
7. Cauchy’s integral theorem and
Cauchy’s integral formula

7.1. Independence of the path of integration
Theorem 6.3. can be rewritten in the following form:

Theorem 7.1 : Let D be a domain in C and suppose that f ∈ C(D).
Suppose further that F (z) is a continuous antiderivative of f(z) through D
D. Let z0 and zT be distinct points in D. Then the integral∫ zT

z0

f(z)dz

does not depend on the path of integration, e.g., for every smooth contour
γ ⊂ D which start at z0 and terminates at zT , we have∫ zT

z0

f(z)dz =

∫
γ

f(z)dz = F (zT )− F (z0).

Theorem 7.1. is called Theorem on the depend of the path of integration.
From this theorem we get the following obvious consequence:

Corollary 7.2. : Under the conditions on f of Theorem 7.1., let γ be a
smooth closed contour which lies entirely in D.1 Then∫

γ

f(z)dz = 0

Our coming considerations are based on the following theorem:

Theorem 7.3. Let D be a domain in C and f ∈ C(D). Then the following
statements are equivalent:
(1) f has a continuous antiderivative in D;
(2) ∫

γ

f(z)dz = 0

for every loop γ lying in ⊂ D.
1We call such contours loops.
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(3) The integral ∫ z2

z1

f(z)dz

is independent of the path of integration; e.g., if γ1 and γ2 share the same
initial and terminal points, then∫

γ1

f(z)dz =

∫
γ2

f(z)dz.

Proof: Since the implications 1) → 2) and 2) → 3) already established
(Theorem 7.1 and Theorem 7.2), we will concentrate on the proof of 3) →
1).

Select an arbitrary point z0 ∈ D and let z ∈ D.
Set

F (z) :=

∫ z

z0

f(z)dz.

We claim that F (z) is an antiderivative of f in D. Before, we notice that the
integral is well defined - because of the connectedness of the domain D there
ix a contour which combines z0 and z.

We shall show that

F (z + ∆z)− F (z)

∆z
→ f(z),∆z → 0.

Indeed,

F (z + ∆z)− F (z)

∆z
=

∫ z+∆z

z
(w)dw

∆z
,

where we integrate along a segment lying completely in the domain.
Regarding Theorem 6.4, we may write

|F (z + ∆z)− F (z)

∆z
− f(z)| =

= |
∫ z+∆z

z
(f(w)− f(z)dw

∆z
| ≤ ‖f(w)− f(z)‖[z,z+∆z] → 0 as ∆z → 0.

Thus F ′(z) = f(z). This concludes the proof. Q.E.D.
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7.2. Continuous deformations of loops.

Definition: The loop γ1 is said to be continuously deformable to the loop γ2

in the domain D, if there exists a function z(s, t), (s, t) ∈ ([0, 1] × [0, 1]) that
satisfies the conditions:
1. z(s, t) ∈ C2([0, 1]× [0, 1]);
2. For each fixed s ∈ [0, 1] the function z(s, t)

parametrizes a loop in D;
3. The function z(0, t) parametrizes γ1;
4. The function z(1, t) parametrizes γ2.
Example: THE function

z(s, t) := (1 + s)e2πit, 0 ≤ s, t ≤ 1

deforms continuously the circle C0(1) into the circle C0(2).

7.3. Deformation Invariance Theorem.
We first recall the definition of a simply connected domain.

Definition: Any domain D in the complex plane C possessing the property that
every loop in D can be continuously deformed in D to a point is called simply
connected. ℵ.
For example, any disk Da(r), r > 0 is a simply connected domain.

Now we are in position to prove the Deformation Invariance Theorem.

Theorem 7.3. Let D be a domain in C and suppose that f ∈ A(D). If γ1, γ2

are continuously deformable into each other closed curves, then∫
γ1

f(z)dz =

∫
γ2

f(z)dz.

Proof:
Fix s ∈ [0, 1] and set γ(s) := z(s, t), t ∈ [0, 1]. We shall show that the

function I(s) :=
∫
γ(s)

f(z)dz equals a constant. Indeed,∫
γ(s)

f(z)dz =

∫
γ(s)

f(z(s, t))
∂z(s, t)

∂t
dt.

Look at the derivative of I(s); we have

I ′(s) =

∫
γ(s)

f(z(s, t))
∂z(s, t)

∂t
dt =
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=

∫
γ(s)

[
∂f(z(s, t))

dt

∂z(s, t)

∂s

∂z(s, t)

∂t
+ f(z(s, t))

∂2z(s, t)

∂s∂t
]dt.

On the other hand,

∂

dt
(f(z(s, t))

∂z(s, t)

∂s
) =

∂f(z(s, t))

dt

∂z(s, t)

∂t

∂z(s, t)

∂s
+ f(z(s, t))

∂2z(s, t)

∂t∂s
.

The theorem by Weierstrass about the independence of second order
derivatives of the order of differentiation guarantees that

dI(s)

ds
=

∫ 1

0

∂

dt
[f(z(s, t))

∂z(s, t)

∂s
]dt =

= f(z(s, 1))
∂z(s, t)

∂s
(s, 1)− f(z(s, 0))

∂z(s, t)

∂s
(s, 0).

