


Pliska Stud. Math. 29 (2018), 57–68
STUDIA MATHEMATICA

NECESSARY AND SUFFICIENT CONDITION FOR FINITE

TIME BLOW UP OF THE SOLUTIONS TO SIXTH ORDER

DOUBLE DISPERSIVE EQUATIONS∗

N. Kutev, N. Kolkovska, M. Dimova

The nonlinear double dispersive equation of sixth order with linear restoring
force is investigated. Necessary and sufficient condition for finite time blow
up of the solution with arbitrary positive energy is obtained. New very
general sufficient conditions for blow up of the solution are proved. Explicit
choice of initial data with arbitrary positive initial energy, satisfying all
conditions of the theorems, are given.

1. Introduction

The aim of this paper is to prove necessary and sufficient condition for finite time
blow up of the solutions to Cauchy problem for sixth order double dispersive
equation with linear restoring force

utt − uxx − uttxx + uxxxx + uttxxxx + u+ f(u)xx = 0,(1)

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ R.(2)

The initial data u0, u1 satisfy the regularity conditions

(3) u0 ∈ H1(R), u1 ∈ H1(R), (−∆)−1/2u0 ∈ L2(R), (−∆)−1/2u1 ∈ L2(R)
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where (−∆)−su = F−1
(

|ξ|−2sF(u)
)

for s > 0 and F(u), F−1(u) are the Fourier
transform and the inverse Fourier transform, respectively.

The nonlinear term in (1) has one of the following forms

(4)

f(u) =

l
∑

k=1

ak|u|
pk−1u−

s
∑

j=1

bj|u|
qj−1u,

f(u) = a1|u|
p1 +

l
∑

k=2

ak|u|
pk−1u−

s
∑

j=1

bj|u|
qj−1u,

where the constants ak, pk (k = 1, 2, . . . , l) and bj, qj (j = 1, 2, . . . , s) fulfil the
conditions

(5)
a1 > 0, ak ≥ 0, bj ≥ 0 for k = 2, . . . , l, j = 1, . . . , s,

1 < qs < qs−1 < · · · < q1 < p1 < p2 < · · · < pl < ∞.

The nonlinear term (4), (5) includes the quadratic-cubic nonlinearity (f(u) =
u2 + u3) and the cubic-quintic nonlinearity (f(u) = u3 + u5) which appears in
a number of mathematical models of physical processes, e.g. propagation of
longitudinal strain waves in an isotropic cylindrical compressible elastic rod [9],
water wave problems with nonzero tension [10] and others.

It is wellknown that every weak solution to (1)–(4) with nonpositive initial
energy, except the trivial one, blows up for a finite time. The global behaviour
of the solutions to (1)–(4) with positive initial energy is basically investigated by
the potential well method introduced by Sattinger and Payne [8] for nonlinear
wave equation.

For special nonlinearities

(6) f(u) = a|u|p or f(u) = a|u|p−1u, p > 1 a > 0

and for combined power nonlinearities (4) global existence or finite time blow up
of the solutions to (1)–(2) is proved in [11, 12, 13] under the sign condition of the
Nehari functional I(u0) > 0 or I(u0) < 0 respectively. The main assumption in
the potential well method is that the initial energy is subcritical, i.e. 0 < E(0) ≤
d, where d is the critical energy constant.

For supercritical initial energy E(0) > d there are only sufficient conditions
for finite time blow up of the solutions to (1)–(2), see [3]. The proof of the finite
time blow up is based on the concavity method of Levine [7].
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In the present paper, in Theorem 7, we give a necessary and sufficient con-
dition for finite time blow up of the solutions to (1)–(4). The result sheds light
on the genesis of the blow up of the solutions to (1)–(4) and gives better under-
standing of the different sufficient conditions and their analysis.

The paper is organized in the following way. In Section 2 some preliminary
results are given, while in Section 3 the main result is formulated and proved.
In Section 4 explicit choice of initial data satisfying the sufficient conditions in
theorems in Section 3 is proposed.

