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NONLINEAR ESTIMATES IN ANISOTROPIC GEVREY
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Lucio Cadeddu*, Todor Gramchev*

ABSTRACT. We introduce scales of Banach spaces of anisotropic Gevrey
functions depending on multidimensional parameters. We prove estimates in
such spaces for composition maps and nonlinearities in conservative forms.
Applications for solvability and regularity of solutions of nonlinear PDEs are
outlined.

1. Anisotropic Gevrey Spaces

Let Q C R" be an open domain and let & = (01,...,0,) € [1,+oo[®. We define
G?,(Q) - the spaces of the uniformly anisotropic G?(2) Gevrey functions - as the
set of all f € C*°() such that there exists C' > 0 satisfying

(1.1) sup |02 f(z)| < ClHlat? a e zn.

T€EQN
where ol = oy!...ap!, @l =l .. @, o = (ai,...,0p) € Z". In particular,
if oy = ...0, = s we recover the well known space G5, (2) of uniformly Gevrey

functions of index s. Local Gevrey spaces G*(Q2) are defined in a natural way
cf. [18], [16] for more details on Gevrey spaces. In particular, note that e
G9,(Q) = GS.(Q) for all B € Z" and GF,(Q) — GI,(Q) provided o; < 75,
j=1...,n.
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We point out that the Gevrey spaces are a natural framework for the study
of PDEs with multiple characteristics and questions of regularity of solutions
to evolution PDEs of Mathematical Physics. Typically, in the applications, one
introduces scales of Banach spaces with norms depending on one parameter. The
first type of norms is

Tlal

(1.2) lullsr o= Wllaﬁull < +o0,
a€Zl
where || - || stands for the sup—norm in © or for some LP based Sobolev norms

Il - ||H’;f, 1 <p<oo, k>0.cf [1], [10], [11] and the references therein. Another
approach relies on the use of exponential norms by means of the Fourier transform
cf. [2], [4], [5], [6], [7], [8], [10], [12], [14], [17]).

Given f € G3,,(R"), in view of (1.1), we can define

(1.3) ps(f) =sup{T > 0: such that (1.1) holds for oy = ... =0, = 5.}

and if s = 1, we obtain that every f € GL,(R") is extended to a holomor-
phic function in {z = (z1,...,2,) € C"; maxj—;__,|Imz;| < ps(f)}. Clearly
the definition of ps(f) does not take into account the different behaviour in the
multidimensional case.

We introduce scales of Banach spaces G (4 T), T = (T1,...,T,) €]1, +oo[”
defined as follows

T
(1.4) il 7= > —710% oo < Fo0,
aeZn
where | - |o stands for the sup-norm in Q. If & = (s,...,s) we write

||u||3,ﬂ = Iu’ls,(p,...,p)’ GS(Q7 p) = GS(Q7 (pa cee 7p))

One readily gets that G7(Q;T) are Banach algebras (because oj > 1 for all
j=1,...,n). We stress that, broadly speaking, when T} = ... = T},, such type
of spaces have been used for showing local Gevrey solvability and/or Gevrey
well-posedness of the Cauchy problem for nonlinear evolution PDEs wih multiple
characteristics cf. [2], [10], [5], [6], [12], [15]. In particular, [2], [10], [6] deal with
some nonanalytic Gevrey perturbations.

For more details and geometrical features of G7(Q) type spaces, as well as
applications to linear PDEs with multiple characteristics cf. [3] and the references
therein (see also [13] where a rather complete theory of microlocal inhomogeneous
Gevrey spaces, closely related to G(9), is developed).
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We illustrate the advantage of the multi-scale type norms (1.4) even for the
usual isotropic Gevrey space G5, (R") when n > 1. Let f € G°(R; po) for some
s > 1, po > 0. Consider a multi-rescaling action gy(z1,z2) = f(z1/ 1) f(z2/A2),
where A = (A1, \2) €]0, +oc[?. Then gy € G*(R?;p) for p < pomin{A;, A2}. On
the other hand, g € G5 (R?; (poA1, por2)). Next, consider the Cauchy problem

(1.5) Oyu+ Zajxjaxju =0, u(0,z) =uo(z) € G*(R"; po), t>0,z € R,
j=1

where a; € R, 7 =1,...,n, s > 1, pgp > 0. The unique solution is given by
u(t,r) = ug(zre ... e %), If we use the one parameter scale of Ba-
nach spaces G*(£2;p) the solution wu(t,-) of (1.5) satisfies ||u(t, )5, < +oo,
where p(t) = poexp(amint) and amin = min{as,...,an} while setting T'(t) =
(po exp(ait), ..., poexplant)) we get Ju(t, ')ls,f(t) < 400 for t > 0. Moreover, the
following estimate holds: [lu(t, )5 ) < lu(t, ')ls,f(t) for t > 0.

