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Abstract. We apply new methods based on Partial Differential Equa-
tions techniques (polysplines) to the visualization of the heart surface.

A Introduction

A.1 The Medical Perspective

There is considerable effort in the area of medical imaging to capture and anal-
yse the motion of the heart, using a variety of imaging techniques, e.g. X-ray
Computed Tomography (CT) or Magnetic Image Resonancing (MRI). Because of
the complicated motion of the heart and the fact that its surface is deformable,
interpreting and analysing image data in order to deduce the underlying motion
is not straight-forward and most approaches to the problem are model-based.
For example simple shapes such as spheres, ellipsoids, or cylinders are sometimes
used to approximate the shape of the Left Ventricle (LV) [2,4,15]. Recently tech-
niques based on the usage of deformable models for reconstructing the 3D surface
shape and motion of the LV from CT or MRI data have been developed (e.g.
[1,7,13,17,18,23,20]). They use a variety of physics-based or geometrical tech-
niques to model the rigid and non-rigid motion of the ventricles (usually the
left).
There are two common approaches to modelling the shape of the ventricles. The
first aims to construct a generic parametric model to describe the main features
of the heart’s shape during the cardiac cycle, whilst the second uses MRI scan
data to construct a more accurate, and hence more complex, patient-specific
model.
The latter approach has been used by Taylor and Yamaguchi [37], Park et al.
[21] and Haber et al. [12] amongst others. While these techniques can provide
good approximations to the actual geometry in an individual case, a general
investigation into the effects of modifications to the shape can be more difficult
to perform, due to the large amounts of data typically involved in describing the
surface.
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With regard to the former approach, that is to create a generic representation
of the heart, the work of Peskin and McQueen [24] is some of the most advanced
to date. Their model encompasses both ventricles and atria and also the major
arteries connected to the heart. They build up the heart surface by specifying
the position of muscle fibres in the heart walls which are connected to the fluid
flow using their Immersed Boundary Method. Yoganathan et al. [39] have also
adapted Peskin’s method to study a thin-walled LV during early systole. The
computational time required to perform these calculations, however, makes it
difficult to conduct general investigations into different aspects of the motion so
other work has used greatly simplified generic ventricle geometry to look at the
effects of disease upon the fluid flow in the heart. For example Schoephoerster
[28] uses a spherical LV to examine the effects of abnormal wall motion on the
flow dynamics.

Other work of note that attempts to combine a geometric model of the heart and
its structure with a biomechanical model of its functionality, is that of Ayache
and coworkers, who create a volumetric mesh of the ventricles and couple this
with electrical and biomechanical models of its functionality, e.g. [29,30,31,3,32].

The aim of the work described here is to create a parametric model of the
ventricles of the heart which lies in between the above extremes. Parametric
in this sense means that the geometry is defined by a set of ’shape’ or ’design’
parameters and can be altered by varying these numbers in a controlled way. The
work uses a new flexible method for Computer Aided Geometric Design (CAGD)
which is based on application of Partial Differential Equations techinques.

Let us stress at this early point of our exposition that the surfaces which we use
for representing the heart are interpolating the scanned data and are obtained
by a variational principle – by minimization of a curvature functional (to be
more precise, the functional is very close to the curvature functional). As such
they are in a certain sense surfaces of minimal curvature.

A.2 The Geometric Design Perspective

In order to better explain the apparatus which we use for modelling the heart
geometry, let us make a brief account of its history.

The application of Partial Differential Equations to analyzing and visualizing
data has a rather long history. In the late fifties–early sixties, harmonic func-
tions have been used for interpolation of data (for modelling the shape of the
cars, aircrafts, etc.) – the basis for using harmonic functions was the existence of
analog devices which were able to quickly compute the values of physical quan-
tities which are expressed as harmonic functions3, in fact they were much faster
than digital computations. However, there was not enough smoothness and flex-
ibility of the harmonic functions as it was clear that only problems of Dirichlet
type are in fact soluble in a ’stable way’. Later on with the development of the
digital computers there was no need to apply analog devices, and conventional

