Limit theorems for subcritical age-dependent branching processes with two types of immigration

G. ALSMEYER 1, M. SLAVTCHOVA-BOJKOVA 2

 1 Institut für Mathematische Statistik Fachbereich Mathematik Westfälische Wilhelms-Universität Münster, Münster, Germany

 2 Department of Operational Research, Probability and Statistics, University of Sofia

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Alsmeyer and Bojkova

Introduction

Notations

Results References

History and related... Model description

Sample Path of BHIO

Sample Path of BHIOR

Home Page

Page 1 of 22

Go Back

Full Screen

Close

Quit

44

••

Limit theorems for subcritical age-dependent branching processes with two types of immigration

G. ALSMEYER 1, M. SLAVTCHOVA-BOJKOVA 2

 1 Institut für Mathematische Statistik Fachbereich Mathematik Westfälische Wilhelms-Universität Münster, Münster, Germany

 2 Department of Operational Research, Probability and Statistics, University of Sofia

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Alsmeyer and Bojkova

Introduction

Notations

Results References

History and related... Model description

Sample Path of BHIO

Sample Path of BHIOR

Home Page

Page 1 of 22

Go Back

Full Screen

Close

Quit

44

••

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIO
Notations
Results
References
Home Page
Title Page
Page 2 of 22
Go Back
Go Dack
Full Screen
Chara
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

The effect of the following two-type immigration pattern is studied.

Sample Path of BHIOR Notations Results References Home Page Title Page •• **▲** ◀ Page 2 of 22 Go Back Full Screen Close Quit

Introduction

History and related . . .

Model description
Sample Path of BHIO

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

The effect of the following two-type immigration pattern is studied.

At a sequence of renewal epochs a random number of immigrants enters the population.

Introduction History and related Model description Sample Path of BHIO Sample Path of BHIOR Notations Results References Home Page Title Page **▲** ◀ Page 2 of 22 Go Back Full Screen Close Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

The effect of the following two-type immigration pattern is studied.

At a sequence of renewal epochs a random number of immigrants enters the population.

Each subpopulation stemming from one of these immigrants or one of the ancestors is revived by new immigrants and their offspring whenever it dies out, possibly after an additional delay period.

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIOR
Notations
Results
References
Home Page
T:// D
Title Page
• •
Page 2 of 22
Go Back
Full Screen
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

The effect of the following two-type immigration pattern is studied.

At a sequence of renewal epochs a random number of immigrants enters the population.

Each subpopulation stemming from one of these immigrants or one of the ancestors is revived by new immigrants and their offspring whenever it dies out, possibly after an additional delay period.

All individuals have the same lifetime distribution and produce offspring according to the same reproduction law. This is the Bellman-Harris process with immigration at zero and immigration of renewal type (BHPIOR). Introduction History and related . . Model description Sample Path of BHIO Sample Path of BHIOR Notations Results References Home Page Title Page **44** •• Page 2 of 22 Go Back Full Screen Close Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

The effect of the following two-type immigration pattern is studied.

At a sequence of renewal epochs a random number of immigrants enters the population.

Each subpopulation stemming from one of these immigrants or one of the ancestors is revived by new immigrants and their offspring whenever it dies out, possibly after an additional delay period.

All individuals have the same lifetime distribution and produce offspring according to the same reproduction law. This is the Bellman-Harris process with immigration at zero and immigration of renewal type (BHPIOR).

We prove a strong law of large numbers and a central limit theorem for such processes.

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Home Page Title Page **44** •• Page 2 of 22 Go Back Full Screen Close Quit Alsmeyer and Bojkova

Introduction

Notations

References

Results

History and related... Model description

Sample Path of BHIO

Sample Path of BHIOR

Similar conclusions are obtained for their discrete-time counterparts (lifetime per individual equals one), called Galton- Watson processes with immigration at zero and immigration of renewal type (GWPIOR).

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIOF
Notations
Results
References
Home Page
Title Page
•• ••
Page 3 of 22
Go Back
Full Screen
Class
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Similar conclusions are obtained for their discrete-time counterparts (lifetime per individual equals one), called Galton- Watson processes with immigration at zero and immigration of renewal type (GWPIOR).

Our approach is based on the theory of regenerative processes, renewal theory and occupation measures and is quite different from those in earlier related work using analytic tools.

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIOR
Notations
Results
References
Home Page
Title Page
Page 3 of 22
Go Back
Full Screen
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIO
Notations
Results
References
Home Page
Title Page
Page 4 of 22
Go Back
Full Screen
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Galton- Watson process with immigration at 0 (Foster-Pakes model)-Foster [4](1971) and Pakes [10–12] (1971, 1972, 1978) Introduction History and related . . . Model description Sample Path of BHIO Sample Path of BHIOR Notations Results References Home Page Title Page **▲** Page 4 of 22 Go Back Full Screen Close Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Galton- Watson process with immigration at 0 (Foster-Pakes model)-Foster [4](1971) and Pakes [10–12] (1971, 1972, 1978)

Bellman-Harris process with immigration at 0 - Mitov and Yanev [9] (1985)

Introduction History and related . . . Model description Sample Path of BHIO Sample Path of BHIOR Notations Results References Home Page Title Page **▲** Page 4 of 22 Go Back Full Screen Close Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Galton- Watson process with immigration at 0 (Foster-Pakes model)-Foster [4](1971) and Pakes [10–12] (1971, 1972, 1978)

Bellman-Harris process with immigration at 0 - Mitov and Yanev [9] (1985)

Continuous-time branching process (Markov case)- Yamazato [18] (1975)

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIOR
Notations
Results
References
Home Page
Title Page
•• ••
Page 4 of 22
Go Back
Full Screen
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Galton- Watson process with immigration at 0 (Foster-Pakes model)-Foster [4](1971) and Pakes [10–12] (1971, 1972, 1978)

Bellman-Harris process with immigration at 0 - Mitov and Yanev [9] (1985)

Continuous-time branching process (Markov case)- Yamazato [18] (1975)

Bellman-Harris process with renewal type immigration - Jagers [6] (1968) and Pakes and Kaplan [13] (1974)

Introduction History and related . . . Model description Sample Path of BHIO Sample Path of BHIOR Notations Results References Home Page Title Page •• 44 Page 4 of 22 Go Back Full Screen Close Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Galton- Watson process with immigration at 0 (Foster-Pakes model)-Foster [4](1971) and Pakes [10–12] (1971, 1972, 1978)

Bellman-Harris process with immigration at 0 - Mitov and Yanev [9] (1985)

Continuous-time branching process (Markov case)- Yamazato [18] (1975)

Bellman-Harris process with renewal type immigration - Jagers [6] (1968) and Pakes and Kaplan [13] (1974)

BHPIOR - Weiner [17] (1991) - critical case

Introduction History and related . . . Model description Sample Path of BHIO Sample Path of BHIOR Notations Results References Home Page Title Page •• 44 Page 4 of 22 Go Back Full Screen Close Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Galton- Watson process with immigration at 0 (Foster-Pakes model)-Foster [4](1971) and Pakes [10–12] (1971, 1972, 1978)