The first goal of our paper is motivated by results on nonlinear estimates in
the framework of the isotropic G* classes and their applications to PDEs cf. [2],
[10]. Our first main result - see section 2 - is concerned with estimates of the
action of composition maps in G%(; f) It may be also viewed as an analogue
in G7 classes of the Schauder type estimates for inhomogeneous Sobolev spaces
in [9].

Secondly, we propose abstract energy estimates for nonlinearities in conser-
vative forms in scales of suitable Hilbert spaces of L?(Q) based G anisotropic
functions, for Q@ = R" and ) being the n—dimensional torus. As particular cases
we recover, when o1 = ... = g, = s, energy estimates in [7], [8], [14] for s = 1
(see also [11] for s > 1).

Our results will be applied for the study of solvability and regularity proper-
ties of solutions of Cauchy problems for abstract systems of nonlinear evolution
PDEs in anisotropic Gevrey spaces. This will be done in another paper.

2. Nonlinear superposition estimates

Given ¢ = (01, ...,0,) €]1,+00[" we set o9 = min{o1,...0,}. Clearly, a smooth
function g preserves G°(2 : R) iff g € G°(R). Our goal is to investigate the
action of (g o f)(z) := g(f(x)) for f € G7(;T), f real valued.

First, we show the following identity
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Lemma 2.1. Letp €N, a = (aq,...,0p) € 2 with |a| > 1. Then

p
e(Ine - X [t
(=1

ap1ttogp=ag =1
k=1,....,n

(2.6) x Hﬁé’?‘. o ha ()

Oz] 1....Oé]7p

Proof. We shall proceed by induction with respect to n. The detailed proof
of the case n =1 can be found in [GR], [GB]. We observe that for n > 2

en g(Ine) = % Haz;”“h
(=1

Qn;1+.tQpp=an
where o = (ay,...,an_1), 2 = (z1,...,2p_1). The inductive assumption for
dimension n — 1 and the Leibnitz rule for the action of 05, on the products of p
functions complete the proof. O
Next we propose a refined version of Faa di Bruno type formulas

Q1 ----O‘n,p

Proposition 2.2. Let 0 = (01,...,0,) €]0,+00[". Then for every g €
C*R:R), fe C®R":R), a = (v1,...,0) € ZY with |a] > 1 the following
identity is true

lod ()
o i gV (f(z @,j
CCIRO Ve D VL
j:l alt.. 4al=a
lat|>1,0=1,...,

I f(a)
2.8 v ;
(2.8) X g (@ o1 (ad)o
where o = (af,...,ab) € Z% and
n . op—1
Fi  _  (inyoo-l ol all
(2.9) Pt i ) k];[l <—ak! .
Proof. We have
ol G) .
2 (g(f(x) = Z%@?((ﬂy) @)l
i=1 '

o]

(2.10) = Z A ;’f}[f],
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where

ol

708 F(@).. 0 f (@)

all. .. adl

(211) M = Gt Y

alt. tai=a
lat[>1,6=1,....j

Dividing by a!7(j1)0~! in (2.11) we obtain

M2 nolalt . adt\ 7
(2.12) L[f] - > 10 o A
al?(jl)oo—1 ay!
alt. . +al=a k=1
lat|>1,6=1,...,5

which implies (2.9). O
Set IfL; # = Ifl; 7# — | floo- The main result on the action of nonlinear maps
in G7(Q,T) is

Theorem 2.3. Let & € [1,+oo[” and let g € G0 (R), ¢(0) = 0, with o9 =
min{oq,...,0,}. Since ¢ € GI9(R) as well, we get by (1.3) that py := psy(g') >
0. Then the following estimate holds

(2.13) g o fls7 < 0 Hlg oo olfls 7

for T €]0,4+o00[", f € G7(;T), [ being real valued, provided p := n”0_1|f|5’f <
Po-

Proof. We note that by ¢g(0) = 0 we get |g o floo < |¢'|oo|f|oo- In view of
(2.8), (2.9), given a € Z%, || > 1, we have

|al

Fo G)( (s N
T2 @) > e D SR S
j:

IN

(

al+.. . 4al=a
|Oé[|21,£:1,...,j

=4

] T« ¢
(2.14) I 11 @

/=1

X
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Therefore, summing (2.14) over a € Z%, o # 0, we get

Ial

°f| 7,
oy < X Y e s pr
a€Z\0 j=1 alt. tai=a
lat[>1,0=1,....
i mal
Ta
/=1
gl
g o f
(2.15) < Zl 00|°° N;lf;3,T)
= U
where
o = I ot
Nj[f§37T] = Z Z ,Pgij,...,af]._[aélau )|°°
Q€LY |al>] al+..tai=a (=1
lat|>1,6=1,....5
(2.16)

The final step depends on subtle combinatorial estimates.

