ON THE EXPONENTIAL BOUND OF THE CUTOFF RESOLVENT

Georgi Vodev

Communicated by V. Petkov

ABSTRACT. A simpler proof of a result of Burq [1] is presented.

Let $\mathcal{O} \subset \mathbb{R}^n, n \geq 2$, be a bounded domain with C^∞ boundary Γ and connected complement $\Omega = \mathbb{R}^n \setminus \mathcal{O}$. Consider in Ω the operator

$$\Delta_g := c(x)^2 \sum_{i,j=1}^n \partial_{x_i}(g_{ij}(x)\partial_{x_j}),$$

where $c(x), g_{ij}(x) \in C^\infty(\overline{\Omega}), c(x) \geq c_0 > 0$ and

$$\sum_{i,j=1}^n g_{ij}(x)\xi_i\xi_j \geq C|\xi|^2, \quad \forall (x, \xi) \in T^*\Omega, \quad C > 0.$$
We also suppose that \(c(x) = 1, g_{ij}(x) = \delta_{ij} \) for \(|x| \geq \rho_0 \) for some \(\rho_0 \gg 1 \). Denote by \(G \) the selfadjoint realization of \(\Delta_g \) in the Hilbert space \(H = L^2(\Omega; c(x)^{-2}dx) \) with a domain of definition \(D(G) = \{ u \in H^2(\Omega), Bu|_{\Gamma} = 0 \} \), where either \(B = Id \) (Dirichlet boundary conditions) or \(B = \partial_{\nu} \) (Neumann boundary conditions). Consider the resolvent \(R(\lambda) := (G + \lambda^2)^{-1} : H \to H \) defined for \(\text{Im} \lambda < 0 \), and introduce the cutoff resolvent \(R_\chi(\lambda) := \chi R(\lambda) \chi \), where \(\chi \in C^\infty_0(\mathbb{R}^n) \), \(\chi(x) = 1 \) for \(|x| \leq \rho_0 + 1 \), \(\chi(x) = 0 \) for \(|x| \geq \rho_0 + 2 \). It is well known that \(R_\chi(\lambda) \) extends through the real axis as a meromorphic function the poles of which are called resonances. Using the Carleman estimates proved by Lebeau-Robbiano ([4] in the Dirichlet case and [5] in the Neumann one) Burq has proved the following result

Theorem ([1]). There exist constants \(C, C_1, C_2, \gamma > 0 \) so that \(R_\chi(\lambda) \) extends holomorphically to the region
\[
\{ \lambda \in \mathbb{C} : \text{Im} \lambda \leq C_1 e^{-\gamma |\lambda|}, |\text{Re} \lambda| \geq C_2 \}
\]
and satisfies there the estimate
\[
\| R_\chi(\lambda) \|_{\mathcal{L}(H)} \leq C e^{\gamma |\lambda|}.
\]

Furthermore, he applied this theorem to obtain uniform rate of the decay of the local energy. Denote by \(u(t) \) the solution of the equation
\[
\begin{cases}
(\partial_t^2 - \Delta_g) u(t) = 0, \\
Bu|_{\Gamma} = 0, \\
u(0) = f_1, \partial_t u(0) = f_2.
\end{cases}
\]
Given any compact \(K \subset \overline{\Omega} \) and any \(m > 0 \), set
\[
p_m(t) = \sup \left\{ \frac{\| \nabla_x u \|_{L^2(K)} + \| \partial_t u \|_{L^2(K)}}{\| \nabla_x f_1 \|_{H^m(K)} + \| f_2 \|_{H^m(K)}}, (0,0) \neq (f_1, f_2) \in [C^\infty(\overline{\Omega})]^2, \text{supp } f_j \subset K \right\}.
\]
Burq derived from (1) the following bounds
\[
p_m(t) \leq C_m (\log t)^{-m} \quad \text{for} \quad t \geq 2.
\]
Note that another method allowing to derive (2) from (1) is presented in [6, Section 3].
On the exponential bound of the cutoff resolvent