Bellman-Harris process with immigration at 0 - Mitov and Yanev [9] (1985)

Continuous-time branching process (Markov case)- Yamazato [18] (1975)

Bellman-Harris process with renewal type immigration - Jagers [6] (1968) and Pakes and Kaplan [13] (1974)

BHPIOR - Weiner [17] (1991) - critical case

BHPIOR - Slavtchova-Bojkova and Yanev [14] (1994)- non-critical cases

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Galton- Watson process with immigration at 0 (Foster-Pakes model)-Foster [4](1971) and Pakes [10–12] (1971, 1972, 1978)

Bellman-Harris process with immigration at 0 - Mitov and Yanev [9] (1985)

Continuous-time branching process (Markov case)- Yamazato [18] (1975)

Bellman-Harris process with renewal type immigration - Jagers [6] (1968) and Pakes and Kaplan [13] (1974)

BHPIOR - Weiner [17] (1991) - critical case

BHPIOR - Slavtchova-Bojkova and Yanev [14] (1994)- non-critical cases

BHPIOR - Slavtchova-Bojkova (2002) [15] - LLN under stronger conditions and by analytic means

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Introduction History and related . . . Model description Sample Path of BHIO Sample Path of BHIOR Notations Results References Home Page Title Page 44 Page 4 of 22 Go Back Full Screen Close Quit

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIOP
Notations
Results
References
Home Page
Tionie Fage
Title Page
Page 5 of 22
Go Back
Full Screen
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

 $\{Z(t)\}_{t\geq 0}$ be a Bellman-Harris branching process with immigration only in the state zero (BHBPIO) with model parameters an individual lifetime distribution G with G(0) = 0, an offspring distribution $(p_j)_{j\geq 0}$ with p.g.f. f(s), a number of immigrants distribution $(g_j)_{j\geq 0}$ with p.g.f. g(s), a distribution D of the delay times elapsing after extinction epochs before new immigrants enter the population.

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

 $\{Z(t)\}_{t\geq 0}$ be a Bellman-Harris branching process with immigration only in the state zero (BHBPIO) with model parameters an individual lifetime distribution G with G(0) = 0, an offspring distribution $(p_j)_{j\geq 0}$ with p.g.f. f(s), a number of immigrants distribution $(g_j)_{j\geq 0}$ with p.g.f. g(s), a distribution D of the delay times elapsing after extinction epochs before new immigrants enter the population.

The discrete-time variant $(Z(n))_{n\geq 0}$, where $t \in [0,\infty]$ is replaced with $n \in \mathbb{N}_0$, and where $G = \delta_1$ (Dirac measure at 1) and D is a distribution on \mathbb{N}_0 , will be called a Galton-Watson process with immigration at 0 (GWPIO).

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

 ${Z(t)}_{t\geq 0}$ be a Bellman-Harris branching process with immigration only in the state zero (BHBPIO) with model parameters an individual lifetime distribution G with G(0) = 0, an offspring distribution $(p_j)_{j\geq 0}$ with p.g.f. f(s), a number of immigrants distribution $(g_j)_{j\geq 0}$ with p.g.f. g(s), a distribution D of the delay times elapsing after extinction epochs before new immigrants enter the population.

The discrete-time variant $(Z(n))_{n\geq 0}$, where $t \in [0,\infty]$ is replaced with $n \in \mathbb{N}_0$, and where $G = \delta_1$ (Dirac measure at 1) and D is a distribution on \mathbb{N}_0 , will be called a Galton-Watson process with immigration at 0 (GWPIO).

 $Z_{ij} = (Z_{ij}(t))_{t \ge 0}$, $i \ge 0$, $j \ge 1$ - i.i.d. BHPIO with the same model parameters as $\{Z(t)\}_{t \ge 0}$

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIOR
Notations
Results
References
Hama Dama
Home Page
Title Page
44 >>
Page 5 of 22
Fage 5 01 22
Go Back
Full Screen
Close
Quit
4000

 ${Z(t)}_{t\geq 0}$ be a Bellman-Harris branching process with immigration only in the state zero (BHBPIO) with model parameters an individual lifetime distribution G with G(0) = 0, an offspring distribution $(p_j)_{j\geq 0}$ with p.g.f. f(s), a number of immigrants distribution $(g_j)_{j\geq 0}$ with p.g.f. g(s), a distribution D of the delay times elapsing after extinction epochs before new immigrants enter the population.

The discrete-time variant $(Z(n))_{n\geq 0}$, where $t \in [0,\infty]$ is replaced with $n \in \mathbb{N}_0$, and where $G = \delta_1$ (Dirac measure at 1) and D is a distribution on \mathbb{N}_0 , will be called a Galton-Watson process with immigration at 0 (GWPIO).

 $Z_{ij} = (Z_{ij}(t))_{t \ge 0}$, $i \ge 0$, $j \ge 1$ - i.i.d. BHPIO with the same model parameters as $\{Z(t)\}_{t \ge 0}$

 $(\sigma_n)_{n\geq 0}$ - zero-delayed renewal process with increment distribution F

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIOR
Notations
Results
References
Home Page
Title Page
Page <mark>5</mark> of 22
Go Back
Full Screen
Close
Quit

The numbers of immigrants $(Y_n)_{n\geq 1}$ are assumed to be iid r.v.'s with probability generating function (pgf) h(s). The Y_n are supposed to be the numbers of individuals entering the population at times σ_n . A further integer-valued random variable Y_0 gives the number of ancestors of the considered population. It is assumed that σ_n , $(Y_n)_{n\geq 1}$, Y_0 and all Z_{ij} are mutually independent.

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

The numbers of immigrants $(Y_n)_{n\geq 1}$ are assumed to be iid r.v.'s with probability generating function (pgf) h(s). The Y_n are supposed to be the numbers of individuals entering the population at times σ_n . A further integer-valued random variable Y_0 gives the number of ancestors of the considered population. It is assumed that σ_n , $(Y_n)_{n\geq 1}$, Y_0 and all Z_{ij} are mutually independent.

$$N(t) \stackrel{def}{=} \sup\{n : \sigma_n \le t\}$$

the number of renewal events in the sequence $\sigma_n, n = 1, 2, ...$ during the time interval [0, t].

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIOR
Notations
Results
References
Home Page
Title Page
▲ ▶
Page 6 of 22
Go Back
Full Screen
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

A Bellman-Harris process with immigration at zero and immigration of renewal type (BHPIOR) X(t) can be defined as follows

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIOF
Notations
Results
References
Home Page
Title Page
44 >>>
Page 7 of 22
Go Back
Full Screen
Close
Quit
quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

A Bellman-Harris process with immigration at zero and immigration of renewal type (BHPIOR) X(t) can be defined as follows

$$X(t) \stackrel{def}{=} \sum_{i=0}^{N(t)} Z_i(t - \sigma_i), \quad t \ge 0,$$

and

$$Z_i(t) = \sum_{i=0}^{Y_i} Z_{ij}(t), \quad t \ge 0$$

is a BHPIO with Y_i ancestors.

