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DIAGONALIZABLE COMPLEX SYSTEMS, REDUCED
DIMENSION AND HERMITIAN SYSTEMS II

Jean Vaillant

ABSTRACT. We consider a first order differential system. If its principal
part a(z, £) is hyperbolic — that means that the characteristic roots are real
for every (x,€£) — and if it is symmetric or hermitian, it is usual to construct
an energy inequality; if the system is linear and C'*°, the Cauchy problem
is C*° is well-posed, for any zero order terms; in some non-linear cases, we
have existence theorem. Moreover in the case of constant coefficients, the
theorem by Kasahara and Yamaguti states the equivalence between strong
hyperbolicity and uniformly (real) diagonalizability. So it is natural to study
systems whose the principal part is diagonalizable or uniformly diagonaliz-
able for each value of the variable z and to seek for conditions of symmetry or
hermiticity. P. D. Lax in [12] gave an example of 3 x 3 system with constant
coefficients, strongly hyperbolic and not equivalent to a symmetric system.
G. Strang [7] stated that for 2 x 2 systems with constant coefficients, strong
hyperbolicity and symmetry of the system in a convenient basis are equiv-
alent. In [13] J. Vaillant defined the reduced dimension of a real a(£); this
definition is such that the reduced dimension of the system is equal to the
reduced dimension of the determinant, if the system is diagonalizable; the
reduced dimension of a polynomial was defined by Atiyah Bott and Garding;
in [13] it was stated that, if the reduced dimension of the principal part of
the system is more than m () and if the system is diagonalizable (some
additional condition, in fact implied by the two first ones, as it will be proved
by T. Nishitani [3], was satisfied), then the principal part is, in fact, sym-
metric in an convenient basis; we denote that the system is presymmetric:
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1.

Jean Vaillant

there exists T such that T~'a(£)T is symmetric, for every ¢&; the analogous
result, in the case of complex coefficients, was obtained in the third cycle
thesis of D. Schiltz.

Y. Oshime [6], in a series of papers studied completely the 3 x 3 diagonal-
izable real and complex system and characterized symmetric and hermitian
system. In [3] T. Nishitani improved the result [13] and stated that, if the
dimension m > 3, if the reduced dimension d > m (") — 1 and if the
system is diagonalizable, it is presymmetric; for m = 3 this result is op-
timum, by [6]. In [8] J. Vaillant stated for m = 4 and in [9] for general
m > 4, that, if the system is strongly hyperbolic and if d > m (Z51) — 2, it
is presymmetric.

T. Nishitani and J. Vaillant [4] stated in the case of variable coefficients,
that, if for every = the previous conditions are satisfied, then the principal
part is regularly presymmetric (that means there exists a regular-the same
regularity as the coefficients-matrix 7'(z) such that T~ !(z)a(z,&)T(x) is
symmetric for every (z,€); in fact they stated that, if d > m (Z) — [2]
and if for every z, a(z, ) is presymmetric then it is regularly presymmetric;
that implies, thanks to the result with constant coefficients, the precedent
result.

Then, J. Vaillant states in the case of complex coefficients that if the
reduced dimension (in the real) dg(a) > m? — 2 and if the system is di-
agonalizable, then it is prehermitian. The schedule of the proof will be
published in the Proceedings of the Cortona colloquium (2001) and in the
present paper.

We conjecture also that, if dg > m? — 3, m > 4, and if the system is
strongly hyperbolic, then the principal part is prehermitian; the result is, at
the moment, is obtained for m = 4 (to appear).

Introduction

We study a first order system

n
a(D) =IDg+ Y  ayDy,
k=1

where I is the identity matrix and ay is complex valued m x m matrix.

(1)

Let a(&) the principal symbol a(D):

a(€) =16+ Y as.
k=1

We define in an invariant manner the reduced dimension of a:
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Definition 1. F is a real vector space of dimension n + 1; F' is a complex
vector space of dimension m. a is a R-linear map from E to the vector space
L(F, F) of the linear maps from F' to F' considered as a real vector space, d(a) =
rank(a) = dim (Im a).

We have evident properties.

If a basis is chosen in F, d(a) = dimension of the real vector subspace of
M(m, C) spanned by the matrix (a,;- (€)).

