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SUPPORT MAXIMUM PRINCIPLE FOR TIME-DELAYED
SYSTEMS WITH FUNCTIONAL RESTRICTIONS-II*

V. V. ALSEVITCH, O. I. KOSTYUKOVA, YU. H. PESHEVA

2. Formula for the deviation of the criterion.
On the trajectories of the system

#(t) = Aoz(t) + A1z(t) + Arz(t — h) + bu(t), t € [0,t* + ] =T,

1) ’
z(1) = zo(7), T € [-h,0[ ,2(0) = 2°,

the problem of maximization
(2) J(u) = eTz(t* + h) — max

stated in [1] is considered. Every piece-wise continuous function u(t), t € T, will be
called an admissible control if

(3) lu(t)| <1, teT,
and if for the corresponding trajectory of (1) the following restriction is satisfied:
(4) dTz(t)=y, te T* = [t",t* + h].

Let us consider the deviation of the criterion for two admissible controls

t*+h
(5) AJ(u) = TAZ(t" + h) = / TF(t" + h, t)bAu(t)dt.
0

*Continuation of Serdica 19 (1993), 243-257

2 Cepamxa 2/94
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Then for the deviation Az(t) of the trajectory corresponding to Au(t) it follows:

dTAz:(t) =0, t€intT*,
dTAz(P)(#‘- + 0) =0, p= 0,_k.- 1€ 1+o,
(6) S
‘{I‘Az(l’)(“‘ - 0) = 0, p= 0, ki—l 1€ 1_07
I{TA.’L'(’)(T.'J') =0, p=0, ki +1 ] = -]T\;:y 1= (TP,
where

"= {i€ It By #1’.‘1}, ‘s {ieI_U(p+l):”i#r‘—l.li—l}9

or according to (1.15)*, we have:

p—1p-i-1
Z dT(p)Az(pui—sh)+ 5 3 dT(p—1- 1)bAuO (4 — sh +0) = 0,
=0 =0 s=0

pP= kah 36 I+0;

(M
p—-1p-i-1
E dT(p)Az(p; — sh) + z E dT(p—1-1)pAuO(y; — sh - 0) =
=0 =0 =0
pP= Oyki—lv i€ 1-0;
p—1p-i-1
Z dl (p)Az(ri;—sh)+ Y Y dl(p—1- 1)bAu(r;; - sh) =
(8) =0 1=0 =0

Let us multiply the equalities (6)-(8) by function £(t), t € T™, E(t) =0,t¢gT"
andnumbersv,,p—Ok,,tEl*"’ p=0k_,,i €% ,J,p—Ok.“,J—l iy
respectively i = 0,p. Let us sum up the results and add them to the right part of (5).

*Here and further on by (1.15) we denote formula (15) from part I in [1], and by (2.5) - formula
(5) from part II of this paper.
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We obtain:

t*+h t*+ ki
AJ(u) = /o cTF(t* + h,t)bAu(t)dt + / §t)dTAz(t)dt+ Y Y oF

€140 p=0

=0 =0

p—1p-i-1
(Z dT(p)Az(pi —sh)+ Y Y dT(p—1-1)bAuO(y; - sh + 0)>
=0

1€]-0 p=0 s=0 =0 s=0

-1p-I-1
+y Zv’(ZdT A:r(u.—sh)+pz: Y dl(p-1-1)pAau(u -—sh—O))

P8 ki+l p—1p-i-1

DIPIPILS (Z dl(p)Az(rij - sh)+Y_ Y dT(p—1-1)bAu"(r; - ,h))
1=0 ;=1 p=0 s=0 =0 =0

Let m; = max{k;,k;—1}, I° = I*°UI~°. Then by using the Cauchy formula we obtain

AJ(u) = /ot.M cTF(t* + h,t)bAu(t)dt + /0¢‘+h (/:Wl {(r)dTF(r,t)df) bAwu(t)dt

N /.'”'"( /M'g( )dTF(rtdr)bAu dHEZ E / ()P - sh, )

1€]0 p=0 =0

P8 ki+l

ki
-bAu(t)dt + E Z z v|J Z/ dT(p)F(‘r;,- — sh,t)bAu(t)dt + z zv'?