2. Preliminaries

For functions u(t, x), depending on t and x, we use the following notations

||u|| := ||u(t, ·)||L2(R), ||u||1 := ||u(t, ·)||H1(R), (u, v) =

∫

R

u(t, x)v(t, x) dx,

(7) 〈u, v〉 = 〈u(t, x), v(t, x)〉 = (u, v) + (ux, vx) + ((−∆)−1/2u, (−∆)−1/2v).

We recall the definition for blow up of the solutions to (1)–(4).

Definition 1. Suppose u(t, x) is a weak solution to (1)–(4) in the maximal

existence time interval [0, Tm), 0 < Tm ≤ ∞. Then u(t, x) blows up at Tm if

(8) lim sup
t→Tm,t<Tm

||u||1 = ∞

Let us formulate the local existence result for problem (1)–(4).

Theorem 1. If (3), (4) hold, then problem (1)–(2) has a unique local solu-

tion u(t, x) ∈ C1([0, Tm); H1(R)), (−∆)−1/2u ∈ C1([0, Tm); L2(R)), (−∆)−1/2ut ∈
C1([0, Tm); L2(R)) on a maximal existence time interval [0, Tm), Tm ≤ ∞. More-

over:

(i) The solution u(t, x) satisfies the conservation law

(9) E(t) = E(0) for every t ∈ [0, Tm),

where

E(t) := E(u(t, ·), ut(t, ·)) =
1

2
(〈ut, ut〉+ 〈u, u〉) −

∫

R

∫ u(t,x)

0
f(y) dy dx.
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(ii) If lim sup
t→Tm,t<Tm

||u||1 < ∞, then Tm = ∞.

The proof of Theorem 1 is similar to the proofs of local existence results in
(Th 2.4, [11]), (Th 23, [13]) and we omit it.

We will use the results from [2] for finite time blow up of the solutions to the
following ordinary differential equation

Ψ′′(t)Ψ(t)− γΨ′2(t) = αΨ2(t)− βΨ(t) +H(t), t ∈ [0, Tm), 0 < Tm ≤ ∞,

γ > 1, α > 0, β > 0, H(t) ∈ C([0, Tm)), H(t) ≥ 0 for t ∈ [0, Tm).
(10)

Theorem 2. ([2], Th 2.2) Suppose Ψ(t) ∈ C2([0, Tm)) is a nonnegative so-

lution of the equation (10), where [0, Tm), 0 < Tm ≤ ∞ is the maximal existence

time interval for Ψ(t). If Ψ(t) blows up at Tm then Tm < ∞.

Theorem 3. ([2], Th 2.3) Suppose Ψ(t) ∈ C2([0, Tm)) is a nonnegative so-

lution of the equation (10), where [0, Tm), 0 < Tm ≤ ∞ is the maximal existence

time interval for Ψ(t), H(t) ∈ C([0,∞)), and H(t) ≥ 0 for t ∈ [0,∞). Then Ψ(t)
blows up at Tm if and only if

(11) there exists b ∈ [0, Tm) such that β ≤ αΨ(b) and Ψ′(b) > 0.

Moreover, if (11) holds, then the estimate

(12) Tm ≤ b+
Ψ(b)

(γ − 1)Ψ′(b)
< ∞

is satisfied.

Theorem 4. ([2], Th 3.1) Suppose Ψ(t) ∈ C2([0, Tm)) is a nonnegative so-

lution of (10) in the maximal existence time interval [0, Tm), 0 < Tm ≤ ∞,

H(t) ∈ C([0,∞)) and H(t) ≥ 0 for t ∈ [0,∞). If

(13) β <
2γ − 1

2

Ψ′2(0)

Ψ(0)
+

α(2γ − 1)

2(γ − 1)
Ψ(0)−

α2γ−1Ψ2γ−1(0)

2(γ − 1)β2γ−2
,

(14) Ψ′(0) > 0,

then Ψ(t) blows up at Tm < ∞.
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Theorem 5. ([2], Th 3.2) Suppose Ψ(t) ∈ C2([0, Tm)) is a nonnegative so-

lution of (10) in the maximal existence time interval [0, Tm), 0 < Tm ≤ ∞,

H(t) ∈ C([0,∞)) and H(t) ≥ 0 for t ∈ [0,∞). If Ψ′(0) > 0 and one of the

following conditions

(i)

(15) β < αΨ(0);

(ii) [4]

(16) β <
2γ − 1

2

Ψ′2(0)

Ψ(0)
+ αΨ(0);

(iii) [1]

(17) β <
2γ − 1

2

Ψ′2(0)

Ψ(0)
+ αΨ(0) +

αΨ(0)

2(γ − 1)
(1−A2−2γ), A =

γ − 1

α

Ψ′2(0)

Ψ2(0)
+ 1

is satisfied, then Ψ(t) blows up at Tm < ∞.

