Serdica
Mathematical Journal
Сердика
Математическо списание

The attached copy is furnished for non-commercial research and education use only. Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to third party websites are prohibited.

For further information on Serdica Mathematical Journal which is the new series of Serdica Bulgaricae Mathematicae Publicationes visit the website of the journal http://www.math.bas.bg/~serdica or contact: Editorial Office Serdica Mathematical Journal Institute of Mathematics and Informatics Bulgarian Academy of Sciences Telephone: (+359-2)9792818, FAX: (+359-2)971-36-49 e-mail: serdica@math.bas.bg
A SMOOTH FOUR-DIMENSIONAL G-HILBERT SCHEME

Magda Sebestean

Communicated by P. Pragacz

Abstract. When the cyclic group G of order 15 acts with some specific weights on affine four-dimensional space, the G-Hilbert scheme is a crepant resolution of the quotient \mathbb{A}^4/G. We give an explicit description of this resolution using G-graphs.

1. Introduction. Let G be a finite group acting faithfully on a quasi-projective smooth scheme X. Consider the quotient X/G, the space of orbits, which is in general a singular scheme. We use a variant of the quotient, to resolve the singularities: we consider not only the set of orbits, but also a whole collection of zero-dimensional G-invariant subsets of X with the associated ring of global sections of the structure sheaf, isomorphic to the regular representation ring of the group G. This is formalized in the notion of a G-Hilbert scheme, introduced in [9]. Apart from the symplectic case treated in [1], the G-Hilbert scheme of a quasi-projective variety X is, in general, a “very” singular variety, especially in higher dimensions. The known cases of smooth G-Hilbert schemes are the minimal resolutions of Klein singularities and the crepant resolutions

2000 Mathematics Subject Classification: 14C05, 14L30, 14E15, 14J35.

Key words: quotient singularities, crepant resolutions, toric varieties, G-Hilbert scheme, G-graph.
of the quotient \mathbb{C}^3/G, with G being a finite subgroup of $SL_3(\mathbb{C})$. The three-dimensional case is due to Craw, Ito, Markouchevitch and Roan by a case-by-case analysis, and to Bridgeland-King-Reid as a consequence of a more general result (see [2]). Unfortunately, none of the current methods gives an answer to the following question: which finite subgroups of $GL_n(\mathbb{C})$, $n \geq 4$, admit G-HilbA^n as a crepant resolution of the quotient A^n/G? The only attempt is given in [6], and it is reduced to the two-dimensional case.

In order to give some positive answer to the above question, one needs a better description of the G-Hilbert scheme. Suppose – from now on – that G is a finite abelian subgroup of $GL_n(\mathbb{C})$, consisting of diagonal matrices. Then there is a toric approach to the question given by Nakamura (see [10]).

We now introduce some notation needed in the present paper. We recall that the affine space A^n is a toric variety associated to the lattice $L := \mathbb{Z}^n$ and the cone $\gamma := \langle e_1, \ldots, e_n \rangle$, where e_1, \ldots, e_n is the standard basis of \mathbb{R}^n (cf. [8], §2). Suppose that G acts faithfully on A^n. Let r denote the order of G. We write each (diagonal) matrix g of G in the form $g = \text{diag}(\varepsilon^{a_1}, \ldots, \varepsilon^{a_n})$, with $\varepsilon := e^{\frac{2\pi i}{r}}$ — a fixed rth primitive root of unity. We associate to such a matrix g a vector $v_g := \frac{1}{r}(a_1, \ldots, a_n) \in \mathbb{Q}^n$, and define the lattice:

$$N := L + \sum_{g \in G} \mathbb{Z} v_g.$$

We denote by $N^\vee = \text{Hom}_\mathbb{Z}(N, \mathbb{Z})$ its dual. Then, the quotient A^n/G is a toric variety with lattice N and fan reduced to the cone γ. We denote by $\{f_1, \ldots, f_n\}$ the dual basis of $\{e_1, \ldots, e_n\}$ and by M_0 the additive semi-group generated by 0 and the f_i's. We define a semi-group homomorphism from M_0 to the semi-group M of all monomials in n variables (endowed with multiplication), by sending f_i to X_i. In this way, we identify a vector with n non-negative integer coordinates with a monomial. For a monomial p of $\mathbb{C}[X_1, \ldots, X_n]$ (or “Laurent monomial” p of $\mathbb{C}[X_1, \ldots, X_n][X_1^{-1}, \ldots, X_n^{-1}]$), we denote by $v(p)$ the associated vector. Let G^\vee be the set of all irreducible characters of the group G. We introduce the following definition:

Definition 1.1. Given $\chi \in G^\vee$ and $p = X_1^{i_1} \cdots X_n^{i_n}$ a monomial of $\mathbb{C}[X_1, \ldots, X_n]$ (or a Laurent monomial), we say that p and χ are associated if we have:

$$g \cdot p = \chi(g)p, \quad \forall g \in G.$$
Definition 1.2. A subset Γ of M is called a G-graph (cf. [10], Def. 1.4) if the following conditions hold:

(1) it contains the constant monomial 1;

(2) if p is in Γ and a monomial q divides p, then q is also in Γ;

(3) the map $\text{wt} : \Gamma \rightarrow G^\vee$ sending a monomial to its associated character (as in Definition 1.1), is a bijection.