1=0 j=1 p=0 s=0 i€]40 p=0
p—1p-i-1 p—1p-i-1

ki1
2 Z dT(p -1 - 1)bAuO(p; - sh +0) + Z Ev’z Z dT(p-1-1)b
=0 s=0

'
1€]-0 p=0 I=0 s=0

p s ki+l p-1p-Il-1

Aul(y; - sh - O)E E E v}, z z dT(p-1- 1)bAu(7;; - sh).

1=0 j=1 p=0 1=0 s=0

Since F(r,t)=0,t > 7, then if we introduce a function
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VI(t) =cTF(t" +h)+ / T et F(r, v
(9) + 3033 Pdl(p) (s — shy)

i€ 0 p=0 s=0

P 8 ki+l.p

+ Z Z Z E"?jd.r(p)f‘(ru —sh,t), teT,

1=0 j=1 p=0 =0

we will get:
t*+h
AJ(u) = / W7 ()bAu(t)dt
0
ki p—1p—-i-1
+ Y33 Y kdl(p -1 - 1)pau(u; - sh +0)
€140 p=0 |=0 s=0
(10)

ki1 p—1p—I-1

+ 333 Y wrdl(p-1- 1)pAu (4 — sh - 0)

i€l p=0 [=0 =0

p 8 kig1p-1p-i-1

M Z z E E E v-}';d’[(P -1- l)bAu(')(rij — sh).

1=0 j3=1 p=0 [=0 s=0

Formula (10) is the final form of the deviation of the criterion.

Starting from Definition (9) of the function ¥(t), t € T, we obtain a differential
equations system, whose solution is ¥(t). Let:

LT on’_"a
(11) a=4 0 p=k,+1, p+1€l7Y
vl’;v’p? p:oykp+1| P+1¢1_o;

v(’,’, P‘—'O_Io
(12) wW=4¢0p=kotl, 0€I*
vh,, p=0,ko+1,0¢gI*
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Then from (9) we obtain the system

V(t) =-ATW(t) - ATW(t+ h)+£(t)d, teT,

(13)
£t) =0, tgT* W(t)=0, t>t"+h,

with a final condition

kp+1
(14) Ve +h-0)=ct 3 %y,dolp),
p=0
and jumps
kp+1
Y(t" —sh—0) = ¥(t" —sh +0)+ Y 5d,(p)
(15) kp+1 =
- Z ¥ 1ds41(p), 8 =0,max{ko + 1,k, + 1},
p=s+1

(16) ‘I’(I‘i--’h—o)=W(I‘i‘-”""")*‘i"f“a(?), i=10\{0,P+1}, 3=09——miv

=8

¥(ri; — sh— 0) = ¥(ri; — sh +0) + Tpt! v2.d,(p),

(17) _ — N
i=0p, j=T,5, s=0,K+1, to1 #1°, T, #1"+h.
Definition. The system (13) — (17) s called a conjugate system of problem
(1) - (4), and the function ¥(t), t € T - a support cotrajectory. The scalar product
A(t) = ¥T(t)b, t € T, is called co-control.

Lemma. If there ezists a support of problem (1) — (4) [1], then there ezist an
unique set of numbers vf, i € I°, p=0,m;, vf;, i =0,p, j = 1,5, p=0,ki + 1, and
a function £(t), t € T, £(t) = 0, t € T*, such that the solution of system (13)—(17)
satisfies the conditions:

A(t)=¥T(t)b=0, teintT, i=0,p, A(tx)=¥T(th)b=0, k € Ko.

The proof can be made by deriving the formula for the deviation of the criterion
in another way. We omit the details.
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3. Support maximum principle.

Definition. The support control [1] {u, Ssup} (in [1] {u,Son}) is called non-
degenerate, if

(1) | lim u(r)| #1 whente TE\UL Tl i=0p;

(2) |(u(te +0) + u(te — 0))/2| # 1, k € Ko;

(3) it(pf' +0)#0 whenie I"YUI™~ and Iu(uf' +0)| =1,
(4) d(;zﬁ'_l —0)#0 whenie I""UI™~ and Iu(pﬁ,l -0)=1.

