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1 Abstract

In general, the model originates from the problem of estimating the wait-
ing time to a successful experiment in the purifying process of industrial
wasted water, treated by bacterial culture systems. By ”successful experi-
ment” we mean the event when the certain type of bacterial population is
adjusted to the media, so that is spreading out in this environment. We
present an age-dependent branching model with immigration and theoreti-
cally analyze how one can extract exact information about some important
characteristics of this model, as the mean reproduction and total progeny.
On the other hand, using that model, we treat the problem of inference from
expected waiting times and expected progeny on the fertility rates. This pol-
icy performs a comparison between different reproduction laws of bacteria
and aims to show that the inference is not depending on the exact distrib-
ution law. Simulations were made for some reproduction laws and different
reproduction means. These models depict accurately the actual problems
in practice, because of the uncertainties associated with the conditions and
measurements.

Key words: Bellman-Harris branching process, generating functions, cycle
length, total progeny, reproduction mean, statistical inference, extinction
bias, simulation

2 Introduction

The goal of the paper is to explain some phenomena arising in the biolog-
ical treatment of wasted water by cells feeding on a substrate in a bio-reactor
and give answer to questions which might be of interest for bio-technologists
and environmentalists.
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First, how long does take the final establishment of bacterial cultures in
wasted water laboratory experiments? As there is always a positive prob-
ability of extinction, it is possible to have several unsuccessful trials before
the bacterial cultures start to grow irreversibly.

Secondly, what conclusions one can draw from an early extinction of a
bacterial culture in different types of wasted water? Does it imply that the
offspring mean in these environments is low? Similarly, our study might help
decision-makers to take a choice based on comparative laboratory results in
similar wasted water cultivated with different bacterial strains. In general,
such questions related to real world problems of industrial wasted water
treatment are hard to answer. One of the major reasons for this difficulty
is that the circumstances under which the experiments are made in natural
and artificial basins, like lagoons, ponds and lakes, are not always the same.

In general, one of the best features of branching processes is that the exact
theoretical results have a natural interpretation and can be directly used for
numerical and simulation studies. We present an age-dependent branching
model with immigration and the main idea is to point out that the duality
between super-critical and sub-critical branching processes given extinction
can make decision- makers take the wrong decision.

We would like to point out that in the discrete-time case, the problem
concerning the total progeny was investigated by several authors ( Jagers
(1975), p. 39; Harris (1989), p. 32), however, their main interest is focused
on questions of rates of growth, and this conditioned on survival. Karlin and
Tavaré (1982) studied the asymptotic behavior of the probabilities of hitting
the absorbing states, the times needed to hit these states, and the conditional
distributions of the number of particles (for models allowing catastrophes).

The problem of inference from expected waiting times and expected progeny
on fertility rates, was first treated by Bruss and Slavtchova-Bojkova (1999).
They studied the simple case, in which all newly introduced populations
are supposed to behave like independent identically distributed (i.i.d.) Bi-
enaymé-Galton-Watson branching processes. As an example they provided
population experiments with trout. Later on, Slavtchova-Bojkova (2000) the-
oretically generalized these results in continuous time, i.e. when the newly in-
troduced populations are supposed to be Bellman-Harris branching processes,
and proved that the results of inference remain valid. It is interesting to see
how the duality is applied in a concrete application where it appears in a
natural way.

Concerning the computation procedures, Jacobson (1985) was carried out
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a numerical investigation of the rate of convergence of the extinction probabil-
ity for a discrete-time age-dependent branching process. The most significant
result illustrated by his simulations was the long tail of the distribution of
life period for the case where the mean number of offspring was 1, as opposed
to the quick convergence for the other runs.

The main goal of the present paper is to emphasize on the independence
of inference on fertility rates from the reproduction law of the particles,
provided extinction is observed. Simulation studies are also presented, cor-
responding to the binary, Poisson and geometric reproduction laws. Since
Powell (1955) found that the life-period of bacteria follows a gamma distribu-
tion, and reproduction at death is characteristic of bacteria-like organisms, a
discretized gamma density was used for all simulations. What is in common
for the three cases is that conditioning on extinction makes sub-critical and
super-critical processes undistinguishable.