Lemma 2.4. Let 0p = min{oy,...,0,}. Then
o j! 0'0—1
N;[f;6,T] < Z ]
) A\l gn)!
1t t+In=y

I g
(2.17) X > Ha

al+.. . +al=a
|al|217£:1"' 7]

for all € N.

Proof. Fix a',...,a/ € Z% with |of| >0 for £ =1,...,j. Let k € {1,...,n}

and we fix s; to be a nonnegative integer such that at least sy components of
(af,...,0q) are nonzero. Recall the combinatorial inequalities (cf. [10])

mil...mglq!
! e <1, geN,my,...,myg €N

(2.18) (mi+...+mg)! —
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Hence, by (2.9), we get

736:,‘7

al,...al

1 ; or—1
(~|)ao—1 ﬁ i 7k allf!...ai!sk!)
J: el Sk! ak!

(! iy
2.1 < <
(2.19) = (st (spl)en Tl T syl Lsp!

Clearly, if s = j for at least one k, the last inequality yields Pgijm o < 1. Let

now s, < j for k =1,...,j. We note that the inequalities [of| > 1, £ =1,...,
imply s1+...+s, > 7. If sy +... 4+ s, > j, standard combinatorial arguments
and the fact that the RHS of (2.19) increases if some sy decreases reduce to the
case $1 + ...+ s, = j. The final step consists of bounding

]| oo—1 Jisensdn
> s ¥ (ha) X

al4.. . +al=a S1t..tsn=7 al4.. . +al=a
|a[|21’£:1a“’aj |a[|21’£:1a“’aj
where the internal summation in the RHS is over a',...o? with sq,... ,8; as
above. The proof of (2.17) is complete. O
Next, we plug (2.17) into (2.15) and obtain
. -1
|99 0 floo °f| i\
vorty < XUt > (o
jrtgnmg N
<) H il
alt. . 4ai=a £=1
|o/|>1£ Lyeej
IgU)Ofloo it (a)
< SV S ()" I T
Jitetin=j £=1atezm\0
. 1
Ig(” °f| N
< Z WY |
it g N1 dn
Ig Ofl
< noo” 1IfLTZ G W)

220) < Wyl ||ao,p
provided p := n”0_1|f|5 7 < po- The proof of (2.13) is complete. O



156 L. Cadeddu, T. Gramchev

3. Gevrey energy estimates for nonlinear conservative terms

The main goal of this section is to derive energy estimates in anisotropic Gevrey
spaces for nonlinear terms in a conservative form of the type V - (K[¢]¢) where
typically K[¢] = (Ki[¢],...,Kn[¢]), Kj, j =1,...,n are linear continuous oper-
ators in Sobolev spaces (in some cases homogeneous Sobolev spaces). We assume
that u = K[v] is divergence free, i.e.,

(3.1) V- K] = ZamjKj[v] =

Such nonlinear terms appear in evolution PDEs of Navier—Stokes type, Euler type
or Kirchhoff type (see [8], [14], [11] and the references therein).

We shall treat (simultaneously) two cases: = R" and Q = T" = R"/(27Z)".
The choice of the lattice (27Z™) instead of Z™ is not restrictive but it allows us
to use unified notations. More precisely, both the continuous (on R") and the
discrete (on T") Fourier transform are defined by

f(g) = "Tf(é) = /Q eXp(_ixé) f(x) dz, z§ =118 + ..+ 2R,

identifying T™ = [0,27]™ in the case 2 = T". The inverse Fourier transform is

written as ]:g—m:f = / exp(izf) f(&) d¢, d¢ = (2m)~"d¢, with K =R if Q = R”
TKTL

while in the case of @ = T" K = Z and h(§) d¢ stands for (27)~ g h(&
zn cezn
. LP(R") ifK=R
m - p _
Similarly, we set L?(K") { wEIn fK=7

Let ¢ € [1,+00[", T € [0,+00[", and r > 0. We define:

1 <p<o0.

