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ABSTRACT. In this paper we present some generalizations of results of M.

S. Livsic [4, 6], concerning regular colligations (A, Az, H,®, E,01,02,7,7)
(o1 > 0) of a pair of commuting nonselfadjoint operators Ay, As with finite
dimensional imaginary parts, their complete characteristic functions and a
class Q(o1,02) of operator-functions W(xy,x2,%2) : E — E in the case of
an inner function W (1,0, z) of the class (o). We consider regular colliga-
tions (A1, ..., An, H,®, E 01,...,00, {1 }5, {F%1}5) (01 > 0) of n-tuples
(n > 2) of commuting nonselfadjoint operators A;, As, ..., A, with finite
dimensional imaginary parts, their complete characteristic functions and a
description of a class Qr (o1, . .., 0y, ) of operator-functions W (z1, ..., zy, 2) :
E — F in the case when W(1,0,...,0,2) is not inner function of the class
O(o1) (01 > 0, n > 2). We essentially use the conditions for the operators
{ok}7, {11}y, {Fk1}y that V. A. Zolotarev has considered in [9].

Introduction. Let us remind some basic definitions and theorems from
the theory of the operator colligations.
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Let H and F be Hilbert spaces.

Definition 1 [3]. Let Ay, Ag,..., A, be bounded linear nonselfadjoint
operators in H, 01,09, ...,0, be bounded linear selfadjoint operators in E, ® be
a bounded linear mapping of H into E. A set

X (A17A27"' 7An>H7(I)>E>017027"' 7071)
1s said to be a colligation if

(1) (A — A) /)i = @% 0@, k=1,2,...,n.

In the following statements we assume that dim E < 400, r]gker o = {0}

and the operator o is an invertible operator.

Definition 2 [4]. The operator-function in E
(2) S(x1,... 2n,2) =1 —i®(x1A1 + - + 2,4, — 2I) 1% (2101 + - + Tp00)

where (x1,x9,...,x,) € R, z € C, is said to be the complete characteristic
function of the colligation X.

Definition 3 [1]. An operator-function W(l) : E — E is said to be a
function of the class Q(o1) if it has the following properties:

1) W(l) is a meromorphic function in the open upper half plane Im1 > 0;
2) W (1) is holomorphic in a neighbourhood |l| > a of | = 0o and W (o0) =

3) W*(l)oaW(l) > o1 (Iml > 0);
4) W*()oW(l) =01 (Iml =0).

Theorem 1 [1]. Let o1 be a given selfadjoint invertible operator in
E. A given operator-function W(l) belongs to the class Q(o1) iff W(I) is the
characteristic function of some single operator colligation (A, H,®, F,01).

A colligation X is said to be commutative if ApA; = A;Ag, k,s =
1,2,...,n.

Definition 4 [2]. A commutative colligation

X:(Al,...,An,H,(I),E,O'l,...,O’n)
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is said to be regular if there exists a set of selfadjoint operators {ygs}, k,s =
1,2,...,n, which satisfy the conditions

(3) o PAL — 0sPA} = s®, k,s=1,2,....,n

and Ysg = —Vis-
The operators Jxs, k,s = 1,2,...,n, defined by the relations

:yks = Vks + 'L.(Uk@@*ds — 05@@*0k),
satisfy the relations
(4) 0 PAs — 05 P A = Yy P.

Let o1 is a positive operator. We use the results of V. Zolotarev [9]

concerning the solutions of the corresponding open system of a regular colligation
X

2M+Akf(x) = (P*O-ku(x)7 k= 1,27...,’”7
oxy

f@)p, = folz),

v(z) = u(z) —i®f(z),

where © = (21,...,2,) € R}, ' = ORY, f(x) is a vector-function in E. We can
assume that for the commutative regular colligation X in the case of n > 2 are
given only the selfadjoint operators in F

Y21,7Y315 -5 Inl

that satisfy the conditions

(5) o1 loRor s + oy Moy tos = oy a0y tog + o7 tosoy M,
(6) ol 1oy tsar = o7 107 Ykt

(7) O'k‘I)AT - Jl‘PAZ = ’ykl‘P

(k,s =2,3,...,n) and the operators 01,09, ...,0, satisfy the conditions

(8) Uflakaflas = Uflasaflak (k,s =2,3,...,n).
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If we define the operators v;s and ks (k,s = 1,2,3,...,n) with the formulae
Vis = 0507 Vel — OkOT Vst

(9)
Yis = Vks + i(Jk(I)(I)*JS — JS(I)(I)*Uk),

then these operators satisfy the relations (3) and

:Yks = :st = _:Yska

0, PA; — 0, QAL = Y@,

~1_ 1z 1z -1 . | —1_ 1z
01 0k01 Ys1+ 0y Vk101 Os = 01 Ys101 O + 07 0501 ki,
B S DU Y
01 Yk101 Ys1 = 01 7Ys101 Vkl,
~ . 1~ 1~
TYes = 0s01 Vg1 —O0k0O1 7sl

for all k,s = 1,2,...,n. We will include the operators {vi1}5, {x1}5 in the
notation of the regular colligation, i.e.