We have also d(a) = d(‘a) = d(a).

We choose a basis in F, the first vector of which is a non characteristic vector
N, deta(N) # 0. Then:

a(§) = &oa(N) + a(f), & = (&,-.., &)

As usually, we can replace a(N) by I and we obtain (1), then:

d(a) = dimension of the real vector subspace of M(m,C), spanned by I,
Re ap,... ,Re a,, Im ay,....Im a,.

We introduce also the:

Definition 2. « is diagonalisable (R-diagonalizable) with respect to NV if and
only if:

i) V¢, the zeroes of det(I7 + a(€)) = 0 are real,

ii) when 7 has multiplicity p, the dimension of the corresponding kernel of
It +a(é) is p.

That means, evidently, that:

1) the proper values of a(¢’) are all real,

ii) the dimension of the proper space corresponding to a zero is equal to its
multiplicity.

Definition 3. a is a prehermitian with respect to N, if and only if there
exists a basis of F of first vector N and a basis of F' such that in these bases the
matrices (a;(ﬁ)) are hermitian for every £.

We state the:

Theorem. If a is diagonalizable with respect to N, if d(a) > m? — 2, then a
18 prehermitian with respect to N.

That means, if we consider the matrix, there exists an invertible complex
matrix such that:

T~'(a}(€))T is hermitian, V¢.

The cases of real matrix and variable coeflicients were studied in a series of
papers (consider [8], [9], [10], [4], [5] and their bibliography).
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In the §2, we explain that the proof is divided in three parts. In this paper,
half of the case II is studied in the §3 and the case III is studied in the §4, §5, §6.
The cases I and half of the case II were considered in [11]

2. Schedule of the proof

For m = 2, Strang [7] obtained the result with the alone assumption of strong
hyperbolicity.

At first, for m = 3, we prove the:

Lemma 2.1. If a is diagonalizable with respect to N, if d(a) > 7, then there
exists a & # 0, such that deta(&y,&") has a multiple zero in & (or a(€¢') has a
multiple proper value).

Proof. It is quite similar to the proofs of [1], [2]; consider also the remark
23. O

Then we have a result by Oshime (if m = 3):

Lemma 2.2. [6] If a is diagonalizable with respect to N, if d(a) > 7 and
if there exists a &' such that det a(&,&') has a multiple zero in &, then a is
prehermitian with respect to N.

The theorem is obtained for m = 3.

We consider now the general case. We denote also by qﬁ; the entries of the
maftrix a.

We prove, by an adaptation of [3], that, thanks to the diagonalizability of a,
we can assume:

i) for p < g, real and imaginary parts of qﬁg € span { real and imaginary parts
of ¢l,i>jt =V,

ii) for 1 <4 < m, qﬁf(ﬁ) =&+ xi (&) +iNi(¢'), where x; and \; are real linear
forms; moreover: \; € V.

So: d(a) = dim real vector space spanned by {V,..., & +Xi,...}. The number
of elements of this set is at most m?2.

Remark 2.3. If ¢’ cancels all the ¢'(¢'), 2 < i < m, then A\ (¢') = 0.

We distinguish three cases:

I. dimgV = m?—m (all the linear forms qﬁ? € V have their real and imaginary
parts linearly independent in R), .

II. dimpV = m? —m — 1 (one form of V depends linearly on the others),

III. dimgV = m? — m — 2 (two forms of V depend linearly on the others).

We will use frequently the

Lemma 2.4. If b is prehermitian, there exists a hermitian and definite pos-
itive matriz H such that:

(2) bH = H'D.
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Proof. There exists T such that
T~ = HT16T) =' T5'T '

we denote H = T'T; H is hermitian define positive and we obtain the result. O

3. Case II,

One form qﬁ;, 1 > j, has its real or its imaginary part depending on the other forms;
m — 2 forms y; at less are independent; we consider the case where m —2 forms y;
are independent; the other case is analogous but simpler. By a convenient choice
of basis in F and F', we can write:

G5 =& +ink, i> 4, i >4

We distinguish
Case II;: One dependent form is in the third line, second column [11],
Case Ip: ¢3(¢') = €3+, 1 < j <2