3 See more on that in [10, p. 5 top and p. 9 top].
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splines (piecewise polynomial) have taken over in popularity as tools for data
interpolation and approximation.
A drawback of such methods is that piecewise polynomial splines (and every
kind of simpler objects) need, in general, the data to interpolated to be arranged
in a special geometry. On the other hand, data from real applications such as
Geophysics, often involve huge amounts of data scattered in an unstructured way.
For this reason several methods appeared over the years for handling such data.
Some of them are closely related to Partial Differential Equations. One of the
first, and nowadays very popular method, is the so–called Minimum curvature
method, see Briggs [6], which is a solution of a minimization problem. Namely,
suppose that we are given some measurements cj at data points (xj , yj) for
j = 1, 2, ..., N, in a plane domain D, see Figure 1.
Then the problem of finding the surface of minimum curvature may be formu-
lated as follows: Find a surface f (x, y) which satisfies

f (xj , yj) = cj for j = 1, 2, ..., N,

and which has minimum curvature in the differential–geometric sense of the
word. Since the exact expression for the curvature is rather complicated, one
takes the expression ∆f (x, y) to be a relatively good approximation to it. Or
written more precisely, we have the following extremal problem,





inff

∫
D

[∆f (x, y)]
2
dxdy

f (xj , yj) = cj for j = 1, 2, ..., N,
and some boundary condition for f on ∂D.

(1)

There are very efficient algorithms for solving such problems and the results
obtained are rather satisfactory for the purposes of Geophysics; see [6] as an
initial reference, and for more recent account of these methods see [11], [34]. Let
us mention that another method called ”Kriging” has appeared about the same
time, see the package ”Surfer” for a software implementation of these and other
algorithms, [35].
In the mid–seventies, the ultimate generalization of the above approach was ob-
tained in the works of Duchon [8] and Meinguet [19]. They laid the mathematical
foundation of a new area called nowadays Radial Basis Functions. This direction
has developed theoretically as well as practically, see the survey papers [25] and
[9]. Let us note that the above methods have some drawbacks in analyzing huge
amounts of data which have points of concentration (in the mathematical sense
of this word), in particular if the data are densely located on some curves. Their
computation is based on solving large linear systems, and with increasing the
number of data points the condition number becomes very small. Their major
drawback for the purposes of CAGD is that the surfaces which they create show
some artificial oscillations (called ”pockmarks” by the geophysicists) occurring
mainly near the data points.
Parallel to the above development, during the last decade new interest has ap-
peared towards methods based on Partial Differential Equations in Approxi-
mation Theory, Spline Theory and especially in CAGD, see [5]. In these new
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Fig. 1. Scattered data in a plane domain.

methods solutions of PDEs are used for interpolation and approximation of the
measured data. As an alternative to the ”classical” spline theory which relies
upon polynomials a new method has appeared which relies upon solutions of
PDEs, see [16]. It is based on the minimum curvature functional but has a dif-
ferent concept of the data. The polysplines are a solution of a problem similar
to the one in (1) but the data (when we consider the two–dimensional case) are
lying on a set of curves, see e.g. the geometrical configuration on Figure 2.

We will assume throughout the present paper that the exterior–most curve ΓN

is the boundary of the domain D, i.e. ∂D = ΓN . Let us note that the domain D
may be unbounded and the curve ΓN may consist of several disconnected pieces.

In the above setting, the polysplines are a solution to the following problem





inff

∫
D

[∆f (x, y)]
2
dxdy

f (x, y) = gj on Γj for j = 1, 2, ..., N,
and some boundary condition for f on ∂D.

(2)

Here the ”data functions” gj are prescribed on the curves Γj .

The theory of polysplines has been extensively studied in the recent monograph
[16]. The polysplines have proved to be efficient for smoothing data in Mag-
netism, in Geophysics, as well as for application to a number of CAGD data, in
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Fig. 2. The data are lying on the curves Γj . They are considered to be ”scat-
tered”.

particular in cases where the data curves have rather irregular form, see Chapter
6 of [16].

The present paper is devoted to the application of the polysplines to heart data.
These data are measured by scanning the surface of the heart at different levels,
i.e. for different z in the three dimensional coordinates (x, y, z). In the data
available we have measurements at 7 different levels, i.e. for z = Z1, Z2, ..., Z7.
The main point is to extend these scanned data and to create a visualization
of the heart (the left ventricle) as well as to observe the dynamics of the heart
activity by creating its form at different phases. The data used in this paper has
been extracted from MRI images of horizontal sections through a human heart
taken at various stages in the cardiac cycle.4

The method which we introduce below is applicable to more general situations
when the data measured need not to be at the same level in the z direction.

4 The data used supplied by the Department of Medical Physics at Leeds General
Infirmary.
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B Introduction of Appropriate Coordinates for the Heart
Surface

In the present Section we discuss the introduction of appropriate coordinates in
which the surface of the heart is conveniently represented5. We will see that in
these new coordinates the part of the heart surface of interest (LV ) becomes
a function on a cylinder. The scanned data will be respectively the sections at
some levels of this surface. Thus we will be able to apply to this ”heart surface
function” the ready–made device called ”polysplines on cylinder”.6

We assume that all sectional curves Gj (which are closed curves) are made in
the z direction at the level z = Zj for j = 1, 2, ...N, where

Z1 < Z2 < . . . < ZN .