X =(A, Ay, A, H @, E, 01,09, .., on, {7k1}5, {Tk1}3) -

1. The output realisation of colligations. Let H and F are like above
stated, let

X = (Al,AQ, e ,An,H,‘I),E,O'l,O'Q, e ,O’n,{’)/kl}g,{’?kl}g)

be a commutative regular colligation, where o1, is an invertible operator, o1 > 0,
the operators {0 }7, {vk1}5, {Jx1}5 satisfy the conditions (8), (5), (6), (7) and

(10) Vi1 = Vi1 + (0 PP 01 — 01 PDP¥0y), k=2,3,...,n.
We denote
(11) vp(x1, .. xp) = Pell@rArttandn)y o p e g

and the principal subspace of the colligation X

H= span {AT .. A™&*(E)}.

mi,...,mnE€Ng
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Let H be a set of solutions (11) of the equations

v ov
12 — —O0p=— + 1y = k=2,3,...
( ) 01 al‘k Ok 8%1 + VYE1V 07 737 I

and let an operator U : H — H is defined by the equality
(13) Uh = de@Aittandn)py — g, (20 2n) (ke H).
From the existence of the limit

(14) lim (e1h, e h) he H

t—4o00

for the dissipative operator A; it follows that

. . +oo ) .
(15) (h,h) = lim (e*A1h,e1h) + / (o1 @1, Dt p)dt.
0

t——4o00

Then using the equality (15) it follows that the formula

(Uhy (1, -+, ), Vpy (T2, - - -y ) = xllirgoo(eimlhl, eitAth)

(16) o0
—l—/o (o1vp, (21,0,...,0),vp,(21,0,...,0))dzxy

defines a scalar product in H and the operator U is an isometric one.
In [5, 6] M. S. Livsic has considered a commutative regular colligation
(A1, A2, H,®,E,01,09) in the case of a dissipative operator A; satisfying the
condition
lim (e1h, 1) =0

t—4o00

for every h, h € H.
The following proposition is a generalization of Theorem 2 in [5] in the
case of a commutative regular colligation

X = (Al,AQ, e ,An,H,‘I),E,O'l,O'Q, e ,O’n,{’)/kl}g,{’h)'/kl}g)

for n > 2 and with an arbitrary dissipative operator A; (i.e. in the case of an
arbitrary limit (14)).

Theorem 2. Let

X = (Al,AQ, e ,An,H,‘I),E,O'l,O'Q, e ,O’n,{’)/kl}g,{’h)'/kl}g)
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be a commutative reqular colligation with a positive and invertible operator o1
and let H be the principal subspace of X. Then the colligation

X = (Ala cee aAnv Ha (I)v Ea 01,02,...,0n, {’Ykl}gv {:Ykl}g)
18 unitary equivalent to the colligation
X = (Ala cee 7‘4717 H’ (:Daanla 02;...,0n, {Pykl}ga {:Ykl}g)v

where Aj, = —i0/0xk, k =1,2,...,n, H is a set of solutions (11) of the equations
(12) such that

1) H is Hilbert space with respect to the scalar product (16);

2) if v(x1,...,xn) belongs to H then Apv(xi,...,x,) belongs to H for
every k=1,2,...,n;

3) the operators fll, ... ,fln are bounded in H.

The next equality holds

Jim (), R, )
(17) | | )
= gginoo(engl h, et h) (v, € H).

Proof. The scalar product (16) in H and the equations (12) imply

that the set H and the operators Ay, ..., A, satisfy the conditions 1), 2), 3).
The operator U : H — H defined by the equality (13), the form of the operators
Ay, ..., A, and the solutions vy (1, . . . , &, ) of the equations (12) show the relation
between A; and Ay

A, =UAU* (k=1,2,...,n)

and ® = ®U*. Now using the conditions (1) and (7) for the operators Ay, ..., A,
of the commutative regular colligation X it follows that
(/Ik — /IZ)/Z == &)*O'k(i),
Uk(i)xzq - O’l‘i)jlz = ’)/kl(i),
Uk‘i)Al - Ul(i)/ik; = %1&)
for all k =1,2,...,n. Hence the set

X = (A17' .. 7An7ﬁ7@7E7 O1y..- 70-717{’}%1}37{;5/161}3)
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is a commutative regular colligation that is unitary equivalent to the colligation
X.
It is easy to see that the equality (17) follows from the relation
0 i O .
— ey (21,. .. xp) = =€

86 8%1

vp(x1,. .0, Tp).