The purpose of the present note is to give another proof of how the Carleman estimates of Lebeau-Robbiano imply (1). The first observation is that Theorem follows easily from the bound

\[\| R_{\chi}(\lambda) \|_{\mathcal{L}(H)} \leq \tilde{C} e^{\gamma |\lambda|}, \quad \lambda \in \mathbb{R}, \ |\lambda| \gg 1, \]

(e.g. see [2, Corollary 3.1]). In fact, it suffices to prove (3) for \(\lambda \gg 1 \) as the case \(\lambda \ll -1 \) can be treated similarly. So, in what follows \(\lambda \) will be real, \(\lambda \gg 1 \).

Consider the Helmholtz equation

\[
\begin{cases}
(\Delta g + \lambda^2)u = v & \text{in } \Omega, \\
Bu = 0 & \text{on } \Gamma, \\
u - \lambda - \text{outgoing},
\end{cases}
\]

where \(v \in C^\infty(\Omega), \) \(\text{supp} \, v \subset \Omega_{a_0} := \{ x \in \Omega : |x| < a_0 \} \), where \(a_0 \gg 1 \) is taken so that the support of the perturbation is contained in \(\Omega_{a_0} \). Clearly, (3) is equivalent to the estimate

\[\| u \|_{L^2(\Omega_{a_0})} \leq C e^{\gamma \lambda} \| v \|_{L^2(\Omega)}. \]

Take \(a > a_0 \) to be fixed later on and denote \(S = \{ x \in \mathbb{R}^n : |x| = a \} \). Define the Neumann operator \(N(\lambda) : H^1(S) \to L^2(S) \) by \(N(\lambda)g := \lambda^{-1} \partial_{\nu'} w \big|_S \), where \(w \) solves the equation

\[
\begin{cases}
(\Delta + \lambda^2)w = 0 & \text{in } |x| > a, \\
w = g & \text{on } S, \\
w - \lambda - \text{outgoing}.
\end{cases}
\]

Here \(\Delta \) denotes the free Laplacian and \(\nu' \) denotes the outer unit normal to \(S \). It is well known that for strictly convex \(S \) we have the bound

\[\| N(\lambda) \|_{\mathcal{L}(H^1(S), L^2(S))} \leq C \]

with a constant \(C > 0 \) independent of \(\lambda \) (e.g. see [3, Corollary 3.3]). Hereafter, given a domain \(K \), \(H^s(K) \) will denote the Sobolev space equipped with the semiclassical norm \(\| f \|_{H^s(K)} := \| \Lambda_s f \|_{L^2(K)} \), where \(\Lambda_s \) is a \(\lambda - \Psi DO \) on \(K \) with principal symbol \((|\xi|^2 + 1)^{s/2} \).

Clearly, \(u \) and \(v \) satisfy the equation

\[
\begin{cases}
(\Delta g + \lambda^2)u = v & \text{in } \Omega, \\
Bu = 0 & \text{on } \Gamma, \\
\lambda^{-1} \partial_{\nu'} u_\big|_S + N(\lambda)f = 0,
\end{cases}
\]
where \(f = u|_S \) and \(\nu = -\nu' \) denotes the inner unit normal to \(S \). By Green’s formula we have

\[
-\text{Im} \langle N(\lambda)f, f \rangle_{L^2(S)} = -\text{Im} \langle u, e^{-2\nu} \rangle_{L^2(\Omega_{a_0})}
\]

\[
\leq e^{-\beta \lambda} \|u\|_{L^2(\Omega_{a_0})}^2 + e^{\beta \lambda} \|v\|_{L^2(\Omega)}^2,
\]

\(\forall \beta \). Given any \(X > 0 \) take a function \(\rho_X(t) \in C_0^\infty(\mathbb{R}), \ 0 \leq \rho_X(t) \leq 1, \ \rho_X(t) = 1 \) for \(|t| \leq X \), \(\rho_X(t) = 0 \) for \(|t| \geq X + 1 \). Denote by \(\Delta_S \) the Laplace-Beltrami operator on \(S \). We need the following