We discuss an example of ”extinction bias” which may mislead decision-
makers in cultivation experiments.

3 Model Formulation

We will first outline an age-dependent branching process with immi-
gration in the state zero. Consider a population process starting at time
0 with a single progenitor of age 0 whose life-length τ has distribution
G(t) = P (τ ≤ t), G(0+) = 0. With probability pk, k ≥ 0 it produces at
the end of its life k similar individuals (of age 0 , with the same life-length τ
and reproduction distribution, (pk,

∑∞
k=0 pk = 1. The probability generating

function (p.g.f.) of the number of ξ offspring is denoted by

f(s) =
∞∑

k=0

pks
k, |s| ≤ 1, pk = P (ξ = k).

Provided that there is at least one offspring, the death-and-reproduction
process is repeated, and continues as long as individuals exist.

Let Z̃(t) be the number of individuals existing in the population at time
t or the state of the process (Z̃(t))t≥0 at time t. Note that a line becomes
extinct once Z̃(t) = 0 for some t (and for all t thereafter), and that the
above process is ”age-dependent” in the sense that the probability that an
individual living at time t dies in the interval (t, t + dt) is, in general, a non-
constant function of t. The process (Z̃(t)) is the so-called Bellman-Harris
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branching process (see, for example, Athreya and Ney (1972), pp. 137-144).
Every time the process (Z̃(t)) hits the state zero-state we suppose to have an
immigration of one particle from an outside source. With (Z(t))t≥0 we shall
denote the process with immigration in the state zero. Foster (1971) and
Pakes (1971, 1975) first studied the discrete-time version of these processes.

For a branching process with immigration (Z(t))t≥0 we call life periods
(cycles) the intervals (t0, t0+T ) of maximal length on which inft0≤t≤t0+T Z(t) >
0. Thus (Z(t)) may have several life-periods, the last one always being infi-
nite, provided the process is supercritical. If the process is sub-critical it will
have almost surely (a.s.) infinitely many life periods.

We are interested in the last instant M of immigration, i. e. in the ”birth
time” of that process which will finally survive forever. Specifically, we shall
derive the conditional distribution of the length T of the first life period and
the conditional expectation of T , both conditioned on the event. T <∞.

4 Preliminary Results

It is well known from the theory of branching processes (see e. g. Athreya
and Ney (1972), pp. 139-144) that the probability q of eventual extinction
of Bellman-Harris process (Z̃(t)) is the smallest non-negative root of the
equation f(s) = s, and q = 1 ⇐⇒ m = f ′(1) ≤ 1. The parameter m is
called the reproduction mean, and the super-critical, critical and sub-critical
cases correspond to the relations m > 1, m = 1 and m < 1, respectively.
Thus before one attempts to find the smallest root of the above equation,the
expected number should first be computed.

Although the probability of eventual extinction can be calculated easily
using above equations, more interesting studies concern the probability of
extinction at or by a certain time and how quickly the later probabilities ap-
proach the theoretical extinction probability. Let l be the maximum number
of offspring an individual can have, r be the greatest age an individual can
live to, and g(.) be the mortality density. There are two mutually exclusive
ways a trajectory can become extinct by time t: the progenitor dies by time
t with probability 1−G(t) and leaves no offspring, or the progenitor dies at
time 1 ≤ s < t with probability g(s), having had 1 ≤ k ≤ l offspring and
each of the k offspring’ lines becomes extinct by time t. If F (t) denotes the
probability of extinction by time t one obtains

F (t) = p0G(t) +
∑(

s=1 t− 1)
∑l

k=1 pkF
k(t− s)g(s)
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If t > r, (1) becomes F (t) = p0 +
∑r

s=1

∑l
k=1 pkF

k(t− s)g(s)
since G(t) = 1 for t ≥ r. Note that the scheme for computing F (t) is

recursive.
Let T1, T2, . . . be the lengths of the life periods of those consecutive

processes dying out before the surviving process is initiated (i. i. d. copies
of the r. v. T ).