The functions vp(z1,...,2,) and vp(x1,0,...,0) are said to be output
representation and the mode of an element h correspondingly. If a mode vy (1)
is given then the corresponding output representation v(xi,...,x,) is defined
uniquely by equations (12) and the condition v(x1,...,z,) = vo(x1) in the region
of an existence and an uniqueness of the solutions (see [8]).

Remarks. Analogously we can prove Theorem 2 for an arbitrary com-
mutative regular colligation

(Ala cee 7An7 Ha (I)v E7 O1y--+.,0n, {7765}7117 {:ykS}Tll) (01 > 0)

using the conditions (3) and (4).

2. The consonance between operator-functions and linear man-
ifolds. Let E be a finite dimensional Hilbert space. Let o1,09,...,0, be
bounded linear selfadjoint operators in F/, o1 be a positive and invertible operator,
rkﬁker o = {0}, let {yx1}5 be bounded linear selfadjoint operators in E, satisfying

the conditions (8), (5) and (6), Let us denote by M (l,0,7) (I = (I1,...,l,) € C",
o= (01,...,0n), Y= (721,-.-,7n1)) a linear manifold of solutions u of the equa-
tions

(lkoy — Lo +1)u =0,k =2,3,...,n.

If w e M(l,0,v) then u satisfies the equations
(18) (lkos — lsop +Ys)u =0, k,s=1,2,...,n,

where the selfadjoint operators {vxs} are defined by (9).
Let us consider the algebraic curve

T(o,7) = {(l1,...,1,) €C": T\ (14, 1k) =0, k=2,3,...,n},

where I‘,(ﬁ”) (lh,l) = det(lgor — lhog + k1), K =2,3,...,n.
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Let W(x1,...,2,,2) : E — E be an operator-function, holomorphic in a
region

Ko={(z1,. ., Zn,2) € C"L s 2] > alzy | 4 - + o)) 1/?}
(a > 0) and homogeneous with respect to the variables z1, ..., x,, 2:

W(tzy, ... tep,tz) = W(xy,...,2p, 2).

Definition 5.  The operator-function W(x1,...,xn,2) and the linear
manifold M(l,0,v) are said to be consonant with respect to the algebraic curve
['(o,7) if the restriction

W(x1,. .. xpn, iz + ... + lnxn)|M(l,a,'y)

to the linear manifold M(l,0,~) does not depend on (x1,...,xy,) when (I1,...,1,)
el(o,y) (x1,...,zn, lhx1 + - + lpzy) € K,).
The operator-function

~

W(ll, . Jn) = W(:cl, ey Tyl + .+ ln$n)‘M(l7o7,Y)

will be called the trunk of W (x1,...,xn, z) with respect to M(l,0,7).
The next theorem gives an important property of the characteristic ope-

rator-function of a commutative regular colligation X.

Theorem 3. Let (A1,...,An, H,®, E ,01,...,00,{v1}5,{3k1}5) be a
commutative regular colligation, where the operators {op}}, {vk1}5 and {1 }5
satisfy the conditions (8), (5), (6), (7). Then the complete characteristic function
(2) of the colligation and the linear manifold M (l,o,~) are consonant with respect
to the algebraic curve I'(o, 7).

Proof. Let I = (I1,...,l,) € I'(0,7). Then dim M (l,0,7) # 0 (see [7]),
i.e. there exists ug € M(l,0,v) such that

(19) (lkor — ok +vk1)uo =0, k=2,3,...,n.
Using the conditions for the regular colligations (7) and (19) we obtain

(A1 - lll)@*akuo = (Ak - lkf)@*aluo, k= 2, 3, ey M.
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Then (A — 1)~ ®*opug = (A1 — I11)P*0qug and it is easy to see that
(2141 4 -+ 2 Ay — (o + -+ o) T O (101 + -+ + 2007)
does not depend on z1,...,z, onto M(l,o,v). Hence

S(x1, . oy, lixy + -+ lyxy)
=1 —i®(x1 A1+ + Ay — (hxy + -+ Lwy) D) 10 (2101 + -+ - + T000)
onto M(l,o,v) does not depend on z1,...,z, and the proof is completed. O

We shall consider some properties of an operator-function which is con-
sonant to M (I, o,v) with respect to I'(o,~) if the operator o1, is positive.