Lemma. For every \(X > 0 \) there exists \(\gamma_0 = \gamma_0(X) \geq 0 \) so that

\[
-\text{Im} \langle N(\lambda)f, f \rangle_{L^2(S)} \geq e^{-\gamma_0 \lambda} \|\rho_X(\lambda^{-1}\sqrt{-\Delta_S})f\|_{L^2(S)}^2.
\]

Proof. Without loss of generality we may suppose that \(S \) is of radius 1. It is well known that the outgoing Neumann operator can be expressed in terms of the Hankel functions of second type, \(H_\nu^{(2)}(z) \). Let \(\{\mu_j\} \) be the eigenvalues of \(\sqrt{-\Delta_S} \) repeated according to multiplicity. We have the identities

\[
-\text{Im} \langle N(\lambda)f, f \rangle_{L^2(S)} = \sum \text{Im} \left(\frac{h_\nu'(\lambda)}{h_\nu(\lambda)} \right) \alpha_j^2,
\]

\[
\|\rho_X(\lambda^{-1}\sqrt{-\Delta_S})f\|_{L^2(S)}^2 = \sum \rho_X^2(\lambda^{-1}\mu_j) \alpha_j^2;
\]

where \(\{\alpha_j\} \) are such that

\[
\|f\|_{L^2(S)}^2 = \sum \alpha_j^2,
\]

and \(h_\nu(z) = z^{1/2}H_\nu^{(2)}(z), \ \nu = \sqrt{\mu_j^2 + (\frac{n}{2} - 1)^2} \), satisfies the equation

\[
h_\nu''(z) = \left(\frac{\nu^2 - 1/4}{z^2} - 1 \right) h_\nu(z).
\]

For real \(z > 0 \), set \(\psi_\nu(z) = -\text{Im} \frac{h_\nu'(z)}{h_\nu(z)}, \ \eta_\nu(z) = -\text{Re} \frac{h_\nu'(z)}{h_\nu(z)} \). In view of (10) we have

\[
\psi_\nu'(z) = \text{Im} \left(\left(\frac{h_\nu'(z)}{h_\nu(z)} \right)^2 - \frac{h_\nu''(z)}{h_\nu(z)} \right) = 2\eta_\nu \psi_\nu.
\]
This implies
\[\frac{d}{dz} \left\{ \psi_{\nu}(\nu z) \exp \left(-2\nu \int_{z_0}^z \eta_{\nu}(\nu y) dy \right) \right\} = 0, \]
and hence
\[(12) \quad \psi_{\nu}(\nu z) = \psi_{\nu}(\nu z_0) \exp \left(2\nu \int_{z_0}^z \eta_{\nu}(\nu y) dy \right). \]

Fix \(z_0 = 2 \). We are going to show that for \(\nu \geq \nu_0 \gg 1 \) we have: \(\forall \delta > 0, \exists c = c(\delta) \geq 0 \) so that
\[(13) \quad \psi_{\nu}(\nu z) \geq e^{-c\nu}, \quad \forall z \geq \delta, \]
and
\[(14) \quad \psi_{\nu}(z) > 0, \quad \forall z > 0. \]

By Olver’s expansions
\[\psi_{\nu}(\nu z_0) = \sqrt{\frac{z_0^2 - 1}{z_0} + O(\nu^{-1})}. \]