Case II: ¢’%(f') = Zk,z Cﬂ%f; + Zk,é d%’f”ﬁ d%ﬁ% + in%,
Case T1j: ¢3(¢") = & +i (Lo €356 + Lo 30 + 33¢3).
At first, we study the case II,. We have:

Gie) = Cotxiti| D enll +D R+ fhnt |, 2<i<m, xm=0,
k.l k.l
1) = &+ Z 1€k + Zcmfz + dew + diymi

¢ ok 0k 2
D e+ i + fant |

kL kL
the &F, nf, 1 < ¢ < k < m, (k,¢) # (2,1), n?,xx are new coordinates (or

independent variables).
We have also, for i < j:

=Y e+ Zdﬁn? + it + i Ze WL+ Zflinf + fibnt
k.l
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We denote: c = c“, H = (hy), hyy = hy.
:mmma&LueM_m: L =0, Vk,l, (k¢) #(K,m), 1<K <m-—1,
i) If1<i<j<m-—1,(i,7) # (1,2), then

$i(€) = ciel —inl) + > ckgr +Z ko +z<2 b e +Z ’27721),
k

1<k<m-1,

k 2k ~
Z APk + Z diny, + disn? — in}

+ Z C2m€k’ + Z denk’ +1 <Z e2m€k’ + Z f217l7€1 ?)

(&k’i)#( Iam)7 1§k‘§m—1

m)c-k ]<m—1cZCZC;?,1§i§j§m—1,k;ﬁ2;allthe
considered ¢ and kQ are positive.

Proof Let " =n* =--- =¢&7"_ | =n"_, = 0; we get immediately i) for
i =m.

The matrix b obtained by removing the last line and the last column of a(¢)
is prehermitian by an easy induction; there exists H (Lemma 2.4) such that:

bH = H'D.

If for some k' we have not: all the ¢y, = 0, k # k' and ¢yj» = 1, then H is diagonal
and the result is easy.

IfVk # K, c1p = 0 and ¢y = 1, K fixed, then: hy, = 0, except hi.

We consider, at first, the cases k' # 2, by change of lines and columns, it is
sufficient to consider, for instance, k' = m—1. We explicit (2). By considering the
entries in the i-th line, i-th column, 2 < 7 < m —2, we obtain i) for 2 < i < m—2.
The entry in the (m — 1)-th line, (m — 1)-th column gives

Im | (& +in] ") a1 + ihm—1 | D el 108+ D> FE ik + fo1ont || =0,
ot ot

(k,0) # (K',m), 1 <k <m—1.
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We obtain, for 3 <i<m —1

' ' Pim—1 i .o
mo1 () = o (T =i - Sl (& +ini) + Z Cm—1m&E

hm—l X

+ Zd:ﬁ—lmn?-i_z (Z Cm— lmgk +Z lmnk>
k

k
1<k<m-1;¢ ,=hi/hn_1,

1 . ome him—1
¢72n—1(§/) = 07271—1( 2" t— iy 1) hm E Q + E :d?inf + diynt +in}
m—1

Z 1m§k’ de 1mnk’ +1 (Z Cm— 1m§k:’ + Z 1mnk’)
k/

k!

(k, ) # (K',m), 1 <k <m—1;c%_| = ha/hm_1,

h
bn1(E) = cpoy (77— i) lm ; Zcm& + Zd k10 + diani

+ Zcm lmgk’ + Zdlk lmnk’ +1 (Z e’m lmék’ + Z lmnk’>

(k, ) # (K',m), 1 <k <m—1; ¢, | =h1/hm_1,
We obtain, for 2 <i<j<m—2:

€)= (¢ o) + et + S+ (S et + ¥ st )
k k

1§k§m—1; C§=hi/hj.
For3<j<m-—2:

B€) = (6 —ind) + M=t (g i)

Z ’1k§k +Z 1771377214‘1 (Z ellkfk +Z %Ul?)
k
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o hihm—1 — |him—1]?
» &g hjhm—l ’

. him—1
M€Y = K| Sclieh + Dol it )+ (6 i)
-

+ chlkfk "‘Zd%ﬁ?“‘z (Z e érr +Zf’}7]f7ﬁcn>
hih —|h .
1§k§m—1,k’21= 1ol llmll,-—k’12]§m—2,0~=c§cc’?

hohm—1 € 26 37
2<i<j<m-—1.
We transform a(¢) by the invertible matrix:

I+E!_,
that means, we consider
(I + Ep_1) " a(€)(I + Epy_y);

in the matrix E!,_,, all the entries are zero, except in the first line, (m — 1)th

column where there is el, | = hpm_1/hm.
We define: )
d hihm—1 — |him—1]
(hm—l)2
and we obtain the result (we denote now ¢’ = ¢; k' = k).