Theorem 4.  If an operator-function W(xq,...,xn,2) : E — E and
the linear manifold M(l,0,7) are consonant with respect to I'(c,v) and o1 is a
positive and invertible operator then W (x1,...,xy,2) is defined uniquely by its
trunk W(ll, ooy lp) with respect to M(l,0,7).

Proof. Let tg,...,t, bereal numbers such that o1 +to00+- - -+t,0, > 0.
It is easy to see that

n
u= () ker(lgor — (z — laty — -+ — Intp) ok + Y1)
k=2
if and only if u € F]gker(lk(al + togog + -+ + tpop) — ok A + Byk1), where A =
zI + tgaflfygl 4+ 4 tnaflynl, B = (01 +teoa+...+ tnan)afl. Then the roots

(D2,

P of the equations

det(l(o1 + teoy + -+ +tpon) — 0k A+ Byk1) =0, k=1,2,...,n,
are real and the corresponding subspaces
ker(I) (1 + taos + -+ + tnon) — Ok A + Bya), pr=1,2,...,my,

are orthogonal with respect to the positive operator o1 + toog + - - - + t,,0,, for all
k=2,3,...,n and the space I has the representation

B = Z D ﬂker(ll(cpk)(al + 202+ - + tnan) - UkA + B'Ykl)
P2,p3,Pn k
= > @ﬂker(l,(cpk)ol —(z— lgm)tQ e = 1P o+ ).

P2,P3;5.--sPn k
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Then
W(l, tg, e ,tn, Z)
m2,Mm3,...,Mn
= Z W(l,tg,... tn, Z)P(t27...,tn)(lgp2)7 L) 2
DP2,P3;--,Pn=1

_ Z W(lgm,---,pn)’ l§p2)7 . 7l%pn))P(tQ,...,tn)(lgp2)’ o ’lgpn)’ 2),
p2,P3;--:Pn

where [#2000) = 2 — 1Pty — 1§ty — . — 1P, POt (227, 2)
are the orthoprojectors with respect to the operator o1 + toos + - -+ + tpop, > 0
onto ler(l,(fk)al —(z — lém)tg S ")tn)ak + Y%1). Consequently for the

operator-function W (1,to,...,t,) we obtain the following restoration formula

W(]-7 t27 .. 7tn)
(20) = Z W(l§p27m7pn)v lém)v e 7lgpn))P(t27...7tn)(lgm)? s >l7(zpn)> Z)v
P2;P35--5Pn

where [(P2-Pn) = 5 — lgpQ)tg - .. = lgp")tn. This completes the proof. O

Theorem 4 shows that the next corollaries concerning the relations be-
tween an operator-function W(x1, ..., x,, z) and its trunk W(ll, vy lp), the com-
plete characteristic function of a regular colligation and its trunk (i.e. the joint
characteristic function of a colligation), the complete characteristic function and
its values at an arbitrary point, are true.

Corollary 1. If the trunk W(ll,...,ln) of the operator-function

W(x1,...,xn,2) is isometric with respect to o1,...,0, for real ly,... l, and
o1 > 0 then W(x1,...,xy,2) is isometric with respect to xi01 + -+ + xpo, for
real x1,...,Tn,2 in the region K,.

Corollary 2. The complete characteristic function S(x1,...,2zn,2) of a

commutative reqular colligation
X = (Ala A27 s aAnaH’ (D’E’O—la 02y...,0n, {Pykl}ga {:Ykl}g)

with o1 > 0 is uniquely determined by the joint characteristic function of this
colligation

S(z1,y .y, iy + ...+ l”x”)\M(l,a,«,)'
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Corollary 3. A complete characteristic function is determined uniquely
by o1,y 0n, 01 >0, Yo1,..., Y1 and its values S(z¥,...,2° 2) at an arbitrary
0

fized point (z9,...,20).

rr'n

Theorem 5. If the operator-function W (z1,...,xy,2) : E — E and the
linear manifold M(l,0,v) are consonant with respect to I'(o,7) and o1 > 0 then

W(x1,...,xn,2) satisfies the following partial differential equations:

ow oW _

At —(l'lO'l + - +1‘n0n) 1(Zak —L1Vk1 — _xnﬁykn) = 07 k= 1’27 RN
Or,, 0z

when the operator x101 + -+ + xp0y s an invertible one. (The operators {7yks}
are defined by the formulae (9).)