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

A Bellman-Harris process with immigration at zero and immigration of renewal type (BHPIOR) X(t) can be defined as follows

$$X(t) \stackrel{def}{=} \sum_{i=0}^{N(t)} Z_i(t - \sigma_i), \quad t \ge 0,$$

and

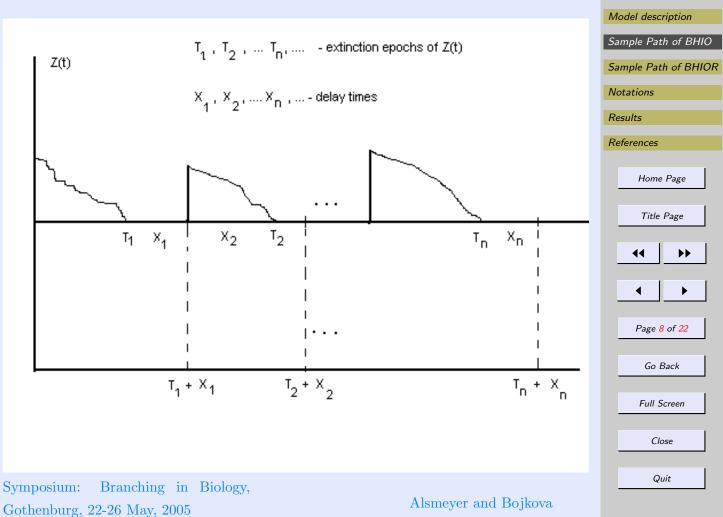
$$Z_i(t) = \sum_{i=0}^{Y_i} Z_{ij}(t), \quad t \ge 0$$

is a BHPIO with Y_i ancestors.

Its discrete time variant, where the Z_i are GWPIO and σ_n forms a discrete renewal process, is called a Galton-Watson process with immigration at zero and immigration of renewal type (GWPIOR).

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

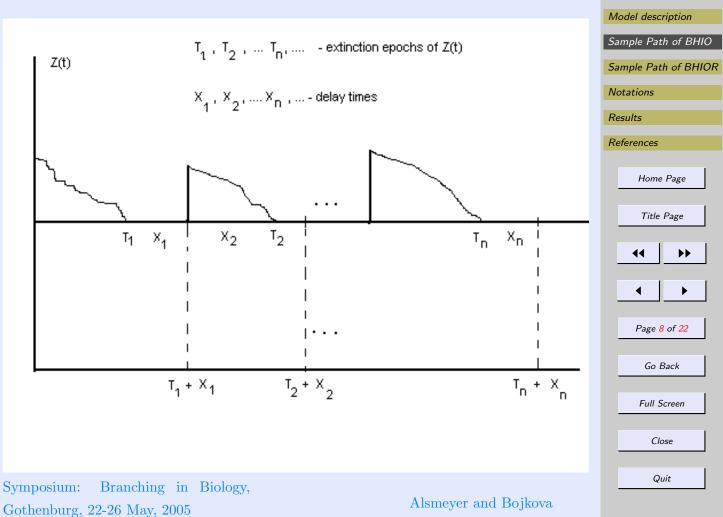
4. Sample Path of BHIO



Introduction

History and related

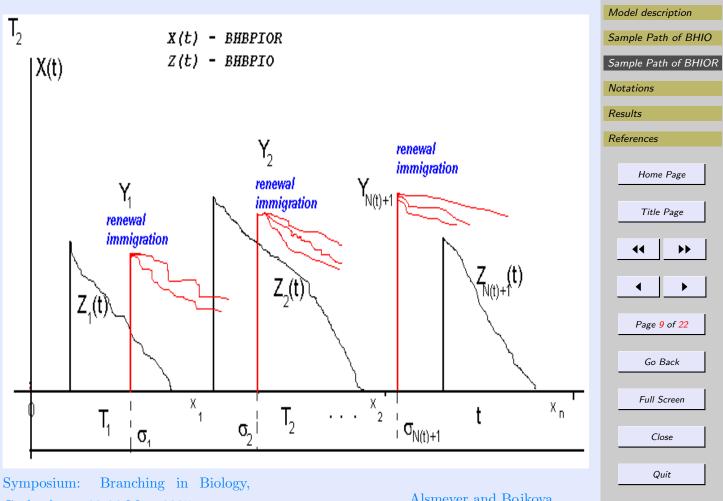
4. Sample Path of BHIO



Introduction

History and related

5. Sample Path of BHIOR



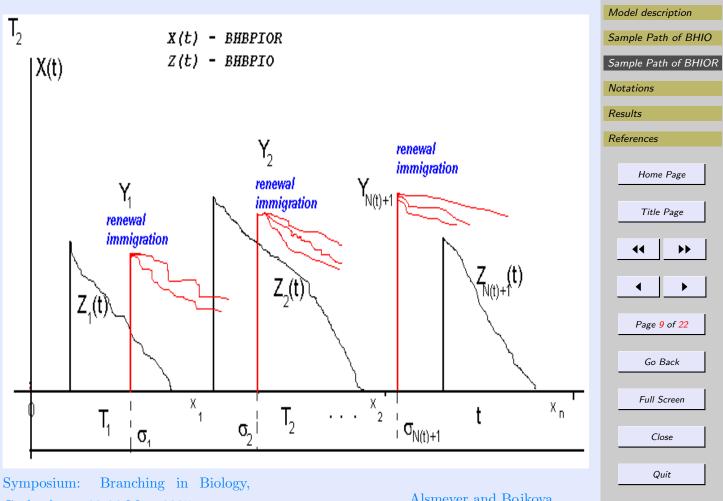
Gothenburg, 22-26 May, 2005

Alsmeyer and Bojkova

Introduction

History and related . . .

5. Sample Path of BHIOR



Gothenburg, 22-26 May, 2005

Alsmeyer and Bojkova

Introduction

History and related . . .

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIO
Notations
Results
References
Home Page
Title Page
Page 10 of 22
Go Back
Full Screen
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

$$m \stackrel{def}{=} \sum_{k \ge 1} k p_k = f'(1), \quad m_G \stackrel{def}{=} \int_0^\infty t dG(t)$$

Introduction History and related . . . Model description Sample Path of BHIO Sample Path of BHIOR Notations Results References Home Page Title Page **▲** ◀ Page 10 of 22 Go Back Full Screen Close Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

$$m \stackrel{def}{=} \sum_{k \ge 1} k p_k = f'(1), \quad m_G \stackrel{def}{=} \int_0^\infty t dG(t)$$

similarly m_F and m_D .

Introduction History and related . . . Model description Sample Path of BHIO Sample Path of BHIOR Notations Results References Home Page Title Page **▲** ◀ Page 10 of 22 Go Back Full Screen Close Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

$$m \stackrel{def}{=} \sum_{k \ge 1} k p_k = f'(1), \quad m_G \stackrel{def}{=} \int_0^\infty t dG(t)$$

similarly m_F and m_D .