If c19 =1, c1p =0, k # 2, we have similar calculus. O
Lemma 3.2. We assume ci19 # 0. Then:

i) ef]q =I5 = 0, Vi > 3, el +eb =0, fl +fh =0,
i) @3(&') = (&) —in)), Vi j, 3 <i <.
Proof. We consider the coefficient of 012X§ ]_[k;,52 xk in det a(&'):

; (z S féw%") ;
¢ /

it is real; so we have i) for i = m.
We consider the coefficient of c1ox3& [T xx k # 2, k # k' in det a(¢):

; (ze@mw + Zf;fm?) ;
/ /




Diagonalizable complex systems 139

it is real ; and we obtain the end of i).
Now we consider the coefficient of ciox2 [[xx k # 2, k # k' in det a(¢'):
and we obtain:
(&) = e (&1 — inf?)
We consider the coefficient of c1ox3¢0 [ xx k # 4, k # 7 in det a(¢) and we obtain
ii)for3<i<m. O
Lemma 3.3. We assume ¢ # 0, then:

1) ie{1,2},
(:ngn(f/) = 7’771 +Z Crm— 1 zm lfm 1

+ dem 1% +dzmm1n$ 1

+Z(Zemm 1 zm 1§m 1+Z mm— 177k +fm7znlnm 1)

1<k<m-—2.
i) 1 € {1,2}, i <j<m—2,(i,5) # (1,2),

BY(€) = (el —im]) + cmiem_y ity i (em e+ i)

$(E) = k3 | Y §k+2d?’5n£+ Tt — ing

k,t

+ ey 1§m_1+d%% by 4 (eymtem 4+ famigm ),

(k,ﬁ);ﬁ(m—l,m). . .
iii)c%l:k%c%l:c}cjm, 2<j<m,j#m—1,c —c?cjm,j;ém—l.
Proof. Let &' ' =o'l = = ¢y =Ty =& = = 0.

The submatrix (m — 1) x (m — 1): b obtained by cancelling the (m — 1)th
line and the (m — 1)th column in a(&) is diagonalizable; its reduced dimension
is more than: (m — 1)? — 2; by induction, it is prehermitian; by the Lemma 2.4,
there exists a hermitian matrix H such that:

(3) bH = H'.

We consider the variables y; and we obtain:
if c19 # 1 or ¢y # 0 for some k # 2, then H is diagonal;
if ¢ =1 and ¢ = 0, Vk # 2, then hy, = 0, u # v, except hyo.
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In the first case, we get easily the lemma.
In the second case, we explicit the entries in the third line, second column in
(2) and we obtain again:
hlg - 0
and the result. O

Lemma 3.4. We assume ci5 # 0, then:

B¢ =i (¢ —inl), Vi<j, (i) # (1,2).

Proof. We consider the coefficient of [] xx in det a(¢’); it is real and we
obtain:

i€ {1,2}, ¢,(¢) =d, (" —in").
We consider the coefficient of & [ ;4,1 Xk in det a(§) and we obtain

S {172}7 ¢£n—1(€,) = Cin—l (f;‘m_l - ”l;n_l) .
We consider the coefficient of &gxm—1 [ Xk, ¥ # m—1, and for ¥’ #m—1, k # K,

we obtain

i€ {12}, ¢(&) =cp (& —int').

0

Lemma 3.5. We assume c # 0, then:

Dot = = et = gt =0,

ii) ¢3(&") = ky (Zkﬁc §k+2k£d%£nk_in%>'

i) ¢k, = ¢k _ 1cm L2, —cfn Lem-L

Proof Let {f =i =& =nj=---=¢&=n=- =& =nf" =0.