Proof. Let [ € I'(o,7). Then

(21)

(aw Rl =0, k=1,2,...,n,

- _|_ -
oz, "0z )‘M(l,a,w)

because the trunk W(ll, cosly) =Wz, o xn iy + .+ l”x”)\M(l o) does

not depend on z1,...,z, onto M(l,0,v). Using the equations (18) we obtain

(lg(zro1+ -+ xpon) — (Lhx1 + ...+ lzn)ok + 1Y% + - + ToVin)

|M(om) ~
and
(22) lkI‘M(l,a,'y) = ($10'1 +---+ l‘nO'n)il(ZUk —T1Vk1 — " — $n7k”)|M(l,a,'y)
for all k = 1,2,...,n, when the operator (z101 + -+ z,0,) " exists. From (21)

and (22) it follows that

ow oW .
D + 8—(«T10'1 + A+ Taon) (208 — T1VRL — 0 — TnVkn) =0,
Tk “ ‘M(l,cm)

where z = l1x1 + ... 4+ l,z,. And now the restoration formula (20) and Theorem
4 show that
ow , ow

D + 5(1‘101 + ot 2p0y) (20K — 21k~ — TpYen) = 0
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onto the space E. The proof is completed. O

3. Description of a class of characteristic functions. Let FE,
01,02, ..., 0n, {Vk1}y, (n > 2), M(l,0,7), I'(0,7) are like in Section 2. By
Ar(o1,...,0,) we will denote the set of all (n — 1)-tuples 7 = (721, ...,7n1) Of
selfadjoint operators in F such that

TV, 0) =0, k=2,3,...,n
for any I € T'(0,7) (i.e. [(o,7) = ['(0,7)),

o1 ooy st + 07 ko7 oy = o7 5107 o) + 07 0507 ik,
Ul_lﬁklal_lﬁsl = Ul_lﬁslal_lﬁkla kv s = 2’ 37 sy I
We define the operators 7 (k,s = 1,2,...,n) by the equalities

(23) il = 0507 Mkl — OROT st

Definition 6. An operator-function W (x1,...,x,,2) : E — E is said to
be a function of the class Qr(o1,...,0p) if W(x1,...,2zn, 2) satisfies the following
conditions:

1) W(x1,...,2pn,2) has the form

(24) W(x1,...,xpn,2) =1 —iR(x1,...,2pn,2)(x101 + - + Tpop),
where the function R(x1,...,%n,2) is holomorphic in a region

Ko ={(x1,...,@n,2) €C" ¢ 2| > (J&1]? + -+ + |za>)V/?}

1
(a>0) and R(txy,...tx,, tz) = ZR(xl’ e Ty 2);
2) W(z1,...,%n, 2) and the linear manifold M (l,o,7) are consonant with
respect to the algebraic curve I'(o,v) and the trunk

~

W(ll, . Jn) = W(:cl, e Tyl .+ ln$n)‘M(l7o7,Y)

is an isometric mapping of M (l,0,v) onto M(l,0,7) with respect to o1,...,0n,
where 7 € Ar(o1,...,0p), (X1,...,Tp,l1x1+. . . +lpzy) € Ky, M(l,0,7) is linear
manifold of solutions u of equations (lxo1 — lyop +x1)u =0, k=2,3,...,n;
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3) W(1,0,...,0,2) belongs to the class Q(o1).
We need the next two propositions for the proof of the main result of this

section.

Lemma 1. Let W(x1,...,2n,2) : E — E be an operator-function that
satisfies the conditions 1) and 2) from Definition 6 and R(xi,...,Tpn,2) be an
operator-function, defined by the equality (24), Then R satisfies the equations

OR OR OR

2 - —_— _— — =
(25) T P 0,
OR OR OR
26 — —0k=— —Jk1— = 0
(26) 01 Oy Ok o1 Yk1 02 )
(k =2,3,...,n), where ¥ € Ar(o1,...,0n), 101 + -+ + Tp0, is an invertible
operator and x1,...,x, € R.

Proof. From Theorem 5, the representation (24) of the operator-function
W(zx1,...,x,,2) and the equality that R(z1,...,zy, 2) satisfies

(27) x1§—£+"'—|—mn§—i+zg—lj+R:0,
we obtain
OR OR OR
8—m($101 + -+ o) — (9“8—9:1 + - +xn£) o
OR

_5(951%1 + 22Yk2 "+ TnYkn) = 0.
Using the conditions (5), (6) and (8) it is easy to see that

OR OR 1 OR _1
(87 — 87%01 ) (r101 4+ +xp00,) — 5716101 (r1014+ -+ 2p0,) =0
k 1
(k=2,3,...,n). Hence R satisfies the equations (25) when the operator (x107 +
-+ + x,0y,) is an invertible one.