Let the *p*th moments of $(p_k)_{k\geq 0}$, *G*, *F*, *D* be denoted as m_p , $m_{G,p}$, $m_{F,p}$ and $m_{D,p}$, respectively.

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

$$m \stackrel{def}{=} \sum_{k \ge 1} k p_k = f'(1), \quad m_G \stackrel{def}{=} \int_0^\infty t dG(t)$$

similarly m_F and m_D .

Let the *p*th moments of $(p_k)_{k\geq 0}$, *G*, *F*, *D* be denoted as m_p , $m_{G,p}$, $m_{F,p}$ and $m_{D,p}$, respectively.

Put $\mathbb{P}_k = \mathbb{P}(.|Z(0) = k)$ for $k \ge 0$ and $\mathbb{P}^* \stackrel{def}{=} \sum_{k\ge 0} g_k \mathbb{P}_k$, so that the initial distribution of $(Z(t))_{t\ge 0}$ under \mathbb{P}^* is $(g_k)_{k\ge 0}$.

Introduction History and related Model description Sample Path of BHIO Sample Path of BHIOR Notations Results References Home Page Title Page **▲** Page 10 of 22 Go Back Full Screen Close Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

$$m \stackrel{def}{=} \sum_{k \ge 1} k p_k = f'(1), \quad m_G \stackrel{def}{=} \int_0^\infty t dG(t)$$

similarly m_F and m_D .

Let the *p*th moments of $(p_k)_{k\geq 0}$, *G*, *F*, *D* be denoted as m_p , $m_{G,p}$, $m_{F,p}$ and $m_{D,p}$, respectively.

Put $\mathbb{P}_k = \mathbb{P}(.|Z(0) = k)$ for $k \ge 0$ and $\mathbb{P}^* \stackrel{def}{=} \sum_{k\ge 0} g_k \mathbb{P}_k$, so that the initial distribution of $(Z(t))_{t\ge 0}$ under \mathbb{P}^* is $(g_k)_{k\ge 0}$.

We will simply write \mathbb{P} in assertions where the distribution of Z(0) does not matter.

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIOR
Notations
Results
References
Hama Dama
Home Page
Title Page
→
• •
Page 10 of 22
Go Back
Full Screen
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

$$m \stackrel{def}{=} \sum_{k \ge 1} k p_k = f'(1), \quad m_G \stackrel{def}{=} \int_0^\infty t dG(t)$$

similarly m_F and m_D .

Let the *p*th moments of $(p_k)_{k\geq 0}$, *G*, *F*, *D* be denoted as m_p , $m_{G,p}$, $m_{F,p}$ and $m_{D,p}$, respectively.

Put $\mathbb{P}_k = \mathbb{P}(.|Z(0) = k)$ for $k \ge 0$ and $\mathbb{P}^* \stackrel{def}{=} \sum_{k\ge 0} g_k \mathbb{P}_k$, so that the initial distribution of $(Z(t))_{t\ge 0}$ under \mathbb{P}^* is $(g_k)_{k\ge 0}$.

We will simply write \mathbb{P} in assertions where the distribution of Z(0) does not matter.

Let T_1 be the first extinction epoch of $(Z(t))_{t\geq 0}$ after 0, defined as

Introduction History and related . . Model description Sample Path of BHIO Sample Path of BHIOR Notations Results References Home Page Title Page **44** Page 10 of 22 Go Back Full Screen Close Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

$$m \stackrel{def}{=} \sum_{k \ge 1} k p_k = f'(1), \quad m_G \stackrel{def}{=} \int_0^\infty t dG(t)$$

similarly m_F and m_D .

Let the *p*th moments of $(p_k)_{k\geq 0}$, *G*, *F*, *D* be denoted as m_p , $m_{G,p}$, $m_{F,p}$ and $m_{D,p}$, respectively.

Put $\mathbb{P}_k = \mathbb{P}(.|Z(0) = k)$ for $k \ge 0$ and $\mathbb{P}^* \stackrel{def}{=} \sum_{k\ge 0} g_k \mathbb{P}_k$, so that the initial distribution of $(Z(t))_{t\ge 0}$ under \mathbb{P}^* is $(g_k)_{k\ge 0}$.

We will simply write \mathbb{P} in assertions where the distribution of Z(0) does not matter.

Let T_1 be the first extinction epoch of $(Z(t))_{t\geq 0}$ after 0, defined as

$$T_1 \stackrel{def}{=} \inf\{t > 0 : Z(t-) > 0, Z(t) = 0\}$$

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

$T_1 \stackrel{def}{=} \inf\{n \ge 1 : Z(n) = 0\}$

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIO
Notations
Results
References
Home Page
Title Page
•• ••
• •
Page 11 of 22
Go Back
Full Screen
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

hing, in Biology in Biology
$$T_1 \stackrel{def}{=} \inf\{n \ge 1 : Z(n) = 0\}$$

 $T_1 \stackrel{def}{=} \inf\{n \ge 1 : Z(n) = 0\}$
 $T_1 \stackrel{def}{=} \inf\{n \ge 1 : Z(n) = 0\}$
 $Hotoduction$
 $Hotoduction$

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

$$T_1 \stackrel{def}{=} \inf\{n \ge 1 : Z(n) = 0\}$$

$$(\widehat{Z}(t))_{t\geq 0} \stackrel{def}{=} (Z(t)\mathbb{I}_{T_1>t})_{t\geq 0}$$

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

$$T_1 \stackrel{def}{=} \inf\{n \ge 1 : Z(n) = 0\}$$

$$(\widehat{Z}(t))_{t\geq 0} \stackrel{def}{=} (Z(t)\mathbb{I}_{T_1>t})_{t\geq 0}$$

$$\Phi(s,t) \stackrel{def}{=} \mathbb{E}_1 s^{\widehat{Z}(t)}$$

- the p.g.f. of $\widehat{Z}(t)$ under \mathbb{P}_1 and

$$m(t) \stackrel{def}{=} \mathbb{E}_1 \widehat{Z}(t)$$

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

$$T_1 \stackrel{def}{=} \inf\{n \ge 1 : Z(n) = 0\}$$

$$(\widehat{Z}(t))_{t\geq 0} \stackrel{def}{=} (Z(t)\mathbb{I}_{T_1>t})_{t\geq 0}$$

$$\Phi(s,t) \stackrel{def}{=} \mathbb{E}_1 s^{\widehat{Z}(t)}$$

- the p.g.f. of $\widehat{Z}(t)$ under \mathbb{P}_1 and

$$m(t) \stackrel{def}{=} \mathbb{E}_1 \widehat{Z}(t)$$

$$\Lambda(t) \stackrel{def}{=} \mathbb{E}^* Z(t) \text{ and } \Lambda_2(t) \stackrel{def}{=} \mathbb{E}^* Z(t)^2.$$

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIOR
Notations
Results
References
Home Page
Title Page
• •
Page 11 of 22
Go Back
Full Screen
Close
Quit

$$T_1 \stackrel{def}{=} \inf\{n \ge 1 : Z(n) = 0\}$$

$$(\widehat{Z}(t))_{t\geq 0} \stackrel{def}{=} (Z(t)\mathbb{I}_{T_1>t})_{t\geq 0}$$

$$\Phi(s,t) \stackrel{def}{=} \mathbb{E}_1 s^{\widehat{Z}(t)}$$

- the p.g.f. of $\widehat{Z}(t)$ under \mathbb{P}_1 and

$$m(t) \stackrel{def}{=} \mathbb{E}_1 \widehat{Z}(t)$$

$$\Lambda(t) \stackrel{def}{=} \mathbb{E}^* Z(t) \text{ and } \Lambda_2(t) \stackrel{def}{=} \mathbb{E}^* Z(t)^2.$$

When moving to the process $(X(t))_{t\geq 0}$ we put $Z(t) \stackrel{def}{=} Z_0(t)$ for $t \geq 0$ and retain the previous notation.