Clearly, this together with (12) imply (14). To prove (13) we will first consider the case when \(z \geq 2 \). Again by Olver’s expansions
\[\eta_{\nu}(\nu z) = \frac{4z^2 - 3}{2z(z^2 - 1)} \nu^{-1} + O(\nu^{-2}), \]
uniformly for \(z \geq 2 \), and hence \(\eta_{\nu}(\nu z) > 0 \). This together with (12) yield
\[\psi_{\nu}(\nu z) \geq \psi_{\nu}(\nu z_0) \geq \text{Const} > 0, \]
which proves (13) in this case. Furthermore, still by Olver’s expansions we have \(\eta_{\nu}(\nu z) = O(1) \) uniformly in \(\delta \leq z \leq 2 \). Hence, by (12), for \(\delta \leq z \leq 2 \),
\[\psi_{\nu}(\nu z) \geq \psi_{\nu}(\nu z_0) \exp \left(-2\nu \int_{\delta}^{2} |\eta_{\nu}(\nu y)| dy \right) \]
\[\geq \psi_{\nu}(\nu z_0) \exp (-C\nu), \quad C > 0, \]
which implies (13) in this case.

Let now \(1/2 < \nu \leq \nu_0 \). Using the well known asymptotics of the Hankel functions as \(z \to +\infty \), \(\nu > 1/2 \) fixed, we get
\[(15) \quad \psi_{\nu}(z) = 1 + O(z^{-1}), \quad 1/2 < \nu \leq \nu_0. \]
Since $\nu = O(\lambda)$ on supp $\rho \chi$, it is easy to see that (7) follows from (8) and (9) combined with (13), (14) and (15).

Let $\chi \in C_0^\infty(\mathbb{R}^n)$, $\chi = 1$ for $|x| \leq a_0 + 2$, $\chi = 0$ for $|x| \geq a_0 + 3$. Applying the Carleman estimates of Lebeau-Robbiano [4], [5] to the function χu leads to

$$
\int_{\Omega_{a_0+2}} (|u|^2 + |\lambda^{-1}\nabla u|^2) \, dx
\leq e^{2\gamma_1 \lambda} \int_{a_0+2 \leq |x| \leq a_0+3} (|u|^2 + |\lambda^{-1}\nabla u|^2) \, dx + e^{2\gamma_1 \lambda} \|v\|^2_{L^2(\Omega)},
$$

with some $\gamma_1 > 0$. To eliminate the first term in the RHS of (16) we will use the Carleman estimates up to S. Set $P = -\lambda^{-2}\Delta - 1$. If $\varphi \in C^\infty(\Omega_a)$, then $P \varphi := e^{\lambda \varphi} P e^{-\lambda \varphi}$ is again a $\lambda - \Psi DO$ with principal symbol $p_\varphi(x, \xi) = p(x, \xi + i\nabla_x \varphi)$, p being the principal symbol of P considered as a $\lambda - \Psi DO$. We will construct a real-valued C^∞ function φ defined in a neighbourhood of $a_0 \leq |x| \leq a$ such that $\nabla \varphi \neq 0$ on $a_0 \leq |x| \leq a$, $\varphi = -1$ on $|x| = a_0$, $\varphi \geq \gamma_1 + 1$ on $a_0 + 2 \leq |x| \leq a_0 + 3$ and satisfying the condition

$$
p_\varphi(x, \xi) = 0 \Rightarrow \{\text{Re} \, p_\varphi, \text{Im} \, p_\varphi\} > 0.
$$

We will be looking for φ in the form $\varphi(r)$, $r = |x|$. It is easy to see that (17) is equivalent to

$$
\varphi'(\varphi'' \varphi + \frac{1+\varphi'^2}{r}) > 0 \quad \text{for} \quad a_0 \leq r \leq a.
$$

Given any constant $C > 2(a_0 + 3)$, it is easy to check that the function $\varphi'(r) = \sqrt{\frac{C}{r}} - 1$ satisfies (18) with $a = C/2$. Define $\varphi(r)$ as follows

