7. Cauchy’s integral theorem and
Cauchy’s integral formula

7.1. Independence of the path of integration

Theorem 6.3. can be rewritten in the following form:
Theorem 7.1 : Let D be a domain in C and suppose that f € C(D).
Suppose further that F(z) is a continuous antiderivative of f(z) through D
D. Let zy and zp be distinct points in D. Then the integral

/Z:T f(2)dz

does not depend on the path of integration, e.g., for every smooth contour
~v C D which start at zy and terminates at zp, we have

2T
/ f(2)dz = /f(z)dz = F(zr) — F(2).
20 v

Theorem 7.1. is called Theorem on the depend of the path of integration.
From this theorem we get the following obvious consequence:

Corollary 7.2. : Under the conditions on f of Theorem 7.1., let v be a
smooth closed contour which lies entirely in D.! Then

[/f(z)dz =0

Our coming considerations are based on the following theorem:

Theorem 7.3. Let D be a domain in C and f € C(D). Then the following
statements are equivalent:
(1) f has a continuous antiderivative in D;

(2)
Lf(z)dz =0

for every loop v lying in C D.

"'We call such contours loops.



(3) The integral

/Z F(2)d

is independent of the path of integration; e.g., if v; and 7, share the same
initial and terminal points, then

/% f(2)dz = /wf(z)dz.

Proof: Since the implications 1) — 2) and 2) — 3) already established
(Theorem 7.1 and Theorem 7.2), we will concentrate on the proof of 3) —
1).

Select an arbitrary point zg € D and let z € D.

Set

F(z):= /Z: f(2)dz.

We claim that F'(z) is an antiderivative of f in D. Before, we notice that the
integral is well defined - because of the connectedness of the domain D there

ix a contour which combines zg and z.
We shall show that

F(z+ Az) — F(2)
Az

— f(2),Az — 0.

Indeed,
Flz+A2) — F(z) [T (w)dw
Az N Az ’
where we integrate along a segment lying completely in the domain.

Regarding Theorem 6.4, we may write

F(z+ Az) — F(2)
| Az

- f(2)] =

z+Az w) — Ndw
- IO =IO ) = f g — 0 25 Az 0

Thus F'(z) = f(z). This concludes the proof. Q.E.D.



7.2. Continuous deformations of loops.

Definition: The loop 7, is said to be continuously deformable to the loop 7,
in the domain D, if there exists a function z(s,t), (s,t) € ([0,1] x [0, 1]) that
satisfies the conditions:
1. z(s,t) € C*(]0,1] x [0,1]);
2. For each fixed s € [0, 1] the function z(s,t)
parametrizes a loop in D;
3. The function z(0,t) parametrizes ;;
4. The function z(1,t) parametrizes 7s.
Example: THE function

2(5,t) == (1 +8)e*™ 0<s,t<1

deforms continuously the circle Cy(1) into the circle Cp(2).

7.3. Deformation Invariance Theorem.
We first recall the definition of a simply connected domain.

Definition: Any domain D in the complex plane C possessing the property that
every loop in D can be continuously deformed in D to a point is called simply
connected. N.
For example, any disk D,(r),r > 0 is a simply connected domain.

Now we are in position to prove the Deformation Invariance Theorem.

Theorem 7.3. Let D be a domain in C and suppose that f € A(D). If y1,v2
are continuously deformable into each other closed curves, then

[n f(z)dz = L2 f(2)dz
Proof:

Fix s € [0,1] and set v(s) := z(s,t),t € [0,1]. We shall show that the
function I(s) := fy(s) f(2)dz equals a constant. Indeed,

0z(s,1)

dt.
ot

f2)dz= [ f(z(s,1))

v(s) v(s)

Look at the derivative of I(s); we have

/ 1 ( 9%(s,1) 4, _



B Of(2(s,t)) 0z(s,t) 0z(s,t) 0?2(s,t)
B /7(8)[ dt Js ot (s 1) dsot ld.
On the other hand,
0 0z(s,t),  Of(2(s,t)) 0z(s,t) 0z(s,t) 0?2(s,t)
EU(Z(SJ)) Js )= dt ot Js + (s 1) otds

The theorem by Weierstrass about the independence of second order
derivatives of the order of differentiation guarantees that

)= [ et e

0z(s, ) 0z(s,t)

= f(z(s,1)) (s,1) — f(2(s,0)) s (s,0).