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Introduction	
History and related	
Model description	
Sample Path of BHIO	
Sample Path of BHIO	R
Notations	
Results	
References	
Home Page	
Title Page	
Page 11 of 22	
Go Back	
Full Screen	
Close	
Quit	

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIOI
Notations
Results
References
Home Page
Title Page
Page 12 of 22
Go Back
Full Screen
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Proposition 7.1.

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIOR
Notations
Results
References
Home Page
Title Page
•• ••
• •
Page 12 of 22
Go Back
Full Screen
Close
Quit

Proposition 7.1.

Let $(Z(t))_{t\geq 0}$ be a subcritical BHPIO with arbitrary ancestor distribution, $g'(1) < \infty$, and $m_G < \infty$. Suppose also $m_D < \infty$, and that the convolution G * D is nonarithmetic.

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIOP
Notations
Results
References
Home Page
Title Page
• •
Page 12 of 22
Go Back
Full Screen
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Proposition 7.1.

Let $(Z(t))_{t\geq 0}$ be a subcritical BHPIO with arbitrary ancestor distribution, $g'(1) < \infty$, and $m_G < \infty$. Suppose also $m_D < \infty$, and that the convolution G * D is nonarithmetic.

Then $Z(t) \xrightarrow{d} Z(\infty)$, $t \to \infty$, for an integer-valued random variable $Z(\infty)$ satisfying

Introduction History and related . . Model description Sample Path of BHIO Sample Path of BHIOR Notations Results References Home Page Title Page **44** Page 12 of 22 Go Back Full Screen Close Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Proposition 7.1.

Let $(Z(t))_{t\geq 0}$ be a subcritical BHPIO with arbitrary ancestor distribution, $g'(1) < \infty$, and $m_G < \infty$. Suppose also $m_D < \infty$, and that the convolution G * D is nonarithmetic.

Then $Z(t) \xrightarrow{d} Z(\infty)$, $t \to \infty$, for an integer-valued random variable $Z(\infty)$ satisfying

$$\mathbb{P}(Z(\infty) = n) = \begin{cases} \frac{m_D}{\beta}, & n = 0\\ \frac{1}{\beta} \int_0^\infty \mathbb{P}^*(\widehat{Z}(t) = n) dt, & n \ge 1 \end{cases}$$

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Proposition 7.1.

Let $(Z(t))_{t\geq 0}$ be a subcritical BHPIO with arbitrary ancestor distribution, $g'(1) < \infty$, and $m_G < \infty$. Suppose also $m_D < \infty$, and that the convolution G * D is nonarithmetic.

Then $Z(t) \xrightarrow{d} Z(\infty)$, $t \to \infty$, for an integer-valued random variable $Z(\infty)$ satisfying

$$\mathbb{P}(Z(\infty) = n) = \begin{cases} \frac{m_D}{\beta}, & n = 0\\ \frac{1}{\beta} \int_0^\infty \mathbb{P}^*(\widehat{Z}(t) = n) dt, & n \ge 1 \end{cases}$$

where $\beta \stackrel{def}{=} \mathbb{E}^*T_1 + m_D$ is finite. $Z(\infty)$ has p.g.f.

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Proposition 7.1.

Let $(Z(t))_{t\geq 0}$ be a subcritical BHPIO with arbitrary ancestor distribution, $g'(1) < \infty$, and $m_G < \infty$. Suppose also $m_D < \infty$, and that the convolution G * D is nonarithmetic.

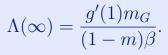
Then $Z(t) \xrightarrow{d} Z(\infty)$, $t \to \infty$, for an integer-valued random variable $Z(\infty)$ satisfying

$$\mathbb{P}(Z(\infty) = n) = \begin{cases} \frac{m_D}{\beta}, & n = 0\\ \frac{1}{\beta} \int_0^\infty \mathbb{P}^*(\widehat{Z}(t) = n) dt, & n \ge 1 \end{cases}$$

where $\beta \stackrel{def}{=} \mathbb{E}^*T_1 + m_D$ is finite. $Z(\infty)$ has p.g.f.

$$\Phi(s,\infty) = \frac{m_D}{\beta} + \frac{1}{\beta} \int_0^\infty (g(\Phi(s,t)) - g(\Phi(0,t))) dt$$

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005



Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIOP
Notations
Results
References
Home Page
Title Page
• •
Page 13 of 22
Go Back
Full Screen
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

$$\Lambda(\infty) = \frac{g'(1)m_G}{(1-m)\beta}$$

Moreover,

$$\lim_{t \to \infty} \mathbb{E}_k Z(t) = \lim_{t \to \infty} \Lambda(t) = \Lambda(\infty)$$

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

$$\Lambda(\infty) = \frac{g'(1)m_G}{(1-m)\beta}$$

Moreover,

$$\lim_{t \to \infty} \mathbb{E}_k Z(t) = \lim_{t \to \infty} \Lambda(t) = \Lambda(\infty)$$

If f''(1), $m_{G,2}$ and $m_{D,2}$ are all finite, then also

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

 $\Lambda(\infty) = \frac{g'(1)m_G}{(1-m)\beta}.$

Moreover,

$$\lim_{t \to \infty} \mathbb{E}_k Z(t) = \lim_{t \to \infty} \Lambda(t) = \Lambda(\infty)$$

If f''(1), $m_{G,2}$ and $m_{D,2}$ are all finite, then also

$$\lim_{t \to \infty} \mathbb{E}_k Z^2(t) = \lim_{t \to \infty} \Lambda_2(t) = \Lambda_2(\infty) \stackrel{def}{=} \mathbb{E} Z^2(\infty)$$

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

 $\Lambda(\infty) = \frac{g'(1)m_G}{(1-m)\beta}.$

Moreover,

$$\lim_{t \to \infty} \mathbb{E}_k Z(t) = \lim_{t \to \infty} \Lambda(t) = \Lambda(\infty)$$

If f''(1), $m_{G,2}$ and $m_{D,2}$ are all finite, then also

$$\lim_{t \to \infty} \mathbb{E}_k Z^2(t) = \lim_{t \to \infty} \Lambda_2(t) = \Lambda_2(\infty) \stackrel{def}{=} \mathbb{E} Z^2(\infty)$$

$$\Lambda_2(\infty) = \frac{g'(1)m_G}{(1-m)\beta} + \frac{1}{\beta} \left(\frac{g'(1)f''(1)}{1-m} + g''(1)\right) \int_0^\infty m^2(t)dt < \infty$$

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIO
Notations
Results
References
Home Page
Title Page
•• ••
Page 14 of 22
Go Back
Full Screen
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Let $(X(t))_{t\geq 0}$ be a subcritical BHPIOR with arbitrary ancestor distribution, $g'(1) < \infty$, $h'(1) < \infty$ and $m_G < \infty$.