$$
\varphi(r) = -1 + \int_{a_0}^{r} \sqrt{Ct^{-1} - 1} \, dt.
$$

Clearly, if we take $C \geq C_1(a_0, \gamma_1)$ we can arrange $\varphi(a_0 + 2) \geq \gamma_1 + 1$ and hence $\varphi(r) \geq \gamma_1 + 1$ for $a_0 + 2 \leq r \leq a$. Fix $C = \max\{2(a_0 + 3), C_1(a_0, \gamma_1)\}$ and $a = C/2$. Since $\varphi(a_0) = -1$, there exist $a_0 < a_1 < a_2 < a_0 + 1$ so that $\varphi(r) < 0$ for $a_1 \leq r \leq a_2$. Choose a function $\chi_1 \in C_0^\infty(\mathbb{R}^n)$, $\chi_1 = 0$ for $|x| \leq a_1$, $\chi_1 = 1$ for $|x| \geq a_2$. We would like to apply the Carleman estimates up to S to the function $\chi_1 u$. Set $w = e^{\lambda \varphi} \chi_1 u$. We are going to prove the estimate

$$
\|w\|_{H^1(a_0 \leq |x| \leq a)} + \|w_s\|_{H^1(S)}
\leq O(\lambda^{1/2}) \|P \varphi w\|_{L^2(a_0 \leq |x| \leq a)} + O(1) \|\text{Op}_\lambda(\eta) w|_s\|_{L^2(S)},
$$

Georgi Vodev
Lebeau-Robbiano [4], in view of (5), we have \(\lambda \forall \rho \in (20) + O \) where \(\eta \) estimated from above by the LHS of (16) times a factor \(e \) estimated from above by the LHS of (20) times a factor \(e \) of (19) we will complete the proof of (4). Since \(P_\varphi w = -\lambda^2 e^{\lambda \varphi}[\Delta, \chi_1]u \) and \(w|_S = e^{\varphi(a)\lambda} f \), (19) implies

\[
\int_{a_2 \leq |x| \leq a} (|u|^2 + |\lambda^{-1} \nabla u|^2) e^{2\lambda \varphi} dx \leq \int_{a_1 \leq |x| \leq a_2} (|u|^2 + |\lambda^{-1} \nabla u|^2) e^{2\lambda \varphi} dx + O(1) e^{2\lambda \varphi(a)} \| \text{Op}_\lambda(\eta) f \|^2_{L^2(S)} - e^{2\lambda \varphi(a)} \| f \|^2_{L^2(S)}.
\]

Since \(\gamma_1 < \varphi \) on \(a_0 + 2 \leq |x| \leq a_0 + 3 \), the first term in the RHS of (16) is estimated from above by the LHS of (20) times a factor \(e^{-\delta_1 \lambda}, \delta_1 > 0 \). On the other hand, since \(\varphi < 0 \) on \(a_1 \leq |x| \leq a_2 \), the first term in the RHS of (20) is estimated from above by the LHS of (16) times a factor \(e^{-\delta_2 \lambda}, \delta_2 > 0 \). Therefore, we have

\[
e^{-2\gamma_2 \lambda} \| u \|^2_{L^2(\Omega_{a_0+2})} + \| f \|^2_{L^2(S)} \leq e^{2\gamma_3 \lambda} \| v \|^2_{L^2(\Omega)} + O(1) \| \text{Op}_\lambda(\eta) f \|^2_{L^2(S)},
\]

with some constants \(\gamma_2 \) and \(\gamma_3 \). On the other hand, taking \(\eta(x', \xi') = \rho_X(\sqrt{r_0(x', \xi')}) \), applying (7) with \(X = \sqrt{3} \) and combining with (6) give

\[
\| \text{Op}_\lambda(\eta) f \|^2_{L^2(S)} \leq o(1) \| f \|^2_{L^2(S)} + e^{-(\beta - \gamma_0) \lambda} \| u \|^2_{L^2(\Omega_{a_0})} + e^{(\beta + \gamma_0) \lambda} \| v \|^2_{L^2(\Omega)},
\]

\(\forall \beta \). Clearly, taking \(\beta > 2\gamma_2 + \gamma_0 \), (4) follows from (21) and (22).