In all data available we have in particular

Z1 = 0.00, Z2 = 0.01, Z3 = 0.02,

Z4 = 0.03, Z5 = 0.04, Z6 = 0.05,

Z7 = 0.07.

On the next Figure 3 we have a picture showing the projections of the 7 curves
on the (x, y) plane for Phase 2 of the heart dynamics (needless to say these
curves and their projections vary with the phases).
Further we make the assumption that all curves Gj are star–shaped, i.e. for
every Gj there exists a point

(
Xj , Y j , Zj

)
such that for every point P ∈ Gj the

line interval connecting P and
(
Xj , Y j , Zj

)
lies entirely inside the curve Gj .

Remark 1. All practical data which we use further in our study satisfy this
assumption – the curves Gj are star–shaped. Even more, we may observe that
they are star–shaped with respect to their center of gravity which provides
an algorithm for finding the center of star–shaped-ness.

After we have done such simplifying assumption our algorithm runs as follows:
We choose the new coordinate system by first finding the points

(
Xj , Y j , Zj

)
for

all sections Gj . Then we join them in the space by an interpolation spline in the
z direction, for example, by interpolation cubic spline. In fact we have to take
two such spline functions of the variable z, namely g1 (z) and g2 (z) . They will
give the curve (g1 (z) , g2 (z) , z) described by the parameter z. The interpolation
condition means

g1
(
Zj
)

= Xj , g2
(
Zj
)

= Y j for j = 1, 2, ..., N.

5 Speaking mathematically precisely, we define a diffeomorphism on the heart surface
which maps it to a cylinder surface. We provide a description of such diffeomorphism
in a case somewhat more general than the concrete data require.

6 In [16] see Sections 5.2 and 5.3, p. 60, for a detailed definition of ”polysplines on
cylinder”; see Section 22.2, p. 448 for the proof of the existence of ”interpolation
polysplines on cylinder”.
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Fig. 3. This is the projection of the section curves Gj on the (x, y) plane for the
Phase 2 of the heart dynamics.

Clearly, the simplest situation is when we are able to choose all centers
(
Xj , Y j , Zj

)

coinciding, i.e.

(
Xj , Y j , Zj

)
=
(
X0, Y 0, Zj

)
for all j = 1, 2, ..., N.

In such a case we have a trivial step in the algorithm since the ”joining spline”
is a constant, namely

g1 (z) = X0, g2 (z) = Y 0.

For example, for our particular data we may choose

X0 = 0.33, Y 0 = 0.34;

these coordinates are obviously located on Figure 3.
Then we will introduce new variables by using cylindric coordinates. At every
level z these new parameters have the form

θ = arctan
y − Y j

x−Xj
for

(
x, y, Zj

)
∈ Gj (3)

rj = rj (θ) = r(Zj , θ) =

√
(x−Xj)

2
+ (y − Y j)

2
.

In the above notations we have assumed implicitly that the part of the heart
surface of interest (LV ) is described by the function r(z, θ) in the cylindric
coordinates (z, θ, r). Thus the given data are in the form of N periodic functions
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rj (θ) for j = 1, 2, ..., N and 0 ≤ θ ≤ 2π, corresponding to the curves Gj . Finally,

we obtain the image of the curves Gj (which we will denote by G̃j ) in the new
coordinates (z, θ, r), namely, for every j the curve Gj from the heart surface is
mapped into the graph of the function rj , i.e. into the curve

G̃j :=
{(
Zj , θ, rj (θ)

)
: 0 ≤ θ ≤ 2π

}
.

See Figure 4 where we have the images of G̃j on the cylinder projected on the
plane (z, θ) – these are N = 7 parallel lines.
With this we finish the introduction of the new coordinates.
The visualization in the new coordinates (z, θ, r) is relatively simple, and to that
end we are able to apply directly the polysplines. The result will be a periodic
polyspline, namely, a function r (z, θ) defined for

Z1 ≤ z ≤ ZN ,

0 ≤ θ ≤ 2π,

which is 2π−periodic with respect to the variable θ. Recall that in our particular
data we have N = 7 with Z1 = 0 and Z7 = 0.07.
Now we need the inverse map in order to come back to the original variables.
By using the original variables (x, y, z) we obtain the following representation of
the heart surface in the variables (z, θ, r) ,

Z1 ≤ z ≤ ZN , 0 ≤ θ ≤ 2π

θ = arctan
y − g2 (z)

x− g1 (z)

r (z, θ) =

√
(x− g1 (z))

2
+ (y − g2 (z))

2
.

Solving with respect to x and y we obtain the surface

H =




x = g1 (z) + r (z, θ) cos θ
y = g2 (z) + r (z, θ) sin θ
Z1 ≤ z ≤ ZN , 0 ≤ θ ≤ 2π.