Let {u,S,u,} be support control, A(t), t € T, v}, p = 0,m;, i € I% vf,
p=0,ki+1,j=1,s;,1=0,p, - the co-control and jumps corresponding to it.
Theorem (Optimality criterion). For optimality of the admissible control u(t),

t € T, it is sufficient, and in case of a non-degenerate support control {u, S,yp} it is
also necessary that

A(t) >0 for u(t)=1,
(5) A(t) <0 for wu(t)= -1,
A(t) =0 for |u(t)| <1, t €T, (Tn in[1]),

v!dThb >0 for u(p)=1,
(6) v!dTh <0 for u(pw)=-1,
v} =0 for |u(ui)| <1, i€ I%

(7) v?:03p=21mi1 ‘e [0,
deTbEO for u(T"]')zl,

v'?dTb <0 for wu(rj)= -1,
(8) v =0 for |u(mj)| < 1,5

vfj=0,p=2,k.'+l,j=m.‘, t=0,p.
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Proof. The sufficiency follows straight from formula (2.10) for the deviation.
Necessity. For the sake of simplicity we will give the proof for the case when
ke =2 (k. <2)and

{te,k € Ko} {u¥, by, i =05} = 0.

Let  ={i€{0,1,....,p+1}:m; =1}, L, ={i € {0,1,...,p+ 1} : m; = 2} if
tx is a point of discontinuity of the control; v = min{1 — u(tx), 1 + u(tx)}/2 otherwise,
k € Ko.

First let us consider the simple case, when
(9) $;=0,1= m

When k. < 2 and conditions (9) hold, formula (2.10) for the deviation is pre-
sented in the form:

AJ(u) = /T A)au(t)de+ Y vldl (0)bAu(us)

1€y

2
+ 0 (Au(ui) Y dd(p— 1)of + Au(pi — h)d] (1)bv} + Aul)(u)dg (0)bv]).

1€l r=1

(10)

A) We will prove equalities (7) by supposing that the contrary holds. Assume
that there exists an index i € Iz, such that v} dJ (0)b = v2d”b > 0. Since i € I3, then
kiy = 2, kig—1 < 1 (or ki, < 1, kg1 = 2). Let ki;—; = 1. The following cases are
possible: a) u(u;,) < 15 b) u(pi, = 1.

Let us consider case a). Denote © = (Ok,k € Ko) and define the function
Au®4(t), t € T \ Toup (Toup is Ton in [1]).

(t = pio + €)%, t € [iy — &t [,
=(t = pig — €)% + 26, € [pig, pio + 2¢[,

(11) Au®(t) =
(t_“‘o -38)2v teb‘io+2£al‘io +3€]v
0, t € [pig—1, Hio41] \ [io — &, iy + 3€];
(12) Au®(t)=0, teT};
(13) Au®(t) =0, teTF k=0,k—1, i#ig, i#io—1,i=0,p;

Yks t € [te,tx + ©k] when ©x >0
(14) Au"(t) - —Yk, tE [tk + Ok, tx] when Of <0, k € Ko;
0 otherwise t € Tun (Tyn in Ty in [1]).
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From (11) — (13) and (18) we get:

g.i':.](t) Eov i=mv i#i0$ *#10—1,

2 2-j 1
g (1) = S dl(2- j)au®O)(t — sh) + 3 dT(2)bAu®(t - sh)
1=1 s=0 s=0

2
= 3 df (2 - j)bau®0(t) + dF (2)bAu(2)

= :1?(2)bAu9‘(t) +dT(1)bAu®e(t) + dT(0)bAE®(2)

d3(2)b[—(t — iy — €)% + 2¢2] + dT (1)b[—2(t — piy — €))
_2‘{({(0)61 te [”"'ovl"'o + 25[7
= ¢ dg(2)b(t — piy — 3¢)? + df (1)b2(t — pi, — 3¢) + 2d7(0)b,
t € [pip + 2¢, piy + 3¢,
0, t € [piy + 3¢, pig41),

780 (1) = dJ(2)bAi® +dJ(1)bAu(t)