From the condition 2) of Definition 6 it follows that W~=1(z1,..., 2y, 2)
and M (I, 0,7) are consonant with respect to the algebraic curve I'(o, ) where 7 €
Ar(o1,...,0,). Now Theorem 5 says that the operator-function W=t(z1, ..., z,,
z) satisfies the next equations:

ow—1 N ow—1
oxy 0z

(28) (x101 4+ -+ xnan)_l(zak — 1K1 —  — TpYkn) =0
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(k = 1,2,...,n) where the operators {7xs}] are defined by the equalities from
the form (23)

(29) ks = 0507 k1 — 0k07 s

Suppose that z1,...,z,,z are real and (z1,...,2,,2) € K,, from the
Corollary 1 we have

W_l(xl, ces Ty 2) =T+ iR (21, .., 2, 2)(T101 + - - + Tpop).
Hence

(30)  (z1014---+ xnan)g—i

because the equalities (28) are true. Then using (28) and (30) we obtain

Oy 17k1 nVkn 02

(e 2R
Tk xl@xl x"@xn B

(k=1,2,...,n). Analogously from the relations (31) using (8), (29) we obtain
the equations (26) and the lemma is proved. O

- _ OR
= (zop —1Yp1 — - — wn’wm)g +orR=0

(x101 4 -+ + xpop)
(31)

Let W(x1,...,2p,2) : E — E be an operator-function that satisfies the
conditions 1) and 2) of Definition 6 and let R(x1,...,x,,2) is defined by the
equality (24). Now we introduce the operator-function

1 .
(32) V(xy,...,xn) = / e”R(x1, ..., Ty, 2)dz,
|z|=r

 2mi
where 7 > a(|z12 + -+ 4 |2,/))2. V(x1,...,2,) is an entire function because
R(x1,...,xn,2) is holomorphic in K,. Let ¥ = (J21,...,91) € Ar(o1,...,04).
Then it is easy to see that from Lemma 1 immediately follows the next proposi-
tion:

Lemma 2. The operator-function V(x1,...,2,) : E — E, defined by
(32), satisfies the next equations

ov o
(33) Ula—xk—O’ka—xl"‘Z'}%lv—o

oV oV
4 —00] — —— ) = k=23, ..., n.
(34) o o1 o or+ iV =0, ,3,...,1m
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In [4] M. S. Livsic has described a class Q(o1,02) (61 > 0) of operator-
functions W (xy,z2,2) in the case of an inner function W (1,0,z) of the class
Q(o1). The following theorem is a generalization of Theorem 10 in [4] in the case

of a class Qr(o1,...,0,) (61 > 0) of operator-functions W(xy,...,zn,2) when
n > 2 and W(1,0,...,0,z) is not inner function.

Theorem 6. If a given operator-function W (xy,...,xn,2) : E — E
belongs to the class Qr(oy,...,0p) with op > 0 then W (x1,...,x,,2) is a complete

characteristic function of a reqular colligation

X = (A1>A2>' .- aAanv(I)an 01,02, ... aanv{Vkl}ga{ﬁ/kl}g)'

Proof. Let W(x1,...,x,,2) : E — E is an arbitrary operator-function
of the class Qr(oy,...,0,). Then W(1,0,...,0,2) belongs to the class Q(oq)
(o1 > 0) because the condition 3) holds. From Theorem 1 it follows that there
exists a dissipative colligation (A1, H,®, F,01) with a characteristic operator-
function W (1,0,...,0,z2), i.e. W(1,0,...,0,2) has the representation

(35) W(1,0,...,0,2) =T —i®(A; — 2I) ' ®*ay.

Then the operator-function R(x1, ..., 2y, z) from the condition 1) of Definition 6
satisfies the condition

R(1,0,...,0,2) = ®(A; — 2I) 71 ®*.

Hence

1 ) ,
V(x1,0,...,0) = ——,/ €”R(x1,0,...,0,2)dz = ®e™1A1P*,
271 J)z|=r
where the operator-function V' (z1,...,z,) is defined by (32). Let ¥ = (J21, - -,
An1) € Ar(oi,...,0,) and the operators s, k,s = 1,2,...,n, are defined by
equalities from the form (23)

~ 1~ 1~
Vks = 0501 Tkl — OkO1 7sl-

Now we consider a set H of solutions y(x1,...,zy,) of the equations

oy oy
(36) 01 8xk O 8.’,1;'1 + V1Y 07 737 ,n
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satisfying the conditions
(87) yn(en, . >$n)‘a::(:v1,0,---,0) = ‘I’emlAlh,

(z1 > 0, suppyp(x1) € R,), where h € H = SI;?\IH{A?, ®*(E)} (H is the princi-
ncliNo
pal subspace of the colligation (A1, H,®, F,01)), vy = y(z1,...,Ty,) is a vector-

function in Hilbert space £. But the region in R”
KZ{.’EZ(JJl,..., ER" Zl‘k0k>0}

containing the set {1 > 0,29 = --- = z, = 0} (see [8]) is a region of an existence
and an uniqueness of the solutions yy, of the problem (36), (37) and

V(x1,...,2n)g = Yarg(x1,...,Tn)

for any g € E.