Proof of (19). Since \(\partial_x \varphi|_S = -1 \), the boundary conditions on \(S \) become \(\lambda^{-1} \partial_x w|_S = -(N(\lambda) + 1)f_1 \), where \(f_1 := w|_S \). By the Carleman estimates of Lebeau-Robbiano [4], in view of (5), we have

\[
\| w \|_{H^1(a_0 \leq |x| \leq a)} \leq O(\lambda^{1/2}) \| P_\varphi w \|_{L^2(a_0 \leq |x| \leq a)} + O(1) \| f_1 \|_{H^1(S)}.
\]

It is easy to see that (19) would follow from (23) and the estimate

\[
\| \text{Op}_\lambda (1 - \eta) f_1 \|_{H^1(S)} \leq O(\lambda^{1/2}) \| P_\varphi w \|_{L^2(a_0 \leq |x| \leq a)} + o(1) \| w \|_{H^1(a_0 \leq |x| \leq a)} + o(1) \| f_1 \|_{H^1(S)}.
\]

To prove (24) we will use that \(1 - \eta \) is supported in the elliptic region of the corresponding boundary value problem. Clearly, it suffices to prove (24) locally and then conclude by a partition of the unity on \(S \). Given a \(x_0 \in S \) take a small neighbourhood in \(\mathbb{R}^n \), \(V \), of \(x_0 \), and denote \(U = V \cap S \), \(V_+ = V \cap \{|x| < a\} \). Take in
we have
\[p = \xi_n^2 + r(x, \xi') - 1 = \xi_n^2 + r_0(x, \xi') - 1 + O(x_n|\xi'|)^2, \]
\[\text{Re } p_\varphi = \xi_n^2 + r(x, \xi') - 1 - (\varphi_x')^2 = \xi_n^2 + r_0(x, \xi') - 2 + O(x_n(|\xi'|^2 + 1)), \]
\[\text{Im } p_\varphi = 2\varphi_x' n_x n = -2\xi_n(1 + O(x_n)), \]
where \(r_0(x', \xi') \) is the principal symbol of \(-\Delta_S \) written in the coordinates \((x', \xi') \in T^*U \). Hence, the restriction of \(p_\varphi = 0 \) on \(T^*S \) is given by \(r_0 = 2 \). In what follows \(\| \cdot \|_s \) and \(\| \cdot \|_{s,+} \) will denote the norms in \(H^s(\mathbb{R}^{n-1}) \) and \(H^s(\mathbb{R}^{n-1} \times \mathbb{R}^+) \), respectively, while \(\langle \cdot, \cdot \rangle \) and \(\langle \cdot, \cdot \rangle_+ \) will denote the scalar products in \(L^2(\mathbb{R}^{n-1}) \) and \(L^2(\mathbb{R}^{n-1} \times \mathbb{R}^+) \), respectively. By \(\mathcal{D}_{cl}^{s,k} \) we will denote the space of \(\lambda - \Psi DO's \) with symbols \(a \sim \lambda^k \sum \lambda^{-j} a_j \) with \(a_j \) independent of \(\lambda \) satisfying
\[|\partial_x^\alpha \partial_\xi^\beta a_j| \leq C_{\alpha\beta}(1 + |\xi|)^{s-j-|\beta|}. \]
We will also denote \(\mathcal{D}_j := (i\lambda)^{-1}\partial_{x_j}, \mathcal{D} = (\mathcal{D}', \mathcal{D}_n) \). Let \(\phi(t) \in C_0^\infty(\mathbb{R}), \phi = 1 \) for \(|t| \leq \delta/2, \phi = 0 \) for \(|t| \geq \delta \). Let also \(\zeta(x') \in C_0^\infty(U), \zeta = 1 \) in a small neighbourhood of \(x_0 \in U \). Set
\[g = \text{Op}_\lambda((1 - \eta)|\xi'|)|\phi(x_n)\zeta(x')w, \quad h := g|_{x_n=0} = \text{Op}_\lambda((1 - \eta)|\xi'|)|\zeta(x')f_1. \]
We have
\[i\mathcal{D}_n g|_{x_n=0} = -(N(\lambda) + 1)h + [N(\lambda), \text{Op}_\lambda((1 - \eta)|\xi'|)|\zeta(x')]f_1. \]
Since \(N(\lambda) \) has a parametrix of class \(L_{cl}^{1,0} \) on \(\text{supp}(1 - \eta) \) with principal symbol \(-\sqrt{t_0} - 1 \), we have that the commutator above (which will be denoted by \(A \)) is of class \(L_{cl}^{1,-1} \). Let \(P_{\varphi}^* \) be the formal adjoint to \(P_\varphi \) and denote \(Q_1 = \frac{P_\varphi + P_{\varphi}^*}{2}, \)
\(Q_2 = \frac{P_\varphi - P_{\varphi}^*}{2i} \) with principal symbols \(\text{Re } p_\varphi \) and \(\text{Im } p_\varphi \), respectively. Using the identities
\[\int_0^\infty \mathcal{D}_n g \cdot \mathcal{F} dx_n = \int_0^\infty |\mathcal{D}_n g|^2 dx_n + i\lambda^{-1}\mathcal{D}_n g|_{x_n=0} \cdot \mathcal{F}|_{x_n=0}, \]
\[\text{Im } \langle Q_2 g, g \rangle_+ = -\lambda^{-1}\|h\|_0^2 + e(g), \]
where
\[|e(g)| \leq o(1)\|g\|_{1,+}^2, \]
On the exponential bound of the cutoff resolvent