Let v(t) = P (T ≤ t).
The following result is used for the computation of the conditional dis-

tribution of the length of a life cycle, its conditional expectation (given ex-
tinction) and the expectation of the total length of unsuccessful life cycles.
The length T of the life-period and the last instant M of immigration of the
process (Z(t)) have the following properties:

P (T ≤ t|T <∞) =
v(t)

q
,

t > 0, v(0) = P (Z(0) = 0) = 0,where q is the probability of eventual
extinction of the Bellman-Harris process (Z̃(t));

E(T |T <∞) = 1
q

∫ ∫
∞ 0( 2)

E(M) = q
(1−q)

E(T |T <∞).( 3)

The proofs of (2) and (3) could be seen in Slavtchova-Bojkova (2000).

5 Numerical results

To study the implications of the above equations for extinction proba-
bilities we use Mapple 6. Nine computer simulations were then made with
extinction probabilities up to 150 generations.

In Figure 1 one can see the results based on the binary reproductive rule
(either zero or two offspring at death), with mean offspring of 0,5, 1, 1,5,
both conditioned and unconditional. The results based on a Poisson and
geometrical reproduction laws, again with mean offspring of 0,5, 1, 1,5 in
both cases are presented in Figure 2.and Figure 3, respectively.

The most significant result shown in the graphs is that for super- and
sub-critical branching models the conditional distributions of the life cycle
given extinction coincide. The reason is explained in the next paragraph.

5



Figure 1. Conditional and unconditional extinction probabilities with
binary reproduction law.

Figure 2. Conditional and unconditional extinction probabilities with
Poisson reproduction law.

Figure 3. Conditional and unconditional extinction probabilities with
geometric reproduction law.
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6 Discussion

One must be careful not to draw hasty conclusions after failed experi-
ments. To be specific, suppose that three different types of bacteria (α, β, γ,
say) were introduced in similar wasted water and that each of these seems to
have disappeared after some time, but that the α-type strains were reported
in highest numbers or over the largest period of time. Is it then most promis-
ing to continue with α-type bacteria for a new experiment? The frequency
of reports must be thought of as being positively correlated with the total
progeny and the later with the reproduction mean of that bacterial culture.
However such a conclusion would be erroneous. It is the number of times the
process becomes extinct before it grows irreversibly, that will help to decide
if the process is sub- or supercritical.

7 Conclusion

Extinction entails a very strong bias. If a decision maker decides to try
again with that strains (α-type) which seems to have been best adapted so far
he may exclude those strains with a much higher fertility rate m. The point is
that he has to take that decision after extinction. It is simply very improbable
that a process with a ”comfortable” mean m > 1 would die out late. The
higher the mean of a population the more probable it becomes that this
population would, after extinction, be excluded from further experiments.

We conclude that the problem is of a greater significance that it might ap-
pear at the first sight. Independent control studies to assess prior probability
of extinction are likely to be environment-bias.

8 Acknowledgements

This paper was partially supported by NSFI-Bulgaria, Grant No MM-
1101/01.

7



9 References

Athreya, K. and Ney, P.(1972): Branching Processes. Springer Verlag,
Berlin, 287 pp.

Bruss, F. T. and Slavtchova-Bojkova, M.(1999): On waiting times to
populate an environment and a question of statistical inference. J. Appl.
Probab., v. 36, 261-267.

Foster, J. H.(1971): A limit theorems for a branching process with state-
dependent immigration. Ann. Math. Stat.,v. 42, 1773-1776.

Harris, T. (1989): The Theory of Branching Processes. Dover Publica-
tions Inc., New York, 230 pp.

Jacobson, M. E.(1985): Computation of Extinction Probabilities for the
Bellman-Harris Branching Processes. Math. Biosci., v. 77, 173 - 177.

Jagers, P.(1975): Branching Processes with Biological Applications. Wi-
ley, 268 pp.
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