar^2}{12}\partial_x^2\left(\partial_t - \partial_x^2\right)u_n^m -$$

$$-\left(\frac{\tau}{2}-\frac{\hbar^2}{12}\right)\partial_t\partial_x^2\left(\frac{\tau}{2}\partial_t+\frac{\hbar^2}{12}\partial_x^2\right)u_n^m=\frac{1}{6}\tau^2\partial_t^3u_n^m+\mathcal{O}(\tau^2)+\mathcal{O}(\hbar^4).$$

Finally, by the equation $\partial_t = \partial_x^2$, for the truncation error Ψ_n^m in the grid point (t_m, x_n) we obtain the following expression:

$$\Psi_n^m = -\frac{1}{12} \Big(\tau^2 - \frac{h^4}{12} \Big) \partial_t^3 u_n^m + O(\tau^2) + O(h^4).$$

Thus for the heat equation with zero right hand side, we obtain an error for the Douglas 2-time level scheme with order:

$$O(\tau^2) + O(h^4).$$

Main Results Basic Ideas for Proofs/Implementation

The kill-value in 2TLD. Relevant Effect.

Now, firstly let we remark that in contrast to William Shaw (and maybe to Saulev about 1958), who claim that the optimal-value (kill-value) of α is $\alpha = \frac{1}{\sqrt{20}}$ we can propound another kill-value, namely $\alpha = \frac{1}{\sqrt{12}}$. Secondly let we remark that the value $\alpha = \frac{1}{\sqrt{12}}$ reduce the number of time levels in the FDS over 22.5 percentage (just reduction-percentage is 1 – $\sqrt{rac{3}{5}}$). For instance: instead we solve the problem with 26 time-steps (based on $\frac{1}{\sqrt{20}}$) we can solve that problem with 20 time-steps (based on $\frac{1}{\sqrt{12}}$) via non-bad truncation error.

Reference

Example Definition

Outline

Krasimir Milanov krasimir.milanov@finanalytica.com Finite Difference Schemes

Example Definition

Example Definition

T HE computations, we did for evaluation date 31.Aug.2005, and the definition of CBs which we used as example is as follows:

- Redemption Price \$1000.00
- Coupon (semi-annual) 4.75 %
- Conversion ratio 42.7716
- Exchange rate 1.00
- Risk-free Yield 4.2232 %
- Stock volatility 27.2030 %

Example Definition

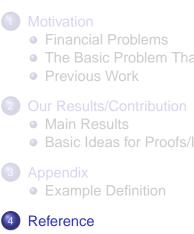
Example Definition

The Feature schedules. The date-format is yyyy-m-d.

Reference

- Maturity Date: 2022-2-1
- Conversion Schedule: from 2002-8-7 to 2022-1-31
- Call Schedule
 - from 2006-2-6 to 2007-2-5 by \$1015.83
 - from 2007-2-5 to 2008-2-5 by \$1007.92
 - from 2008-2-5 to 2022-2-1 by \$1000.00
- Put Schedule
 - from 2009-2-2 to 2009-2-2 by \$1000
 - from 2012-2-1 to 2012-2-1 by \$1000
 - from 2017-2-1 to 2017-2-1 by \$1000

Outline



Krasimir Milanov krasimir.milanov@finanalytica.com Finite Difference Schemes

DERIVARIVE The Theory and Practice of Financial Engeneerin. John Wiley & Sons, 2000.

🦫 J. Hull.

Options, Futures, & Other Derivatives. Prentice-Hall. 2000.

Pricing and Hedging of Derivative Securities. OXFORD University Press, 1999.

W. Shaw.

Advanced Finance Difference Schemes.

Presentation on behalf of Oxford Center for Computational Finance.

L. Xingwen Li.

Pricing Convertible Bonds using Partial Differential Equations.

A thesis for degree of Master of Science, 2005.

Daniel J. Duffy

A Critique of the Crank Nicolson Scheme Strengths and Weaknesses for Financial Instrument Pricing.

Datasim Component Technology BV 2004.