_ 0, te Tio—l \ [I"l'o - &, “io]v
dg(l)b(t = Mo + 6.)2 + 2dg(0)b(t — Mio +€), tE [}‘io = € fhig]-

Let us choose arbitrary n—-vectors 29, 21 (k. —1 = 1) and let us consider the
equations (see (1.50))

te+O,
ep(0,6,20,21) = GP+,[z°(t‘ +h)+ Z / Q(t* + h, 7)byidr

k€Ko 7t
ke—1
+ ) Q"+ h,t"—sh)z,] - 2 =0, p=0,k - 1;
(15) =0 ta+Os
0pi(©,6,20,21) = rT[O(i)+ Y Qt" + h,7)byedr
keKy te
ke—1 -
+ Z Q(l‘ivt. - 3’1)2,] = Nip, 1= O,P, pE \Si'
=0

where z%(y;), i = 0,p, 2°(t* + h) are obtained from (1.25), (1.46), (1.44), and 7, -
from (1.16), (1.41) by using the functions Au®*, t € T\Tyyp, 5,?"('), i =0, g, expressed
above, and functions g,(u;) =0, p € Si, i = 0,p, i # 10, g2(ptio) = d¥(1)be? + 2dT(0)be
- from (1.16) (S;, = {2}).
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The function ¢,(0,¢,20,21), p = 0,ka — 1; ¢pi(©,,20,21), p € Si, i = 0, p, are
continuous and

¢$(0,0,0,0) = 0, p = 0,k. — 15 ¢,:(0,0,0,0)=0, p€ S;, i =0,p;

[ 09y Opp  Opp 1
ae, azo’ 0z1
p . 0, ko - l
(16)  det dow  Opri O = H Yedet Poyp # 0
| d i pt reK.
ae ’ 320 ’ 321 °
i p€ESi, i=0,p ]|©=0,e=0

20=2=0

(Psup is Pon in [1]).

According to the theorem for implicit functions there exists functions:

(17) Ok = Ok(e), k€ Ko; z0 = 20(¢), z1 = 21(¢),

such that the following identities hold

(18) ep(0(e), 6, 20(¢), 21()) =0, p= 0_,?——1_
epi(O(€),€,20(€), 21(€)) =0, p€S;, 1=0,p;

when ¢ > 0 is sufficiently small.

It can be shown that the functions (17) are of order €. Using (18), we can
conclude, that functions f(t) = 0, t € T*; Au®()(t), t € T\Tsup and vectors zo(¢),
z1(¢) satisfy conditions (1)—(4) from [1] and relations (1.50) when ¢ > 0 is sufficiently
small. Let us denote by 2%(t), t € T, the solution of system (1.34) corresponding to
them and let us define the function (1.55).

Bu(t—kih) = Filt) = —rEpa# (), t€ Ty i€ I\lii

1 - 1 1 [kt
U awe-km = 70 - srnz0- o [ dl i (ke + 1)

F(t = (ke + 1)h, 7)bAu(7)dr, t € T}, 1 € I, .

The control Au®(t) and the corresponding trajectory Az*(t) of the system (1.11) satisfy
the condition

(20) dTAzé(t)=0, teT"

According to [1], the control Au®(t),t € T is continuous at the points pf‘, when
it € It U I~ and at the points pﬁl, ifielt-ul .
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We shall prove that for every sufficiently small ¢ > 0 there exists a number o,
0 < 0 = o(¢) < 1 such that the control u*(t) = u(t) + cAu®(t), t € T, is admissible in
problem (2.1)-(2.4). Since (20) holds, then it is sufficient to show that when £ > 0 is
sufficiently small, there exists o = o(¢) > 0 such that the following inequalities hold:

(21) |u(t) + cAus(t)| <1, teT.

By definition (see (11)-(14), (19)) Au®(t) = 0(¢), t € Tsup |Au®(t)| < 1, t € T\Tsup.
That is why without loss of generality we can think that |Au®(t)| < 1,t€ T.

The support control {u, Ssup} non-degenerate, the control u(t), t € T, is con-
tinuous for ¢t € T* and u(pi,) < 1. Therefore, for moments t € T\Tsup = Tan UTp
the inequalities (21) hold for every o, 0 < ¢ < 1, and for a sufficiently small ¢ > 0.