Introduction History and related Model description Sample Path of BHIO Sample Path of BHIOR Notations Results References Home Page Title Page **▲** Page 14 of 22 Go Back Full Screen Close Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Let $(X(t))_{t\geq 0}$ be a subcritical BHPIOR with arbitrary ancestor distribution, $g'(1) < \infty$, $h'(1) < \infty$ and $m_G < \infty$.

Suppose also $m_F < \infty$, $m_D < \infty$, and that G * D is nonarithmetic.

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Let $(X(t))_{t\geq 0}$ be a subcritical BHPIOR with arbitrary ancestor distribution, $g'(1) < \infty$, $h'(1) < \infty$ and $m_G < \infty$.

Suppose also $m_F < \infty$, $m_D < \infty$, and that G * D is nonarithmetic.

Then

$$\frac{X(t)}{t} \xrightarrow{\mathbb{P}} \frac{g'(1)h'(1)m_G}{(1-m)m_F\beta}, \quad t \to \infty$$

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIO
Notations
Results
References
Home Page
Title Page
▲ →
Page 15 of 22
Go Back
Full Screen
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Let $(X(t))_{t\geq 0}$ be a subcritical BHPIOR with arbitrary ancestor distribution, $g'(1) < \infty$, $f''(1) < \infty$, $h''(1) < \infty$ and $m_{G,2} < \infty$.

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Let $(X(t))_{t\geq 0}$ be a subcritical BHPIOR with arbitrary ancestor distribution, $g'(1) < \infty$, $f''(1) < \infty$, $h''(1) < \infty$ and $m_{G,2} < \infty$.

Suppose also $m_F < \infty$, $m_{D,2} < \infty$, and that at least one of G or D is spread out.

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Let $(X(t))_{t\geq 0}$ be a subcritical BHPIOR with arbitrary ancestor distribution, $g'(1) < \infty$, $f''(1) < \infty$, $h''(1) < \infty$ and $m_{G,2} < \infty$.

Suppose also $m_F < \infty$, $m_{D,2} < \infty$, and that at least one of G or D is spread out.

Then

$$\frac{X(t) - (N(t) + 1)h'(1)\Lambda(\infty)}{t^{1/2}} \stackrel{d}{\to} N(0, m_F \Xi(\infty)^2)$$

Introduction History and related Model description Sample Path of BHIO Sample Path of BHIOR Notations Results References Home Page Title Page **▲** Page 15 of 22 Go Back Full Screen Close Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Let $(X(t))_{t\geq 0}$ be a subcritical BHPIOR with arbitrary ancestor distribution, $g'(1) < \infty$, $f''(1) < \infty$, $h''(1) < \infty$ and $m_{G,2} < \infty$.

Suppose also $m_F < \infty$, $m_{D,2} < \infty$, and that at least one of G or D is spread out.

Then

$$\frac{X(t) - (N(t) + 1)h'(1)\Lambda(\infty)}{t^{1/2}} \xrightarrow{d} N(0, m_F \Xi(\infty)^2)$$

where

 $\Xi(\infty)^2 \stackrel{def}{=} (h''(1) - h'(1)^2)\Lambda(\infty)^2 + h'(1)(\Lambda_2(\infty) - \Lambda(\infty)^2)$

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Let $(X(t))_{t\geq 0}$ be a subcritical BHPIOR with arbitrary ancestor distribution, $g'(1) < \infty$, $f''(1) < \infty$, $h''(1) < \infty$ and $m_{G,2} < \infty$.

Suppose also $m_F < \infty$, $m_{D,2} < \infty$, and that at least one of G or D is spread out.

Then

$$\frac{X(t) - (N(t) + 1)h'(1)\Lambda(\infty)}{t^{1/2}} \xrightarrow{d} N(0, m_F \Xi(\infty)^2)$$

where

 $\Xi(\infty)^2 \stackrel{def}{=} (h''(1) - h'(1)^2)\Lambda(\infty)^2 + h'(1)(\Lambda_2(\infty) - \Lambda(\infty)^2)$

denotes the variance of $Z^*(\infty)$, the limiting variable of $Z_i(t)$.

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIOR
Notations
Results
References
References
Home Page
Title Page
Page 15 of 22
Go Back
Go Dack
Full Screen
Close
Quit

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIO
Notations
Results
References
Home Page
Title Page
•• ••
• •
Page 16 of 22
Go Back
Full Screen
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Let $(Z(k))_{k\geq 0}$ be a subcritical GWPIO with arbitrary ancestor distribution, $g'(1) < \infty$. Suppose also $m_D < \infty$, and that the convolution $G * D = \delta_1 * D$ is 1-arithmetic.

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Let $(Z(k))_{k\geq 0}$ be a subcritical GWPIO with arbitrary ancestor distribution, $g'(1) < \infty$. Suppose also $m_D < \infty$, and that the convolution $G * D = \delta_1 * D$ is 1-arithmetic.

Then $Z(k) \xrightarrow{d} Z(\infty)$, $t \to \infty$, for an integer-valued random variable $Z(\infty)$ satisfying

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Let $(Z(k))_{k\geq 0}$ be a subcritical GWPIO with arbitrary ancestor distribution, $g'(1) < \infty$. Suppose also $m_D < \infty$, and that the convolution $G * D = \delta_1 * D$ is 1-arithmetic.

Then $Z(k) \xrightarrow{d} Z(\infty)$, $t \to \infty$, for an integer-valued random variable $Z(\infty)$ satisfying

$$\mathbb{P}(Z(\infty) = n) = \begin{cases} \frac{m_D}{\beta}, & n = 0\\ \frac{1}{\beta} \sum_{k \ge 0} \mathbb{P}^*(\widehat{Z}(k) = n), & n \ge 1 \end{cases}$$

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Proposition 7.4.

Let $(Z(k))_{k\geq 0}$ be a subcritical GWPIO with arbitrary ancestor distribution, $g'(1) < \infty$. Suppose also $m_D < \infty$, and that the convolution $G * D = \delta_1 * D$ is 1-arithmetic.

Then $Z(k) \xrightarrow{d} Z(\infty)$, $t \to \infty$, for an integer-valued random variable $Z(\infty)$ satisfying

$$\mathbb{P}(Z(\infty) = n) = \begin{cases} \frac{m_D}{\beta}, & n = 0\\ \frac{1}{\beta} \sum_{k \ge 0} \mathbb{P}^*(\widehat{Z}(k) = n), & n \ge 1 \end{cases}$$

where $\beta = \mathbb{E}^* T_1 + m_D$. $Z(\infty)$ has p.g.f.