it is easy to get

\[\text{Re} \langle (Q_1 - D_n^2)g, g \rangle_+ + \|D_n g\|_{0,+}^2 = \text{Re} \langle P_\varphi g, g \rangle_+ + \lambda^{-1} \text{Re} \langle N(\lambda)h + Af_1, h \rangle + \epsilon(g) \]

(25)

\[\leq \varepsilon^{-1} \int_0^\infty \|P_\varphi g(\cdot, x_n)\|_{1,+}^2 \, dx_n + \varepsilon \|g\|_{1,+}^2 + O(\lambda^{-2}) \|f_1\|_{H^1(S)}^2, \]

\[\forall \varepsilon > 0. \] On the other hand, the principal symbol of \(Q_1 - D_n^2\) is \(\geq C|\xi'|^2\), \(C > 0\), on \(\text{supp}(1 - \eta)\), \(0 \leq x_n \leq \delta\), \(0 < \delta \ll 1\). Therefore, by Gårding’s inequality we get

\[0 < C'\|g\|_{1,+}^2 \leq \varepsilon^{-1} \int_0^\infty \|P_\varphi g(\cdot, x_n)\|_{1,+}^2 \, dx_n + \varepsilon \|g\|_{1,+}^2 + O(\lambda^{-2}) \|f_1\|_{H^1(S)}^2, \]

and hence

(26)

\[\|g\|_{1,+}^2 \leq O(1) \int_0^\infty \|P_\varphi g(\cdot, x_n)\|_{1,+}^2 \, dx_n + O(\lambda^{-2}) \|f_1\|_{H^1(S)}^2. \]

On the other hand,

\[\|h\|_0^2 = -\int_0^\infty \frac{d}{dx_n} \|g(\cdot, x_n)\|_0^2 \, dx_n \]

\[= -2\lambda \int_0^\infty \text{Re} \langle g(\cdot, x_n), iD_n g(\cdot, x_n) \rangle \, dx_n \leq O(\lambda) \|g\|_{1,+}^2, \]

which combined with (26) gives

\[\|h\|_0 \leq O(\lambda^{1/2}) \left(\int_0^\infty \|P_\varphi g(\cdot, x_n)\|_{1,+}^2 \, dx_n \right)^{1/2} + O(\lambda^{-1/2}) \|f_1\|_{H^1(S)} \]

\[\leq O(\lambda^{1/2}) \|P_\varphi w\|_{0,+} + O(\lambda^{-1/2}) \|w\|_{1,+} + O(\lambda^{-1/2}) \|f_1\|_{H^1(S)}, \]

which in turn implies (24) by making a partition of the unity on \(S\).

REFERENCES