)

Consider the moments t € Tsyp = U T‘-"‘ and calculate steps
=0

(22) 0; = 0i(¢) = min o%(t), teTH, i=0,p

where
(1 - u(t))/Au(t) when Aus(t)>0,

of(t) =< (—1-u(t))/Au*(t) when Auc(t)<O0,
00 when Auf(t)=0, te€ T-"‘.
Obviously, the inequalities (21) are true for every o, 0 < .o < o, when t € Tk' and
£ > 0 is sufficiently small. We shall show that o; > 0,1 = 0, p.

Let ¢ € I**. Then [1] T."' T"" and since the support control {u, Sy} is non-
degenerate, we have

(23) lu(t) <1, teThH.
From (22), (23) as |Au®(t)| < 1,t € T, we obtain o; > o.;, where

(24) 0. = min min {1 —u(t),1+u(t)} > 0.
teT
Suppose i € I*. From the non-degeneration of {u, Sy} it follows that |u(t)| <
1, t €]’ ’#.“] w(ut) # 0f u(p)) = 1.
If |u(p‘ )| < 1 then o; > o.;. If for sufficiently small @ = d(¢) > 0 we have
u(pf') =1,Au*(t)<0,t€ [;4:",;4.‘-" + d]; or u(p:") =-1,Au(t) > 0,t € [/l'-k',[l'-k' + 3],
then o; > min {1,7.,;}, where

Toi = mTI‘n min {1 = u(t),1+ u(t)} >0, T —T "\, uk ult 4+ 0.
te
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Consider the case, when u(pf‘) =1,Au(t) > 0,t € [pf‘,uf‘ + 9] (or u(yf‘) .
—1, Auf(t) <0, t € [u¥, 45 + 9)).

According to (11)—(14) we have: Au‘(u,‘-" —0) = 0. As it was shown above,
Au®(t),t € T, is continuous at moment yf', because ¢ € /=%, Therefore Au‘(pf" +0) =
0, At't‘(pf‘ + 0) > 0 and for the step o;, the inequality holds:

o; > min {—a(u¥ +0) /Ai(ub + o),v..} > 0.

Reasoning by analogy, it can be shown that o; > 0,i € I~ U [*~.
Assign 09 = min 0y, 0. = min {1,00} > 0.
1=0,p
Obviously, for a sufficiently small £ > 0 the inequalities (21) hold when o = o,.
It is proved that the deviation o.Au®(t), t € T, is admissible.

Let us calculate the deviation (10) of criterion (2) for o, Au®(t),t € T

tx+6(e) HBig 43¢
> / A(t)yrdt + / A(t)Aus(t)dt
M

kEKo ‘k 0 —¢

AJ(u) =o. (

2
+ 3 d5(p— 1)v] Au(pi,) + d (0)bv? Ad(ui, )) .

p=1
By definition
(25) Alty) =0, k€ K,.
Therefore for a sufficiently small € > 0 using (11), we have:
(26) AJ(u) = 0. (2ed] (0)bv2 + o(c)) > 0,

since by assumption v?ocfg (0)5 > 0. The inequality (26) contradicts the optimality of
the control u(t), t € T. It yields that the assumption v?odT(O)b > 0 is wrong.
In case b) we do the same as above of (11) we use
—(t = pig +3¢)?, L € [y — 3¢, pig — 2¢;
(t — pio + €)% — 262, t € [pyy — 26, iy [;
—(t = pig — 3€)?, t € [ig, pig + €J;
0, t € [pig—1, Mio+1 \ [ip — 3¢, piy + 3e].

Au®e(t) =

By analogy it can be proved that the inequality v?odT b < 0 is impossible.
Thus it is proved that the relations (7) are true under the assumption
(1] DTs #0.
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Let us assume that the relations (6) are not true. Suppose that there exists
an index ig € I; U I such that v}odTb > 0, u(pi,) < 1. Let ig € I;. For example,
let kiy = 2, kig—1 = 1. Define function Au®%(t), t € T \ Tyyp through the following

formulas:
(t — i + 26)%, t € [pip — 26, iy — €[

—(t — pig)? + 262, t € [pip — €, iy + €[;
(t-l‘io - 28)2’ te [""o +€v“io +2€];
0,te [/‘io-lvl‘io+1] \ [I‘io = 2¢, pip + 26];

Au®e(t) =

and (12)—(14).