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Proposition 7.4.

Let $(Z(k))_{k\geq 0}$ be a subcritical GWPIO with arbitrary ancestor distribution, $g'(1) < \infty$. Suppose also $m_D < \infty$, and that the convolution $G * D = \delta_1 * D$ is 1-arithmetic.

Then $Z(k) \xrightarrow{d} Z(\infty)$, $t \to \infty$, for an integer-valued random variable $Z(\infty)$ satisfying

$$\mathbb{P}(Z(\infty) = n) = \begin{cases} \frac{m_D}{\beta}, & n = 0\\ \frac{1}{\beta} \sum_{k \ge 0} \mathbb{P}^*(\widehat{Z}(k) = n), & n \ge 1 \end{cases}$$

where $\beta = \mathbb{E}^* T_1 + m_D$. $Z(\infty)$ has p.g.f.

$$\Phi(s,\infty) = \frac{m_D}{\beta} + \frac{1}{\beta} \sum_{k \ge 0} (g(\Phi(s,k)) - g(\Phi(0,k)))$$

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Proposition 7.4.

Let $(Z(k))_{k\geq 0}$ be a subcritical GWPIO with arbitrary ancestor distribution, $g'(1) < \infty$. Suppose also $m_D < \infty$, and that the convolution $G * D = \delta_1 * D$ is 1-arithmetic.

Then $Z(k) \xrightarrow{d} Z(\infty)$, $t \to \infty$, for an integer-valued random variable $Z(\infty)$ satisfying

$$\mathbb{P}(Z(\infty) = n) = \begin{cases} \frac{m_D}{\beta}, & n = 0\\ \frac{1}{\beta} \sum_{k \ge 0} \mathbb{P}^*(\widehat{Z}(k) = n), & n \ge 1 \end{cases}$$

where $\beta = \mathbb{E}^* T_1 + m_D$. $Z(\infty)$ has p.g.f.

$$\Phi(s,\infty) = \frac{m_D}{\beta} + \frac{1}{\beta} \sum_{k \ge 0} (g(\Phi(s,k)) - g(\Phi(0,k)))$$

and mean

$$\Lambda(\infty) = \frac{g'(1)}{(1-m)\beta}$$

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

$$\lim_{k \to \infty} \mathbb{E}_j Z(k) = \lim_{k \to \infty} \Lambda(k) = \Lambda(\infty), \quad j \ge 0$$

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIOR
Notations
Results
References
Home Page
Title Page
Page 17 of 22
Go Back
Full Screen
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

$$\lim_{k \to \infty} \mathbb{E}_j Z(k) = \lim_{k \to \infty} \Lambda(k) = \Lambda(\infty), \quad j \ge 0$$

If f''(1) and $m_{D,2}$ are finite, then also

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

$$\lim_{k \to \infty} \mathbb{E}_j Z(k) = \lim_{k \to \infty} \Lambda(k) = \Lambda(\infty), \quad j \ge 0$$

If f''(1) and $m_{D,2}$ are finite, then also

$$\lim_{k \to \infty} \mathbb{E}_j Z^2(k) = \lim_{k \to \infty} \Lambda_2(k) = \Lambda_2(\infty)$$

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIOR
Notations
Results
References
Home Page
Title Page
44 >>
Page 17 of 22
Go Back
Full Screen
Close
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

$$\lim_{k \to \infty} \mathbb{E}_j Z(k) = \lim_{k \to \infty} \Lambda(k) = \Lambda(\infty), \quad j \ge 0$$

If f''(1) and $m_{D,2}$ are finite, then also

$$\lim_{k \to \infty} \mathbb{E}_j Z^2(k) = \lim_{k \to \infty} \Lambda_2(k) = \Lambda_2(\infty)$$

$$\Lambda_2(\infty) = \frac{g'(1)}{(1-m)\beta} + \frac{1}{\beta(1-m^2)} \left(\frac{g'(1)f''(1)}{1-m} + g''(1)\right).$$

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIO
Notations
Results
References
Home Page
Title Page
Page 18 of 22
Go Back
Full Screen
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Let $(X(k))_{k\geq 0}$ be a subcritical GWPIOR with arbitrary ancestor distribution, $g'(1) < \infty$, $h'(1) < \infty$.

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Let $(X(k))_{k\geq 0}$ be a subcritical GWPIOR with arbitrary ancestor distribution, $g'(1) < \infty$, $h'(1) < \infty$.

Suppose also $m_F < \infty$, $m_D < \infty$, and that G * D is 1- arithmetic.

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Let $(X(k))_{k\geq 0}$ be a subcritical GWPIOR with arbitrary ancestor distribution, $g'(1) < \infty$, $h'(1) < \infty$.

Suppose also $m_F < \infty$, $m_D < \infty$, and that G * D is 1- arithmetic.

Then

$$\frac{X(t)}{t} \xrightarrow{\mathbb{P}} \frac{g'(1)h'(1)}{(1-m)m_F\beta}, \quad t \to \infty$$

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIOR
Notations
Results
References
Home Page
Title Page
•• ••
• •
Page 18 of 22
Go Back
Full Screen
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Let $(X(k))_{k\geq 0}$ be a subcritical GWPIOR with arbitrary ancestor distribution, $g'(1) < \infty$, $h'(1) < \infty$.

Suppose also $m_F < \infty$, $m_D < \infty$, and that G * D is 1- arithmetic.

Then

$$\frac{X(t)}{t} \xrightarrow{\mathbb{P}} \frac{g'(1)h'(1)}{(1-m)m_F\beta}, \quad t \to \infty$$

as $t \to \infty$ through the integers.

Introduction History and related Model description Sample Path of BHIO Sample Path of BHIOR Notations Results References Home Page Title Page **▲** Page 18 of 22 Go Back Full Screen Close Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIO
Notations
Results
References
United Dama
Home Page
Title Page
Page 19 of 22
Go Back
Full Screen
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Let $(X(k))_{k\geq 0}$ be a subcritical GWPIOR with arbitrary ancestor distribution, $g'(1) < \infty$, $f''(1) < \infty$, $h''(1) < \infty$.

Introduction History and related Model description Sample Path of BHIO Sample Path of BHIOR Notations Results References Home Page Title Page **▲** Page 19 of 22 Go Back Full Screen Close Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Let $(X(k))_{k\geq 0}$ be a subcritical GWPIOR with arbitrary ancestor distribution, $g'(1) < \infty$, $f''(1) < \infty$, $h''(1) < \infty$.

Suppose also $m_F < \infty$, $m_{D,2} < \infty$, and that G * D is 1-arithmetic.

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Let $(X(k))_{k\geq 0}$ be a subcritical GWPIOR with arbitrary ancestor distribution, $g'(1) < \infty$, $f''(1) < \infty$, $h''(1) < \infty$.

Suppose also $m_F < \infty$, $m_{D,2} < \infty$, and that G * D is 1-arithmetic.