(32 <fgzw = [ @EnPHOTO

(3.3) exp(7 < D >1/‘7) (x) = fg_lm(exp(z T <& >"Lf')1§(§))
j=1

(34) < f,9>smm = <exp(F<D>Y)fexp(7<D>Yg>pyr
(3.5) ||f||0‘-"7‘—‘;H7‘ = \/< exp(7 < D >1/5)f,exp(? <D >7 f>g
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where § = 1 when 2 = R" while § = 0 if Q@ = T", and in that case we consider

functions on T" with mean value zero, i.e. f(0) = 0. In view of (3.4), (3.5)
we introduce in a natural way the Hilbert space G%(Q; 7, H") as the set of all
functions f € GJ,() such that ||f||5.7mr < +o0.

We are interested in estimating the commutator

Clg] = <exp(F<D>YNK[P] V), exp(F <D >\ >pr
(3.6) — < V-K[plexp(F < D >'%)¢),exp(7F < D >V > pr

where ¢ € G7(Q; 7, H™) for some 7 > .
We set, as in section 2, 0g = min{oy,...,0,} > 1.

Theorem 3.1. Suppose that v > rg := n/2+ 1+ 1/(20¢). Then for every
e > 0 there exist two positive constants C; = Cy(g), Co = Cy(e) such that

IClell < Cillgllar (lullar @l ro+e + i@l e lull prro+e)
n
+ Co ) Tillgll 2 g/ co0) (10117 71700 [ullg 2 gm0+
J=1
(3.7) + Mullszmrr1reoolldllz 7 mro+e)-

Proof. Set u:= K[®]. Note that V-u =0 iff 4({) - ¢ =0. Set

(3.8) 67 = <€ exp(3 75 <& ),
j=1
(3.9) Qe ) = [o(&7) — faln:7)

By the Parseval identity, C[¢] can be rewritten as follows

(3.10) Clg] = i /R Qu (€1 7)(@(€ — 1) - 0) f(&: V) @) bly) ddy

¢ RG

We have

Qz(6,m7)| < ClE—nl(<&—n>""+<n>"

n
+ ClE—n) m(<&—n>"t 4+ <n > <y Y fr(n;7)
i=1

(3.11) + CY il — M (< €= ST+ < ST a6 — 0y ) fr (i 7).
7=1
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Indeed, in view of the inequalities exp(|z|) < 1+|z|exp(|z]), [t+s]? < [E]P+]s|?,
[|t]? — |s|?| < |t — s|?, provided 0 < p < 1, we get

Qz(&,mT) < [<E>" = <n>"[fa(m; T)+ <&>"[f6(87) — fa(n; 7))

n
< Y m(<e=n>T <> <y SV fr(ns7)

i=1
n

+ ) ol =M< E =0 ST+ < ST fR(E = 0 F) fr(0; F)
j=1
which implies (3.11).
Set

G (6) =< €713, NZLGIE) =< € >7 exp(> 75 < & >V B(€)].

J=1

4

In view of (3.10) and (3.11) we have |C[¢]| < Y ©x[4], where
k=1

old) = [ [ b€~ nohm & an

0t = [ [ 16k ©luhi - igl ) 2 an
B n _ o i4:1/(2c;j) (e — 1+1/ 20;)
%M—;%L@WMWOM € —mN3 5 ) 2

0.l = Zn//’”“% AONS 3 (e —mNG 5 9](o)

We need

Lemma 3.2. Let g; : K* — R, j = 1,2,3 satisfy the following property:
there exist j1 € {1,2,3} and pu > n/2 such that

1/2
312 [ <> gyl = ([ <€ @) <o
(313) ||gjp”L2(K") < +0o0 for Jp € {1727 3} \ {j1}7 p=23.
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Then

Honggl = [ [ o€ = moa(@aan) s

(3.14) < rull <> gillezllgrlle2llgsll e

where K, = (fKn < &> d§)1/2 < +o00.
Proof. We observe that by p > n/2 and the Schwartz inequality we get

(3.15) gl < el <> gjllr2 <400

(3.16) | <->Fgjlle < oo, for p=2,3
where ¢ = ([, <&>7 dﬁ)l/2 < +oo. We complete the proof of (3.14) by
applying the Schur lemma and the above estimates. O

We apply the above lemma to O[¢], with the choice of g;, being the term
with Sobolev index 1 + 1(20;), k = 1,2,3,4, and obtain the desired estimate
(3.7). O

Acknowledgements: The authors thank Petar Popivanov for the useful
discussions and his valuable suggestions on the subject of the paper.
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