3. Main results

In this section we formulate and prove the main results in this paper.

Theorem 6. Suppose u(t, x) is the weak solution to (1)–(4) with E(0) > 0
defined in the maximal existence time interval [0, Tm), 0 < Tm ≤ ∞. If u(t, x)
blows up at Tm then Tm < ∞.

Theorem 7. Suppose u(t, x) is the weak solution to (1)–(4) with E(0) > 0
defined in the maximal existence time interval [0, Tm), 0 < Tm ≤ ∞. Then u(t, x)
blows up at Tm if and only if there exists b ∈ [0, Tm) such that

(18) E(0) ≤
p1 − 1

2(p1 + 1)
〈u(b, ·), u(b, ·)〉 and 〈u(b, ·), ut(b, ·)〉 > 0.

Moreover, if (18) holds, then the estimate

(19) Tm ≤ b+
2

(p1 − 1)

〈u(b, ·), u(b, ·)〉

〈u(b, ·), ut(b, ·)〉

is satisfied.
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In order to prove the main result we need the following auxiliary statements.

Lemma 8. Suppose u(t, x) is the weak solution to (1)–(4) with E(0) > 0
defined in the maximal existence time interval [0, Tm), 0 < Tm ≤ ∞. Then the

blow up of H1 norm of u(t, x) at Tm is equivalent to the blow up of 〈u(t, ·), u(t, ·)〉
at Tm, i.e. lim sup

t→Tm,t<Tm

||u||1 = ∞ if and only if

(20) lim sup
t→Tm,t<Tm

〈u(t, ·), u(t, ·)〉 = ∞.

P r o o f. If lim sup
t→Tm,t<Tm

||u||1 = ∞, then from (7) it follows that ||u||21 ≤ 〈u, u〉

and 〈u, u〉 blows up at Tm.
Conversely, suppose that (20) holds but

(21) lim sup
t→Tm,t<Tm

||u||1 < ∞.

From Definition 1 we get lim sup
t→Tm

((−∆)−1/2u, (−∆)−1/2u) = ∞. By means of the

conservation law (9) it follows that at least one of the norms ||u||Lpk+1 tends to
infinity for t → Tm. Hence from the embedding of H1(R) into Lpk+1(R), pk > 1
we get that lim sup

t→Tm,t<Tm

||u||1 = ∞, which contradicts (21). Lemma 8 is proved. �

Lemma 9. Suppose u(t, x) is the weak solution to (1)–(4) in the maximal

existence time interval [0, Tm), 0 < Tm ≤ ∞. Then function Ψ(t) = 〈u, u〉
satisfies the equation

(22) Ψ′′(t)Ψ(t)−
p1 + 3

4
Ψ′2(t) = (p1 − 1)Ψ2(t)− 2(p1 + 1)E(0)Ψ(t) +H(t),

where

(23) H(t) = (p1 + 3)
(

〈ut, ut〉〈u, u〉 − 〈u, ut〉
2
)

+ 2(p1 + 1)B(t)〈u, u〉 ≥ 0

and

(24) B(t) =

l
∑

k=2

ak(pk − p1)

(pk + 1)(p1 + 1)

∫

R

|u|pk+1 dx

+
s

∑

j=1

bj(p1 − qj)

(qj + 1)(p1 + 1)

∫

R

|u|qj+1 dx.
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P r o o f. By means of (1) and (9), we get the following identities for Ψ(t):

Ψ′(t) = 2〈u, ut〉,

Ψ′′(t) = 2〈ut, ut〉+ 2〈u, utt〉 = 2〈ut, ut〉 − 2‖u‖21 − 2‖(−∆)−1/2u‖2 + 2

∫

R

uf(u) dx

= 2〈ut, ut〉 − 2〈u, u〉 + 2

∫

R

uf(u) dx

= (p1 + 3)〈ut, ut〉 − 2(p1 + 1)E(0) + (p1 − 1)〈u, u〉 + 2(p1 + 1)B(t).