Then

 $\frac{X(t) - (N(t) + 1)h'(1)\Lambda(\infty)}{t^{1/2}} \xrightarrow{d} N(0, m_F \Xi(\infty)^2)$

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Let $(X(k))_{k\geq 0}$ be a subcritical GWPIOR with arbitrary ancestor distribution, $g'(1) < \infty$, $f''(1) < \infty$, $h''(1) < \infty$.

Suppose also $m_F < \infty$, $m_{D,2} < \infty$, and that G * D is 1-arithmetic.

Then

$$\frac{X(t) - (N(t) + 1)h'(1)\Lambda(\infty)}{t^{1/2}} \xrightarrow{d} N(0, m_F \Xi(\infty)^2)$$

as $t \to \infty$ through the integers.

Introduction History and related Model description Sample Path of BHIO Sample Path of BHIOR Notations Results References Home Page Title Page **▲** Page 19 of 22 Go Back Full Screen Close Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

8. References

1. Asmussen, S. Applied Probability and Queues; Wiley: New York, NY, 1987.

2. Athreya, K.B.; Ney, P. Branching Processes; Springer: New York, NY, 1972.

3. Bauer, H. Mass- und Integrationstheorie (2. Ed.); De Gruyter: Berlin, Germany, 1992.

4. Foster, J.H. A limit theorem for a branching process with statedependent immigration. Ann. Math. Statist. 1971, 42, 1773–1776.

5. Gut, A. Stopped Random Walks. Limit Theorems and Applications; Springer: New York, NY, 1988.

6. Jagers, P. Age-dependent branching processes allowing immigration. Theory Probab. Appl. 1968, 13, 225–236.

7. Kallenberg, O. Foundations of Modern Probability (2nd Ed.); Springer: New York, NY, 2002.

8. Lindvall, T. Lectures on the Coupling Method; Wiley: New York, NY, 1992.

9. Mitov, K.V.; Yanev, N.M. Bellman-Harris branching processes with state-dependent immigration. J. Appl. Probab. 1985, 22, 757–765.

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIOR
Notations
Results
2.4
References
Home Page
Title Page
44 >>
Page 20 of 22
Go Back
Full Screen
Close
Quit

8. References

1. Asmussen, S. Applied Probability and Queues; Wiley: New York, NY, 1987.

2. Athreya, K.B.; Ney, P. Branching Processes; Springer: New York, NY, 1972.

3. Bauer, H. Mass- und Integrationstheorie (2. Ed.); De Gruyter: Berlin, Germany, 1992.

4. Foster, J.H. A limit theorem for a branching process with statedependent immigration. Ann. Math. Statist. 1971, 42, 1773–1776.

5. Gut, A. Stopped Random Walks. Limit Theorems and Applications; Springer: New York, NY, 1988.

6. Jagers, P. Age-dependent branching processes allowing immigration. Theory Probab. Appl. 1968, 13, 225–236.

7. Kallenberg, O. Foundations of Modern Probability (2nd Ed.); Springer: New York, NY, 2002.

8. Lindvall, T. Lectures on the Coupling Method; Wiley: New York, NY, 1992.

9. Mitov, K.V.; Yanev, N.M. Bellman-Harris branching processes with state-dependent immigration. J. Appl. Probab. 1985, 22, 757–765.

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIOR
Notations
Results
2.4
References
Home Page
Title Page
44 >>
Page 20 of 22
Go Back
Full Screen
Close
Quit

10. Pakes, A.G. A branching process with a state-dependent immigration component. Adv. Appl. Probab. 1971, 3, 301–314.

11. Pakes, A.G. Limit theorems for an age-dependent branching process with immigration. Math. Biosci. 1972, 14, 221–234.

12. Pakes, A.G. On the age distribution of a Markov chain. J. Appl. Probab. 1978, 15, 65–77.

13. Pakes, A.G.; Kaplan, N. On the subcritical Bellman-Harris process with immigration. J. Appl. Probab. 1974, 11, 652–668.

14. Slavtchova-Bojkova, M. On the subcritical age-dependent branching process with two types of immigration. In Proc. 31st Spring Conf. of the Union of Bulgarian Mathematicians; Borovets; 2002, 187–191.

15. Slavtchova-Bojkova, M.; Yanev, N.M. Non-critical branching processes with two types of statedependent immigration. Comptes Rend. de l'Acad. Bulgar. des Sc. 1994, 47, 13–16.

16. Thorisson, H. Coupling, Stationarity, and Regeneration; Springer: New York, NY, 2000.

17. Weiner, H. Age dependent branching processes with two types of immigration. J. Inform. Optim. Sci. 1991, 12, 207–218.

18. Yamazato, M. Some results on continuous-time branching processes with state-dependent

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIOR
Notations
Results
References
Home Page
Title Page
Page 21 of 22
Go Back
Full Screen
<i>a</i> , 1
Close
Quit
Quit

10. Pakes, A.G. A branching process with a state-dependent immigration component. Adv. Appl. Probab. 1971, 3, 301–314.

11. Pakes, A.G. Limit theorems for an age-dependent branching process with immigration. Math. Biosci. 1972, 14, 221–234.

12. Pakes, A.G. On the age distribution of a Markov chain. J. Appl. Probab. 1978, 15, 65–77.

13. Pakes, A.G.; Kaplan, N. On the subcritical Bellman-Harris process with immigration. J. Appl. Probab. 1974, 11, 652–668.

14. Slavtchova-Bojkova, M. On the subcritical age-dependent branching process with two types of immigration. In Proc. 31st Spring Conf. of the Union of Bulgarian Mathematicians; Borovets; 2002, 187–191.

15. Slavtchova-Bojkova, M.; Yanev, N.M. Non-critical branching processes with two types of statedependent immigration. Comptes Rend. de l'Acad. Bulgar. des Sc. 1994, 47, 13–16.

16. Thorisson, H. Coupling, Stationarity, and Regeneration; Springer: New York, NY, 2000.

17. Weiner, H. Age dependent branching processes with two types of immigration. J. Inform. Optim. Sci. 1991, 12, 207–218.

18. Yamazato, M. Some results on continuous-time branching processes with state-dependent

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

Introduction
History and related
Model description
Sample Path of BHIO
Sample Path of BHIOR
Notations
Results
References
Home Page
Title Page
Page 21 of 22
Go Back
Full Screen
<i>a</i> , 1
Close
Quit
Quit

THANK YOU FOR YOUR ATTENTION !!!

Introduction
History and related
Model description
Sample Path of BHIC
Sample Path of BHIO
Notations
Results
References
Home Page
Title Page
•• ••
Page 22 of 22
Go Back
Full Screen
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005

THANK YOU FOR YOUR ATTENTION !!!

Introduction
History and related
Model description
Sample Path of BHIC
Sample Path of BHIO
Notations
Results
References
Home Page
Title Page
•• ••
Page 22 of 22
Go Back
Full Screen
Close
Quit

Symposium: Branching in Biology, Gothenburg, 22-26 May, 2005