As we know, the curves γ(s) are closed which means that for every s ∈
[0, 1] z(s, 0) = z(s, 1).

Thus

I(s) =

∫
γ1

f(z)dz =

∫
γ2

f(z)dz.

Q.E.D.
Cauchy’s integral theorem An easy consequence of Theorem 7.3. is the
following, familiarly known as Cauchy’s integral theorem.

Theorem 7.4.If D is a simply connected domain, f ∈ A(D) and Γ is any
loop in D, then ∫

Γ

f(z)dz = 0.

Proof: The proof follows immediately from the fact that each closed curve
in D can be shrunk to a point. Q.E.D.

We conclude the following

Theorem 7.5. Let D be a domain in C and f ∈ A(D)
⋂
C(D). Set ∂D := Γ.

Then ∫
Γ

f(z)dz = 0.
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Proof: Without losing the generality, we may assume that all components
of Γ are smooth curves. It D is simply connected, then we are done. Assume
that D is double connected and let Γ = Γ1

⋃
Γ2. The domain is positively

orientated with respect to Γ; let Γ1 be the positive component (clockwise)
and Γ2− the negative (counterclockwise) (Γ = Γ1

⋃
(−Γ2).) Without loosing

the generality we suppose that Γ1 and Γ2 are continuously deformable into
each other, and by Theorem 7.3.∫

Γ1

f(z)dz =

∫
Γ2

f(z)dz. (1)

On the other hand∫
Γ

f(z)dz =

∫
Γ1

f(z)dz +

∫
−Γ2

f(z)dz =

∫
Γ1

f(z)dz −
∫

Γ2

f(z)dz = 0.

Joining (1), we arrive at the statement.

The Cauchy’s integral theorem indicates the intimate relation between
simply connectedness and existence of a continuous antiderivative.

Theorem 7.6. Let D be simply connected in C and f ∈ A(D).
Then f possesses a continuous antiderivative and its contour integral does

not depend on the path of integration.
The proof follows from Theorem 7.3.

7.4. Cauchy’s integral formula

Theorem 7.7. Let D be a domain in C, Γ := ∂D and f ∈ A(D)
⋂
C(D).

Then, for every point a ∈ D the representation

f(a) =
1

2πi

∫
Γ

f(z)

z − a
dz (2)

holds.

Proof:
Take r sufficiently small (e.g. Da(r) ⊂ D) and consider

∮
|z−a|=r

f(z)
z−adz.

(the circle is traversed once in the positive direction). We have

1

2πi

∮
|z−a|=r

f(z)

z − a
dz =

1

2πi

∫ 2π

0

f(a+ reiΘ)

reiΘ
ireiΘdΘ.
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Letting now r → 0 we obtain that

1

2πi

∮
|z−a|=r

f(z)dz = f(a).

To complete the proof, we apply Theorem 7.5. with respect to the func-
tion f(z)

z−a and to the domain D \ Da(r). Q.E.D.

As an application, we provide the mean value theorem for harmonic func-
tions.
Theorem 7.7. Let h be harmonic in the disk Da(R), R > 0. Then

h(a) =
1

2π

∫ 2π

0

h(a+ReiΘ)dΘ.

Proof: : We recall that the real and the imaginary components of an analytic
function are complex conjugate harmonic functions. Let f ∈ A(Da(R)) be
such that h(z) := <f(z). Denote the imaginary component by k(z).

f(f) = h(z) + ik(z), z ∈ Ka(R).

Using (2), we get

h(a) + ik(a) =
1

2πi

∫
Ca(R)

h(ζ) + ik(ζ)

ζ − a
dζ.

Hence,

h(z) =
1

2πi

∫ 2π

0

h(a+ReiΘ)

ReiΘ
iReiΘdΘ.

The statement follows after completing the needed cancellations.

Exercises:
1. Prove that ∫

Ca(ρ)

dz

(z − a)m
=

{
0, m 6= 1
2πi, m = 1 ♣
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2. Prove that ∫
C0(ρ)

dz

(z − a)
=

{
0, |a| > ρ
2πi, |a| < ρ ♣

3. Which of the following domains are simply connected?
a) {z, | Im z| < 1};
b) {z, 1 < |z| < 2};
c){z, |z| < 1};
d) {z, |z| > 1};
e) {z, |z| < 1} \ {z, 0 < Re z < 1}. ♣
3. Calculate ∫

S

1

1 + z2
dz,

with S being the interval [1, 1 + i]. ♣
4. Show that if f(z) is of the form

f(z) =
n∑
k=0

Ak
zk

+ g(z),

where g(z) is analytic outside C0(1), then∮
|z|=1

f(z)dz = 2πiA1.

♣
(By definition,

∮
|z|=1

:=
∫
C0(1)

, C0(1) traversed once in positive direction.) ♣
5. Let P be a polynomial of degree≥ 2, such that all zeros lie inD′(R), R > 0.
Show that ∮

|z|=R

1

P (z)
dz = 0.♣

Hint Apply Theorem 7.5. with respect to the annulus {z,R < |z| < R + r}
and then let r increase to infinity. ♣
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