Here B(t) is given by (24) and from (5) we have

(25) B(t) ≥ 0 for t ∈ [0, Tm).

Substituting Ψ′(t) and Ψ′′(t) in the lhs of (22), we get that Ψ(t) is a solution to
(22). Here H(t) is given in (23) and H(t) ≥ 0 from (25) and the Cauchy–Schwarz
inequality. �

P r o o f o f T h e o r em 6. From Lemma 9 it follows that the function Ψ(t)
satisfies in [0, Tm) equation (10). Hence, Ψ(t) is a solution to (10) for

(26) α = p1 − 1, β = 2(p1 + 1)E(0) > 0, γ =
p1 + 3

4
> 1

and H(t) defined in (23). If u(t, x) blows up at Tm, i.e. (8) holds, then from
Lemma 8 we get that Ψ(t) = 〈u, u〉 blows up at Tm. Applying Theorem 2, we
obtain that Tm < ∞. Theorem 6 is proved. �

P r o o f o f T h e o r em 7. (Necessity). Suppose u(t, x) blows up at Tm and
hence from Lemma 8, Ψ(t) = 〈u, u〉 blows up at Tm. Then from Lemma 2.1 in
[2] for M = 2(p1 + 1)E(0)/(p1 − 1) and b = t0 condition (18) is satisfied.

(Sufficiency). Suppose (18) holds. We assume by contradiction that u(t, x)
does not blow up at Tm, i.e

(27) lim sup
t→Tm,t<Tm

||u||1 < ∞.

From Theorem 1(ii) it follows that Tm = ∞. According to Lemma 9 Ψ(t) = 〈u, u〉
satisfies (22) in [0,∞) for α, β, γ defined in (26). Note, that H(t), given in (23),
is a nonnegative function for every t ≥ 0. Moreover, condition (11) in Theorem 3
is fulfilled from (18). Applying Theorem 3 we get that Ψ(t) = 〈u, u〉 blows up at
Tm. Hence from Lemma 8 u(t, x) also blows up at Tm, which contradicts (27).
Theorem 7 is proved. �
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4. Sufficient conditions for finite time blow up

In this section we give explicit sufficient conditions on u0, u1 for finite time blow
up of the solutions to (1)–(4).

Theorem 10. Suppose u(t, x) is the weak solution to (1)–(4) with E(0) > 0
defined in the maximal existence time interval [0, Tm), 0 < Tm ≤ ∞ . If 〈u0, u1〉 >
0 and one of the following conditions

(i)

E(0) <
p1 − 1

2(p1 + 1)
〈u0, u0〉

(ii) [5]

(28) E(0) <
1

2

〈u0, u1〉
2

〈u0, u0〉
+

p1 − 1

2(p1 + 1)
〈u0, u0〉

(iii) [6]

E(0) <
1

2

〈u0, u1〉
2

〈u0, u0〉
+

p1 − 1

2(p1 + 1)
〈u0, u0〉+

〈u0, u0〉

p1 + 1



1−

(

1 +
〈u0, u1〉

2

〈u0, u0〉2

)

1−p1
2





is satisfied, then u(t, x) blows up at Tm < ∞.

Theorem 11. Suppose u(t, x) is the weak solution to (1)–(4) with E(0) > 0
defined in the maximal existence time interval [0, Tm), 0 < Tm ≤ ∞ . If 〈u0, u1〉 >
0 and

E(0) <
1

2

〈u0, u1〉
2

〈u0, u0〉
+

1

2
〈u0, u0〉 −

(

p1 − 1

2

)

p1−1

2
(

〈u0, u0〉

p1 + 1

)

p1+1

2

E
1−p1

2 (0),(29)

then u(t, x) blows up at Tm < ∞.

The proof of Theorem 10 and Theorem 11 follows from Theorem 4 and Theo-
rem 5, respectively, for α, β, γ defined in (26) and Ψ(t) = 〈u, u〉, Ψ(0) = 〈u0, u0〉.

