Home News Team Projects Presentations Курс ФМИ Обявени позиции

Publications and Preprints

Publications

Mathematical biology
  1. F. Acotto, V. Suvandjieva, P. Rashkov, E. Venturino (2024), A model for lions-hyenas interactions. Comput. Appl. Math. 43(4): 236
  2. V. Suvandjieva, I. Tsacheva, M. Santos, G. Kararigas, P. Rashkov (2024), Modelling the impact of NETosis during the initial stage of Systemic Lupus Erythematosus. Bull. Math. Biol. 86(6): 66
  3. B.W. Kooi, P. Rashkov, E. Venturino (2023), Multi-strain host-vector dengue modeling: dynamics and control, Chapter 6 in: P. Ghaffari (ed.), Bio-mathematics, Statistics, and Nano-Technologies: Mosquito Control Strategies, Chapman and Hall/CRC.
  4. P. Rashkov (2022), Modeling repellent-based interventions for control of vector-borne diseases with constraints on extent and duration. Math. Biosci. Eng. 19(4): 4038-4062.
  5. P. Rashkov (2021), Stability analysis of a model for a vector-borne disease with an asymptomatic class. Proc. 50th Jubilee Spring Conference of the Union of Bulgarian Mathematicians p. 144-149 (PDF)
  6. P. Rashkov (2021), A model for a vector-borne disease with control based on mosquito repellents: a viability analysis. J. Math. Analysis Appl. 498: 124958.
  7. P. Rashkov, B.W. Kooi (2021), Complexity of host-vector dynamics in a two-strain dengue model. J. Biol. Dynam. 15: 35-72.
  8. M. Borisov, G. Dimitriu, P. Rashkov (2019), Modelling the host immune response to mature and immature dengue viruses. Bull. Math. Biol. 81(12): 4951-4976.
  9. P. Rashkov, E. Venturino, M. Aguiar, N. Stollenwerk, B.W. Kooi (2019), On the role of vector modelling in a minimalistic epidemic model. Math. Biosci. Eng. 16(5): 4314-4338.
  10. P. Rashkov (2018), Geometric analysis of a model for cross-feeding in the chemostat. Math Meth Appl Sci 41: 8765-8783.
  11. P. Rashkov (2018), Competition for resources and space contributes to the emergence of drug resistance in cancer. p. 169-183 In: K. Georgiev et al. (eds.), Advanced Computing in Industrial Mathematics, Studies in Computational Intelligence 728, Springer.
  12. P. Rashkov, I.P. Barrett, R.E. Beardmore, C. Bendtsen, I. Gudelj (2016), Kinase inhibition leads to hormesis in a dual phosphorylation-dephosphorylation cycle. PLoS Comput. Biol. 12 (11): e1005216.
  13. I. Gudelj, M. Kinnersley, P. Rashkov, K. Schmidt, F. Rosenzweig (2016), Stability of cross-feeding polymorphisms in microbial communities. PLoS Comput. Biol. 12 (12): e1005269.
  14. P. Rashkov (2015), Remarks on pattern formation in a model for hair follicle spacing. Discr. Cont. Dyn. B 20(5): 1555-1572.
  15. P. Rashkov (2014), Regular and discontinuous solutions in a singularly perturbed model for hair follicle spacing. Biomath 3: 1411111.
  16. P. Rashkov, B.A. Schmitt, D. Keilberg, K. Beck, L. Søgaard-Andersen, S. Dahlke (2014), A model for spatio-temporal dynamics in a regulatory network for cell polarity. Math. Biosci. 258: 189-200.
  17. P. Rashkov, B.A. Schmitt, L. Søgaard-Andersen, P. Lenz, S. Dahlke (2013), A model for antagonistic protein dynamics. Int J Biomath Biostat 2(1): 75-85.
  18. P. Rashkov, B.A. Schmitt, L. Søgaard-Andersen, P. Lenz, S. Dahlke (2012), A model of oscillatory protein dynamics in bacteria. Bull. Math. Biol. 74(9): 2183-2203.
Harmonic analysis
  1. G.E. Pfander, P. Rashkov (2013), Remarks on multivariate Gaussian Gabor frames. Monatsh Math, 172(2): 179-187.
  2. N. Grip, G.E. Pfander, P. Rashkov (2013), A time-frequency criterion for operator identification. Sampl Theory Signal Image Process 12(1): 1-19.
  3. G.E. Pfander, P. Rashkov, Y. Wang (2012), A geometric construction of tight Gabor frames with multivariate compactly supported smooth windows. J Fourier Analysis Appl 18(2): 223-239.
  4. N. Grip, G.E. Pfander, P. Rashkov (2011), Time frequency analysis of operators and operator identification. In: International Conference on Sampling Theory and Applications: 02/05/2011-06/05/2011, Singapore, 2011.
  5. P. Rashkov (2010), Time-frequency localized functions and operators in Gabor analysis. Ph.D. Thesis, Jacobs University, Bremen (Supervisor Prof. Dr. Götz E. Pfander).
  6. N. Grip, G.E. Pfander, P. Rashkov (2010), Identification of time-frequency localized operators. Technical report No. 22, Jacobs University, Bremen.
  7. G.E. Pfander, P. Rashkov (2010), Window design for multivariate Gabor frames on lattices. Technical Report No. 21, Jacobs University, Bremen.
  8. F. Krahmer, G.E. Pfander, P. Rashkov (2009), An open question on the existence of Gabor frames in general linear position. In: Structured Decompositions and Efficient Algorithms, S. Dahlke et al. (Eds.), Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
  9. F. Krahmer, G.E. Pfander, P. Rashkov (2009), Applications of the uncertainty principle for finite Abelian groups to communications engineering. Bulg J Phys, 36(S2): 54-59.
  10. F. Krahmer, G.E. Pfander, P. Rashkov (2008), Uncertainty in time-frequency representations on finite Abelian groups. Appl Comp Harm Analysis, 25(2): 209-225.
  11. F. Krahmer, G.E. Pfander, P. Rashkov (2008), Support size restrictions on time-frequency representations of functions on finite Abelian groups. Proc Appl Math Mech, 8(1): 10825-10826.
  12. F. Krahmer, G.E. Pfander, P. Rashkov (2007), Support size conditions for time-frequency representations on finite Abelian groups. Technical Report No. 13, School of Engineering and Science, Jacobs University, Bremen.
Numerical methods
  1. P. Rashkov (2022), Reduced basis approximation for a spatial Lotka-Volterra model. Mathematics 10(12):1983.
  2. P. Rashkov (2021), A posteriori error analysis for a reduced-basis approximation of two parabolic problems for tumour growth. Научни известия ИМИ-БАН/Scientific Reports of the Institute of Mathematics and Informatics 1/2021, ISSN 1314-541Х (PDF)

Preprints

  1. K. Stoilov, P. Rashkov. Modelling the effects of mobility on malaria control in a two patch system with personal protection measures
  2. S. Sottile, C. Paul, R. Audo, T. Rispens, D. Mulleman, P. Rashkov, Methotrexate's effect on cells and adalimumab immunogenicity in axial spondyloarthritis: a mathematical study
  3. M. Khalighi, L. Lahti, F. Ndaïrou, P. Rashkov, D.F.M Torres, Fractional modelling of COVID-19 transmission incorporating asymptomatic and super-spreader individuals