Using the existence of the limit 51115{1 (e'€41h, 41 h) (h € H) for the
—T 00

dissipative colligation (A1, H,®, F, 1) and the uniqueness of the solutions of the
problem (36), (37) in the region K we introduce a scalar product in H by the
formula

<yh1 (.1‘1, B axn)a Yho (xla o axn)> = gli)rfoo(eiéAlhh eiéAth)

(38) Lo
+/O (olyhl(wl,o,...,0),yh2($1,0,...,0))dar1

(Yny s Yn,y € I;T) It is clear that

+oo €A €A
(39) /o (o1yn(21,0,...,0),yn(21,0,...,0))dr1=(h, h)— lim (€% hy, e hy).

—>+oo

According to (38) and (39) we obtain
<yh($17 S axn)vyh(xla e 7xn)>ﬁ = (h‘v h‘)ﬁ
Then the mapping T : H — H, defined by the equality

Th =yp(z1,...,25),
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where yp(z1,...,x,) is a solution of the problem (36), (37), is an isometric map-

ping of H onto H because

<Th17Th2> = <yh1 (aj)vth (x)> = (h17h2)7 (Jj € Rn)

Now we consider the operators ®=&T ! and Ay = TA;T~!. Then fllyh(ac) =

R iy P ~ X
yan(z) (h€ Hyzx € R") and A = —ia— in H. The colligation (A1, H,®, F,01)
Z1
is unitary equivalent to the colligation (A1, H, ®, E,01). As H=span{e*41®*(E)},
ter

so H = span{eitAI@*(E)}. But
ter

span{e™1&*(E)} = span{e1To*(E)}
teR teR

= span{eit’glv(wh o xn) ()}
teRrR

= span{V(z1 + 6,22, 1) (B)},
teRrR
0

a—m(eitﬁlvm, ), de.

because %(eitA1V(az1, ceyTp)) =

H = span{V(z1 + t,z2,...,2,)(E)}.
ter

. ~ . P .0 .
We introduce the operators Ay = —i— A, = —i— in the space

Oxg’ 7 Oy,

H. Using Lemma 2 we obtain that the operator-function
eitA1V(x1, conyy) =V(ey +t,xe,. . 1)

is a solution of the equations (34). Then H is an invariant space with respect
to the operators Ag, k = 2,3,...,n. From the equations (36) it follows that the
operators Ay, k = 2,3,...,n, satisfy the equalities

% 1 -
Ap =0y oA — o] Tk

and A}, are linear bounded operators in H.
We shall prove that the next equalities

k1 = k1 + (0 PP 0y — 01 PP 0y), k=2,3,...,n,
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are valid onto F.
According to Corollary 1 we have
(40) W_l(a:l, cos @, 2) =T+ iR (21, ..., 2, 2) (101 + -+ - + Tpop)

((l1,...,1n) € T(oyy) NR™, (21,...,2pn,2) € K;). Then for z =1, 29 = 23 =
l

=2, =0,z=1, (l1,...,0y) € T'(0,7) NR™, using the condition 2), we obtain
(lkor — liog, + k)W (1,0, . ... ’O’ll)‘M(l,a,'y) 0,
Ukal——hak—kaﬂvvflﬂﬂo,”.,OJlnﬂﬂLmﬁ) 0.
Hence
(ko1 — Lok + Ak1)W (1,0,...,0,11)
(41)

= (W H*1,0,...,0,)) (ko1 — liok + Y1)

(k=2,3,...,n) onto M(l,0,7) with fixed (I1,...,l,) € T'(o,v) NR™. From (35)
and (40) it follows that the equalities (41) take the form
(ko1 = lioy, + k) (I — i®(Ay = L)~ @%0y)
(42)
= (I —io1®(A; = WI) "' @*)(lkor — liog, + 1)
(k=2,3,...,n) onto M(l,0,7), (I1,...,1l,) € T(o,7) NR™.
If 1 e R and I3 ¢ o(A;p) then all roots of the equations

(43) det(lxo1 — lyor + k1) =0, k=2,3,...,n,

are real because o1 > 0. Let l,(gl)(ll), e ,l,imk)(ll) (k=2,3,...,n) be all different
roots of the equations (43). The corresponding subspaces ker(l,(:’“)(ll)al —lop+
Yi1), k=2,3,...,n, s =1,2,...,my, are orthogonal with respect to the positive
operator 1. For any fixed p = l,(f’“)(ll) the equality (42) take the form

Y1 — Vo1 = i(por — Loy, + r1)B(Ar — L) 0%y
(44)