By considering the (m — 1) x (m — 1) submatrix b obtained by removing the
third lines and columns, we obtain the result. O

Lemma 3.6. We assume c12 # 0, then a(§) is prehermitian.

We have obtained:

C] - ckc Vi, j, k, (Z7k) 7é (172)7

c = kic 7, allthecz- and ki > 0.

1 1 1 )
kl? 17 bl Cl

We assume now that there exist some k, k # 2, such that Clk 75 0; by change
of lines and columns, we can assume ci3 # 0.

Finally, we transform a(¢) by the diagonal matrix (1, ——
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Lemma 3.7. If ¢13 # 0, then a(§) is prehermitian.

Proof. It is quite similar to the case ¢jo #0. O

Lemma 3.8. IfVk, ¢y, =0, then:

i)el =f =0,Vj>3.

i1) (') = kb (0 Bl + Xy dimk + dBin? — in?)
L Al + S Ao +1 (S el + X FAEn ),
(k,€) # (K',m), k' € {1,2}.

iWi)3<i<j<m-—1

Gi(&) = ci(e —inl) + D b gr+ > dik g+ (Z ek e+ ff%m?) :
k k k k

ke {1,2}.
w)3<i<m-—1

B (&) =l (& —in™) + Y bl + > dibmp i [ > elh &+ oy |
k.4 k.t k.l k.l

k,¢ such that 3 <€ <m, k € {1,2}.

v)c;=czc§,3§i<j§m,'c§>0.

Proof. Let & =nf =0,3<¢<m, ke {1,2}.

The matrix 2 x 2: (qb;), i,7 € {1,2} and the matrix (m —2) x (m —2): (qb;)
i,7 € {3,...,m} are diagonalizable; their reduced dimension is such that they
are prehermitian; thanks to the Lemma 2.4, with H diagonal, we obtain easily
the result. O

Lemma 3.9. IfVk, ¢ =0, then:
el =fh=0,Vi#£ 1 i#m, e +ek,, =0, fE + k., =0, ke{1,2}.

Proof. Let ﬂ”_l = nin_l == 5%:5 = 7777;}:% =0
emLEm  — i) + > ey e+ S dm
k0 k.l

+i (eggl’“g,ﬁi + f,’}j[”“n,ﬁ) =0

(>3, 0#m—1,k¢€{1,2}; (we use ¢ #0).

We obtain immediately: e]fn_w = fﬁl_w =0.

The submatrix b = (m — 1) x (m — 1) obtained by cancelling the (m — 1)th
line and the (m — 1)th column is prehermitian. There exists a matrix H, [Lemma

2.4], such that (2) is satisfied.
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We denote H = (hyy), hyy = hy; we verify: hy, = 0, Yu # v, except hipm_1;
by considering the entries in the ith line, ith column in (2), we obtain:

efE:fi]%? 2<i<m—2.

0
Lemma 3.10. IfVk, cip =0, then
i) G (&) = ¢ (" —inf™) + i€l + dipgni + 1 (€] + flant),
3 <1< m.
3 o y y Y y
ii) 4(€') = ¢ (¢l —ind) + cher + dhr + i (el + £ ).
3< ) <m.
iii) et el = 0; dit +dit = 0; i+ fl=0; ¢l + fi=0,3<i<m—1.
Proof. The coefficient of [] xx in det a(¢’) is real; the coefficient of x2&o [ xk:

k # 2, k # k in det a(£) is real; by considering the difference between these coef-
ficients, we obtain the result. O

Let &'"h ="' = = g7 =T, = &t =t = 0 in a(€) and
consider the submatrix (m — 1) x (m — 1) obtained by removing the (m — 1)th
line and column; it is prehermitian and there exists H [Lemma 2.4] such that (2)
is satisfied; we verify: hy, = 0, Yu, v, except hi,_1; we explicit (2); we transform
a(¢) by the invertible matrix I + E.; all the elements of E} are zero except in

1m—1,

the first line, mth column where we have: I;Zm_l ; we denote:

hibm—1 — |Pim—1]* . )
db o= m me . 2, m—1,
I hibm—1 — |Pim—1]?
2 hohm, ‘

We obtain the:

Lemma 3.11. IfVEk, ¢ =0, then:

i) efy = fl; =0,

i1) GY(E) = K (D0 GFEL+ S it — imd)
+ L &0+ S din T+ e+ dan
+ i (egm o+ fam 1)
(k,2) # (m — 1K) and (k,0) # (m —1,m); 1 <k <m —2.
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3S]Sm_27 ¢](€) (fj_“h)
¢m 1(§)= 7177, 1(7171_1_“71 )+c71nm171n§m 1
dlm 1m7]m 1 +1 ( }nm_hln&nr: 1 + flm 171nnm 1)

1<i<2, ¢m(§)_ ”]z +Zcmm 1 +C:Zlm1m 1

+ dem 1% +dlmm177m 1+Z<Z€fﬁm—1§?_l
+ ;Tml o D et L )
1<k<m-—2,

3<i<m—2,  ¢(E) =, (& —in"),
o) =t (& =i y) e
T L (SO SN AT N

3<j<m=2  $A) = (& —im]) +men,
+d2$ e 1"‘@( amlem 1‘i‘f2m R 1)

mo1(E) = (€ —iny ) + ZC 1m&k

+ de lmnk +1 <Z e%c—lmg}cn + Zf'gzk—lm> 77;?7
k k
1< k <m-1,
3<i<j<m—1, <z>;l(£')=c§-(§£—z‘nﬁ)+2c§-ﬁ1$+2d’%nk
k

<Z€ mék +Z Zﬁz’h?)
ke {1,2},

i) ol = a2 Al il 2 _ 2.
iii) cpy, = Ky iy, Cpy = e, ¢y = €5, € > 0.
Lemma 3.12. We assume Yk, c1p =0

Pm (&) = cn (€7 —in").
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Proof. In det a(¢’) the coefficient of [], xy is real. O
Lemma 3.13. We assume Vk, ci1p =0,

$3(¢) = kad?(€), dm (&) = e (€5 —ini).

Proof. Let: fzj = ng =0, j > 3,4 € {1,2}, as in the Lemma 3.8; we obtain:

Im—1 __ 7.1 2m—1 Im—1 __ 7./1 12m—1 Im—1 __ p2m—1 __
Com - k? Cim d2m - k? dlm » “2m — J1im =0.

The coefficient of & [ ]}, Xk in det a(§) is real; we deduce k} = kb and the
value of ¢; then we obtain ¢2,. O

Lemma 3.14. IfVk, ¢, =0, _ _
3<j<m—1, ¢3(¢) =& —im), 3<i<j<m-—1, (&) =c —in)).

Proof. We consider in det a(¢) the reality of the coefficient of &2 [],. Xk,
kE£EK. O

Lemma 3.15. IfVk, ¢y, =0, a is prehermitian.

Proof. Let & =n! =0, except: f’ln_l, n’ln_l, we construct a multiple zero in
& in det a(¢) and we get: ¢™ 1L = gm-t = em-1l — pmoll — (0 Considering
the relations satisfied by the 017 and k%, we obtain easily the result. O

The case IIJ is reducible to the case II,: we transform a(¢) by the unitary
diagonal matrix where the entry in the first line, first column is equal to the
complex number ¢; the others are 1.

4. Case III;
Two forms Re qb;., Im gbf,l, i > 4,14 > j' depend linearly on the other forms; the
forms y; are independent.

We distinguish as the first case, the case where Re ¢3 and Im ¢3 depend
linearly on the other forms Re ¢}, Im qﬁf, 1 > j; we denote this case III;. The
cases where Re qﬁ; and Im qﬁg,l, 1 > j, are dependent can be reduced to this case.

In the case III;, by a convenient choice of coordinates, we can denote: If:

i >4, (i,5) # (3,2), ¢4(¢') = & +in],

3 3% ol 3k 0, . 3k o0 3% ¢
(&) = E & + E Cdygny, + i § ey + E armk |
kL N kL k.t

Pi(¢) So+xit+i| D ehth+ > fhm

k.0 k.0
E>k, (LK) #(3,2).
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Lemma 4.1. ¢f, = fk =

Proof. We can assume x,, = 0; the coefficient of []x, in det a(¢') is
real; so: efnz = 0. The coefficient of & Hu;ﬁv Xu in det a(§) is real; so ef,k =0,
1<ov<m-—1.