(4)

C Polysplines on a Cylinder

Let us say some words about the polysplines on a cylinder.
As we saw above the part of the heart surface of interest (LV ) is mapped to a
periodic function on the rectangle [0, 0.07]× [0, 2π] with coordinates (z, θ) . The
measured data lie on the lines γj defined by z = Zj , so we have

γj :=
{
(z, θ) : z = Zj , 0 ≤ θ ≤ 2π

}

or shortly
γj =

{
z = Zj

}
.
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Fig. 4. The projections of the seven curves G̃j are shown in the plane (z, θ) .

Recall that γj is the projection of the curve G̃j . We have

γ1 = {z = 0} , γ2 = {z = 0.01} , γ3 = {z = 0.02} ,
γ4 = {z = 0.03} , γ5 = {z = 0.04} , γ6 = {z = 0.05} , γ7 = {z = 0.07}

To that configuration we apply ”polysplines on a cylinder”, as we already ref-
ered to [16, Sections 5.2 and 5.3, p. 60]. To give a short summary of the main
result: the polyspline in our case will be a function u (z, θ) consisting of 6 pieces
uj (z, θ) where uj (z, θ) is a function defined between the lines γj and γj+1 for
j = 1, 2, ..., 6; and uj satisfies there

– the biharmonic equation

∆2uj (z, θ) =

(
∂2

∂z2
+

∂2

∂θ2

)2

uj (z, θ) = 0 between γj and γj+1;

– the interpolation to the experimental data

uj

(
Zj+1, θ

)
= uj+1

(
Zj+1, θ

)
= rj

(
Zj+1, θ

)
for all 0 ≤ θ ≤ 2π,

– and the smoothness condition

u ∈ C2,
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i.e.

uj

(
Zj+1, θ

)
= uj+1

(
Zj+1, θ

)
for all 0 ≤ θ ≤ 2π,

∂

∂z
uj

(
Zj+1, θ

)
=

∂

∂z
uj+1

(
Zj+1, θ

)
for all 0 ≤ θ ≤ 2π,

∂2

∂z2
uj

(
Zj+1, θ

)
=

∂2

∂z2
uj+1

(
Zj+1, θ

)
for all 0 ≤ θ ≤ 2π,

The main result of [16] is the existence of interpolation polyspline: If we are given
the scanned data r

(
Zj , θ

)
then we may find the polyspline with the above prop-

erties. Let us remark that the functions uj are real analytic, i.e. the polysplines
enjoy infinite smoothness away from the ”interfaces” γj and on γj they are C2.

D The Results

In the (z, θ, r) coordinates the result of smoothing of the given data r
(
Zj , θ

)

with the Kriging method as implemented in [35] is shown on Figure 5. What we
have on this Figure is in fact an approximation to Phase 1 of the heart surface
in the (z, θ, r) coordinates.
The result of smoothing the same data with interpolation polysplines is shown
on Figure 6.
One has to compare the two Figures 5 and 6 and to see that the surface obtained
by the polyspline method is visually smoother than the one obtained with the
Kriging method.
Next we provide the visualization result using the original (x, y, z) coordinates
by means of formula (4). We provide the results in a series of phases of the heart
dynamics viewed from different perspectives.
Let us note that we take the same ”center of star–shaped-ness”

(
X0, Y 0

)
in all

cases, namely
X0 = 0.33, Y 0 = 0.34.

D.1 Visualization of the Left Ventrical at Different Phases

On Figure 7 Phases 1,3,5,7 are visualized.
On Figure 8 we have Phases 9,11,13 visualized.

Conclusion 1 We have shown that by means of appropriate coordinate change
the Left Ventricle may be conveniently represented in cylindrical coordinates
where the axis variable is z. In this setting if scanning has been performed at
different levels in z then we have seen that a ready-made tool called ”polyspline
on a cylinder” is available. This polyspline is a surface which interpolates the
measured data and provides as seen from Figures 7 and 8 visually very satis-
factory approximation to the heart surface. The above scheme is applicable to a
lot more general setting for modelling surfaces which may be transformed by a
diffeomorphism to become ”functions on a cylinder”.
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Fig. 5. This is the smoothing with Kriging in the (z, θ, r) coordinates. The seven

curves G̃j with the measured data are displayed on the surface.

Fig. 6. This is the smoothing with the polyspline in the (z, θ, r) coordinates.

The seven curves G̃j with the measured data are displayed on the surface.
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Fig. 7. This is the heart surface of Phases 1,3,5,7 resulting from the application
of the polysplines.
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Fig. 8. This is the heart surface of Phases 9,11,13 resulting from the application
of the polysplines.