—ig1 ®(A1 — W)~ 0* (uoy — liog + e1)

onto M(l,0,v) where | = (l1,1§2>(l1),...,lﬁf"’(h)). According to Lemma 2 it
follows that the equality

(45) (I)eixlAl (Al(I)*O-k _ (I)*,Ykl)o.l—l _ 0'1_1(07@(1)141 o ’?kl@)eixlAl‘I)*
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is true onto FE.
Now we introduce the linear bounded commuting operators Ay : H — H,
k=23,...,n, by the equalities A, = T~'A,T and we obtain

Ap® g =T T A TO g = T~ Agygeg(z) = TV ALV (2)g
(46) ~
=T Y AVo — Var)or g = (A1®* o), — ®*y)oy g
for any g € E, k=2,3,...,n. Then from (45) and (46) we have
@Ak - Jl_l(akq)Al - ’Nykl‘P)eixlAl‘I)* =0

onto E for 1 € R, hence

(47) DA, = o] Hop®PA — H1P)
onto H = span{e41®*(E)},

teR
(48) Ap®* = (A1 0% 0f, — D oy !

onto the space E. After transformations the relations (47) and (48) take the form
o ®P* 0y — 01 P(Ap — pul)(Ay — W)~ 0% oy

(49)
= (po1 — Lok + k1) P(A1 — L ]) 71 0%0y,

019®* 0y, — 01 P(A; — 11 1)~ H(Ay — pl)P* oy
(50)

= 01®(A1 — L)' (o1 — liog + )
onto E for all k =2,3,...,n. From (49), (50) and (44) it follows that
(51) 0100y, — 03 @D 0y = i(p1 — k1), k=2,3,...,n

onto M(l,0,7), u = l,(gsk)(ll), s =1,2,...,myg. It is easy to see that the equality
(51) is true onto the space E because the subspaces

ker(I™) (101 — hog + k1), k=2,3,....n, sp=12... mp,

are orthogonal with respect to the positive operator o.



332 K. P. Kirchev, G. S. Borisova

Now we shall show that
(A — A7) /)i = D0 @, k=2,3,...,n,
onto H. According to (47), (48) and (51) it follows that
(Ak — A}

7

- @*qu)) %01 (E) = 0,
hence
(52) (A — A) )i = P 0 ®, k=2,3,...,n,
onto ®*(E). But the equality
(53) ((Ar — AR) /i — @70 @) AT = (A7)™ ((Ax — Af)/i — P70 ®)
is hold for all m € N. Then the relations (52) and (53) show that
((Ar — A7)/i — 70, @) AT O (E)
= (A7) ((Ax — Ap)/i — @703 @) 2" (E) = 0.
Consequently we obtain
(A — A7)/ — "0, ®) AP B*(E) =0, m € Ny,

ie. (Ay—Af)/i = ®*0p® onto H for all k = 2,3,...,n. But (4 — A%)/i = ®*01 P
because (A1, H,®, E,01) is a colligation. Hence the set

X = (Ala s aAnv ga (I)v E7 01y,-+-5,0n, {’Ykl}gv {:Ykl}g)
is a commutative regular colligation. Then the operator-function
S(x1y. e Tny2) =1 —i®(x1 A + -+ 20 Ay — 2I) L0 (2100 + -+ 4 Th00),

where (21, x9,...,2,) € R", z € C", is a complete characteristic function of the
colligation X. But the operator-function

S(l,O,... ,O,Z) =1- Z@(Al - ZI)‘I)*Ul

is the characteristic operator-function of the single operator colligation (Aj, H,
o, F, 01) and from (35) we have

(54) 5(1,0,...,0,2) = W(1,0,...,0,z2)
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onto F.

According to Theorem 3 and Theorem 4 the complete characteristic func-
tion of the commutative regular colligation and the linear manifold M (l,0,~) are
consonant with respect to the algebraic curve I'(o,v) and the operator-function
S(z1,...,xn,2) is defined uniquely by its trunk S’(azl, ..., Ty, 2) that coincides
with the joint characteristic function of the colligation. Now using Corollary 2,
Corollary 3 and the equality (54) it follows that

S(z1,. . xn,2) = W(xg, ..., 20, 2).
Consequently there exists a commutative regular colligation
X = (A1, Ap, H, @, E 01, ..., 00, {71 )5, {31 }5)

with a complete characteristic function that coincides with the given operator-
function W (x1,...,x,,2) belonging to the class Qr(oq,...,0,). The proof is
completed. O

It is important to note that the inverse assertion of Theorem 6 can be
easily obtained after simple checking of the conditions 1), 2), 3) of Definition 6.
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