We have also 7 < 7,

=S kel + S dibnt +i Ze §k+z Sk | -
k0 k0

We denote: c’7 = c;fj, 1<j. O
Lemma 4.2. V(i,j), i < j, (i,5) # (2,3):
i) ¢5(¢') = ¢i(&] —in]).
i4) (0 e3¢k + 3 dipni) (2 et + 3 f3fk)
+ (e, + Xdiyng) (X €3t + X fiimg) = 0.
Proof. We consider the coefficient of [ ], xu in det a(¢’) and we have the
lemma for ¢.,.

We consider the coefficient of &[] xx in det a(§), where k € K; K subset of
{1,2,...,m — 1} such that:

card K =m — 3.

If K # C{2,3}, we obtain i), if K = C{2,3}, we obtain ii). O

Lemma 4.3. a(§) is prehermitian.

Proof. We distinguish four cases:

D) 3By + S iy #

i) and divides chk v + ngkm

Then ¢3 = k3q§2, k3 € R.

Let: &=t =--- =0 =n_; =0; the (m — 1) x (m — 1) matrix b ob-
tained by cancelling the last line and the last column of a(¢) is diagonalizable and
its reduced dimension is more than: (m — 1)? — 2; by induction b is prehermitian
and thanks to the Lemma 2.4, there exists b such that:

bH = H'b;
we verify H is diagonal and we obtain if: 1 <7 < j <m — 1 then
(4) c = ckc (1,k) # (2,3), c? = kgcf;?, c; >0, k2> 0.

By an analogous manner, we obtain (3) if: 2 <i < 7 < m.
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Then, as usually, we obtain: a(¢) is prehermitian.
i) Soc3---+>°d3- -+ divides Y3+ f3---. We obtain

$3E) = (D drek +> dnf)
) = (D_drer+ > dinf)Q

A€ R.
As in the case i1), we obtain:

—3
¢§ = k§¢27

the relations satisfied by the ¢ and k3 and a(£) is prehermitian.

i) Y3+ Y d3--- =0,
i) €3+ f5 - #0

Then > c3---+ > d%--- =0 as in the cases i) we obtain:

—3
¢'2; = k%%

and the same results.

ity) g3(¢') = |

We obtain ¢3(¢') = 0. We construct relations between the ¢; and by an easy
calculus, we obtain: a(¢) is prehermitian. O

5. Case III,

Two forms Re ¢§, Im ;, ¢ > j in the same line or in the same column depend
on the others forms, the y; are independent, y,, = 0.
In this case by a convenient choice of coordinates, we can denote:

If: i > j, (i,7) # (3,2), (i,) # (4,2),
Pl = & +in,
P3¢ = Zc%§££+2d%’zn£+d%§n§+zn2,

¢
Z sk + Z dagny, + dains + iy,

-

=N

—~

7%

N>
Il

We have, as in Lemmas 4.1, 4.2:

PHE) =&+ xi
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and: V(i,j), i < j, (i,5) # (2,3), (i,4) # (2,4), $§(&') = ¢j(&] —in]). We have

also:

m[ S odler +> dindsin Ze Pk Y f S
"t

Il
o

+ nj Z R+ Y dinidiing ]

for i € {3,4}. _
We deduce: i € {3,4} ¢?(¢') = k?dy(£') as in the Lemma 4.3, we obtain that
a(§) is prehermitian (we have only to pay attention to the special case m = 4).

6. Case III;

In this case, by a convenient choice of coordinates, we can denote:

Ifi> 4, (i,§) # (3,2), (i,4) # (4,3),
¢i(¢) = & +in
Zc &+Zd§’2ni+ d33n3 + in3,

Zc re+ Zdﬁfnﬁ + dgins + ins.

We have, as before:
i< g, $5(¢) = S —inl), (,9) #(2,3), (i,7) # (3,4),
GB(E) = Kh(€) $2(E) = Kidy()).

We obtain finally: a() is prehermitian; (we pay attention to the case m = 4).
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