Let us choose n—vectors 23, z3 and consider the equations (15), where z%(y;) are
expressed by (1.25), (1.46), (1.44), n;, — by (1.16), (1.41) using the function Au®%(t),
t € T\ Toup and functions:

Toc_41(t) = dT(0)bAwS() + df(1)bAUSE(t), t € Ty,
goc (1) = di(2)bAu®e(t) + df (1)bAUS(t) + df (0)bAE(1), t € T,

estimated by (1.18) and using

01(kia +0) = dF(0)bAUS (s, +0) = dT(0)be? = dThe?,
92(pio +0) = df (1)bAu®(pig + 0) + dg (0)bAU®*(pi, + 0)
= 2dg(l)b€2v gp(/"l) =0, pE S.', i = TP, : # iO

defined by (1.16).
We can notice, that

1 . — 0 i . —
(27) . =0, i=0,p+1; —%—,@l‘_ozo,pe.ﬂ,z=0,p.

The functions ¢,(0,¢,20,21), p = 0,ka — 1, 9i(0,€,20,21), p € Si, i = 0,p,
are continuous and for them relations (16) hold. Therefore according to the theorem
for implicit functions there exist functions (17) such that for every sufficiently small
€ > 0 the identities (18) hold. From (27) we have

(28) 0k(e) = o(¢), k € Ko.

In this way, functions f(t) = 0,t € T*, Au‘(t) = Au®)e(1), t € T\T,up, and vectors
20(£), z1(¢) satisfy conditions (1-4) from [1] and relations (1.50) for sufficiently small
€ > 0. Denote by 2%(t), t € T*, the solution of the system (1.34) corresponding to them
and define function Au®(t), t € Tyup, by means of formula (19).
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Following the reasoning in case A), we can show that when the support control
{u, Seup} is not-degenerate, the deviation o.Auc(t),t € T, 0. > 0, is admissible if ¢ > 0
is sufficiently small.

Let us estimate the deviation (10) for o.Au®(t):

Wig+2¢

AJ(u) = o. (2 O N (tyyedt + / *

A(t)Aut(t)dt + 26?0} dTd | .
keKo te Hig—

Taking into account (25), (28) for a sufficiently small ¢ > 0 we get the inequality
AJ(u) = 0. (2?0} dTb + o(e?)) > 0,

which contradicts the optimality of control u(t),t € T.
Now let ig € I;. For example ki, = 1, kig—; = 0. Define function Au®*(t),
t € T\Tyyp, through the following formulas

Aue‘(t) — { -t + Hio te, tE [l‘iw Hio +€[;

0, t € [pig + & Hios1;

and (13), (14).
Next the reasoning proceeds as described above. Thus we obtain deviation
o.Auf(t), t € T, which satisfies the inequality

AJ(u) = o. (ev} dTb + o(¢)) > 0,

for sufficiently small € > 0. This inequality contradicts the optimality of control u(t),
t € T. Relations (6) are proved.

Other possible cases of violated optimality conditions can be investigated by
using the above scheme.

The optimality criterion can be formulated as a support maximum principle.

Maximum principle. Let {u, Syyp} be support control, and let z(t), ¥(t),t € T,
be the solutions of the systems (2.1) and (2.13)—(2.17) respectively. For optimality of
the admissible control u(t), t € T, it is sufficient, that for u(t), z(t), ¥(t), t € T, the
Hamiltonian

H(z,z,¥,u,t) = WT(Aoz + A1z + bu)

gets its maximum value:
(29) fnlg H(z(t),z(t — h),¥(t),u,t) = H(z(t),z(t = h), ¥(t),u(t),t), t€T,
and the conditions of coordination (6)—(8) hold. Let {u,Sgap} be a non—degenerate

support control. Then for the optimality of the admissible control u(t), t € T, the
conditions of maximum (29) and those of coordination (6)—(8) are also necessary.
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