As we know, the curves ~y(s) are closed which means that for every s €
0,1] 2(s,0) = z(s, 1).

Thus
I(s) = / F(2)dz = / F(2)dz.
h : Q.E.D.

Cauchy’s integral theorem An easy consequence of Theorem 7.3. is the
following, familiarly known as Cauchy’s integral theorem.

Theorem 7.4.If D is a simply connected domain, f € A(D) and I' is any

loop in D, then
/f(z)dz =0.
r

Proof: The proof follows immediately from the fact that each closed curve
in D can be shrunk to a point. Q.E.D.

We conclude the following
Theorem 7.5. Let D be a domain in C and f € A(D)(C (D). Set D :=T.

Then
/f(z)dz = 0.
r
4



Proof: Without losing the generality, we may assume that all components
of I are smooth curves. It D is simply connected, then we are done. Assume
that D is double connected and let I' = T'; |JI's. The domain is positively
orientated with respect to I'; let I'y be the positive component (clockwise)
and I's— the negative (counterclockwise) (I' = I'; | J(—T'3).) Without loosing
the generality we suppose that I';y and I'y; are continuously deformable into
each other, and by Theorem 7.3.

f(2)dz= [ f(z)dx. (1)
I Iy
On the other hand

/rf(Z)dZ: A f(z)dz + ) f(z)dz = A f(z)dz — A f(z)dz =0.

Joining (1), we arrive at the statement.

The Cauchy’s integral theorem indicates the intimate relation between
simply connectedness and existence of a continuous antiderivative.

Theorem 7.6. Let D be simply connected in C and f € A(D).

Then f possesses a continuous antiderivative and its contour integral does
not depend on the path of integration.

The proof follows from Theorem 7.3.
7.4. Cauchy’s integral formula

Theorem 7.7. Let D be a domain in C, ' := 0D and f € A(D)(\C(D).
Then, for every point a € D the representation

1 [ f()
=— | —=d 2
f(a) 2mi Fz—az )
holds.
Proof: o
Take r sufficiently small (e.g. D,(r) C D) and consider §|Z7a|zr %dz.
(the circle is traversed once in the positive direction). We have
2 10
Ly{ Mdz = L Mireied@.
270 J)sgjer 2 — @ 270 Jo ret®



Letting now r — 0 we obtain that

L f(2)dz = f(a).

2mi |z—al|=r

To complete the proof, we apply Theorem 7.5. with respect to the func-
tion £2 and to the domain D \ D,(r). Q.E.D.

As an application, we provide the mean value theorem for harmonic func-
tions.
Theorem 7.7. Let h be harmonic in the disk D,(R), R > 0. Then

1
o7

h(a) /O " h(a + Re™®)deO.

Proof: : We recall that the real and the imaginary components of an analytic
function are complex conjugate harmonic functions. Let f € A(D,(R)) be
such that h(z) := Rf(z). Denote the imaginary component by k(z).

f(f) = h(z) +1k(2), z € K.(R).
Using (2), we get

h(a) +ik(a) = 2%”/ ) de

Hence,

1 2 h(CL + Réi@) . i©

The statement follows after completing the needed cancellations.

FExercises:
1. Prove that

/ dz [0, m#1
o (p) (z—a)m N 2w, m = &



2. Prove that

/ dz { 0, la|>p

Colp) (z — a) o 27Ti, ‘CL’ <p &
3. Which of the following domains are simply connected?
) {z,| Im z| < 1};

b) {z,1 < |z| < 2};

c){z |z <1}

d) {z,[z] > 1}

e) {z,]z] <1} \ {z,0 < Re z < 1}. &

3. Calculate
1
dz,
S 1 -+ 22

with S being the interval [1,1 + i]. &
4. Show that if f(z) is of the form

Qo

f =3 2 4 g(e),

k=0
where g(z) is analytic outside Cp(1), then

(2)dz = 2miA;.

j2=1

&
(By definition, ¢, _, := [, ) Co(1) traversed once in positive direction.) &
5. Let P be a polynomial of degree > 2, such that all zeros lie in D,(R), R > 0.

Show that .
dz=0.&
f;|:R P(z)

Hint Apply Theorem 7.5. with respect to the annulus {z, R < |z| < R+ r}
and then let r increase to infinity. &