Example: For f(u) = a1u
3 + a2u

5, a1 > 0, a2 > 0 conditions (iii) of Theo-
rem 10 and (29) become

(30) 〈u0, u1〉 > 0
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E(0) < E0 =
1

2

〈u0, u1〉
2

〈u0, u0〉
+

1

4
〈u0, u0〉+

1

4

〈u0, u0〉〈u0, u1〉
2

〈u0, u0〉2 + 〈u0, u1〉2

(31) E(0) < E0 +
1

4

〈u0, u1〉
2

〈u0, u0〉

{

〈u0, u1〉
2

〈u0, u0〉2 + 〈u0, u1〉2
+

(

1 +
2〈u0, u0〉

2

〈u0, u1〉2

)

1

2

}

respectively.

5. Choice of initial data

We will chose explicitly initial data u0, u1 with arbitrary large positive energy,
satisfying (30), (31). For this purpose we rewrite (31) in the following equivalent
way

κ =
1

2
〈u1, u1〉 −

1

4
〈u0, u0〉 −

1

2

〈u0, u1〉
2

〈u0, u0〉
−

1

4

〈u0, u0〉〈u0, u1〉
2

〈u0, u0〉2 + 〈u0, u1〉2
(32)

−
1

4

〈u0, u1〉
2

〈u0, u0〉

{

〈u0, u1〉

〈u0, u0〉2 + 〈u0, u1〉2
+

(

1 +
2〈u0, u0〉

2

〈u0, u1〉2

)
1
2

}

(33)

−
a1
4

∫

R
u4dx−

a2
6

∫

R
u6dx < 0(34)

Let v ∈ H1(R), w ∈ H2(R) be arbitrary functions satisfying the conditions

(35) (v,w) = 0, (v′, w′) = 0, (v′′, w′′) = 0, ||v||2 = ||w||2 = 1

where ||f ||2 = ||f ||H2(R). For example, if v is odd and w is an even function, then
orthogonality conditions (35) will be satisfied.

We fix an arbitrary constant M > 0 and ǫ ≤ 0 and chose the initial data
u0 = w′, u1 = σw′ + µv′. For suitable chosen constant σ > 0 and µ > 0 we will
show that

(36) κ = ǫ, |ǫ| << 1

(37) E(0) ≥ M
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Since 〈u0, u1〉 = σ||w||22 > 0 and σ > 0, condition (30) is satisfied. For u0, u1 we
get the following identities

(38) 〈u0, u0〉 = ||w||22 = 1, 〈u1, u1〉 = σ2||w||22 + µ2||v||22 = σ2 + µ2,

〈u0, u1〉 = σ||w||22 = σ,

κ =
1

2
(σ2 + µ2)−

1

4
−

1

2
σ2 −

1

4

σ2

1 + σ2
−

1

4
σ2

{

σ

1 + σ2
+

(

1 +
2

σ2

)
1
2

}

−
a1
4

∫

R
w′4dx−

a2
6

∫

R
w′6dx

=
1

4

{

2µ2 − 1−
σ2

1 + σ2
−

σ3

1 + σ2
− σ2

(

1 +
2

σ2

)
1

2

−a1

∫

R
w′4dx−

2a2
3

∫

R
w′6dx

}

= ǫ,

E(0) =
1

4

{

2σ2 + 2µ2 + 1− a1

∫

R
w′4dx−

2a2
3

∫

R
w′6dx

}

.

We fix σ = σ0,

(39) σ2
0 = 2M +

1

2
a1

∫

R
w′4dx+

1

3
a2

∫

R
w′6dx

so that E(0) ≥ M +
2µ2 + 1

4
≥ M and (37) holds. Finally, the constant µ is

chosen as

µ2 =
1

2

[

4ǫ+ 1 +
σ2
0 + σ3

0

1 + σ2
0

+ σ2
0

(

1 +
2

σ2
0

)
1
2

+ a1

∫

R
w′4dx+

2a2
3

∫

R
w′6dx

]

and (36) is fulfilled. Under the above choice of initial data all conditions in (30),
(31) are satisfied.
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