Denote by $\text{Graph}(G)$ the set of all G-graphs.

By condition (3) in Definition 1.2, there is a unique monomial of Γ associated to any character of G^\vee. Thus, we define a map $\text{wt}_{\Gamma} : M \rightarrow \Gamma$, by sending a monomial to the unique element of Γ with the same associated character.

Definition 1.3. Given a monomial p of M, we call the fraction $p/\text{wt}_{\Gamma}(p) \in \mathbb{C}(X_1, \ldots, X_n)$ the ratio of p with respect to Γ.

Finally, we associate to a G-graph Γ, a cone, a semi-group and an ideal as follows. We denote by \langle, \rangle the scalar product in \mathbb{R}^n. We define a cone in \mathbb{R}^n by $\sigma(\Gamma) := \{u \in \mathbb{R}^n/\langle u, v(p/\text{wt}_{\Gamma}(p)) \rangle \geq 0, \forall p \in M\}$. The dual of a cone $\sigma(\Gamma)$ is given by $\sigma^\vee(\Gamma) := \{v \in \mathbb{R}^n/\langle u, v \rangle \geq 0, \forall u \in \sigma(\Gamma)\}$. We denote by $S(\Gamma)$ the sub-semi-group of N^\vee generated by vectors $v(p/\text{wt}_{\Gamma}(p))$, where p runs over the set M. We call $I(\Gamma)$ the ideal of $\mathbb{C}[X_1, \ldots, X_n]$ generated by all the monomials of M that are not in Γ.

μ_{15}-Hilb\mathbb{C}^4 scheme and its properties. This section deals with an explicit description of the μ_{15}-Hilb\mathbb{C}^4 scheme. In the sequel, we denote by $G = \mu_{15}$ the cyclic group of order 15, with generator $\varepsilon := e^{2\pi i/15}$. Let this group act by weights 1, 2, 4 and 8 on the affine space \mathbb{A}^4. We identify G with the finite abelian subgroup of $SL_4(\mathbb{C})$ with generator $g = \text{diag}(\varepsilon, \varepsilon^2, \varepsilon^4, \varepsilon^8)$ and the action of G on \mathbb{A}^4 with the natural action of multiplication of an element of \mathbb{A}^4 by a matrix.

The quotient \mathbb{A}^4/G is a Gorenstein canonical singularity (cf. [12]) and has only one isolated singularity at the origin. With the notations of Section 1, it is a toric variety with lattice $N = \mathbb{Z}^4 + \frac{1}{15}(1, 2, 4, 8)\mathbb{Z}$ and fan the cone $\gamma = \langle e_1, e_2, e_3, e_4 \rangle$. In order to resolve the singularities, we will provide a simplicial decomposition of γ into sub-cones such that the resulting variety is G-Hilb\mathbb{C}^4. We prove that G-Hilb\mathbb{C}^4 is smooth and it has the crepancy property. Here, crepancy means that the canonical sheaf ω_{G}-Hilb\mathbb{C}^4 and the structure sheaf \mathcal{O}_{G}-Hilb\mathbb{C}^4 are isomorphic. We remark that the methods of [2] can't be applied in this case.
— the condition on the fiber product of Theorem 1.1 of the cited paper is not satisfied. Using Definition 5.2 of [7] and Watanabe’s classification Theorem (see Theorem 5.3 of the same paper), we see that the group G above doesn’t give rise to a complete intersection singularity. In particular, the techniques of [6] are not applicable. We are not in the symplectic case, so [1] does not apply either.

In what follows, we set $x = X_1$, $y = X_2$, $z = X_3$ and $t = X_4$.

Definition 2.1. Given a monomial $p = x^\alpha y^\beta z^\gamma t^\delta$ (or a Laurent monomial), the **weight** of p with respect to the group G above is the unique integer $w(p) \in \{0, \ldots, 14\}$, that satisfies $\alpha + 2\beta + 4\gamma + 8\delta \equiv w(p) \pmod{15}$.

Remark 2.2. We recall that an irreducible character χ_i of G, with $i \in \{0, \ldots, 14\}$, is given by $g \mapsto \varepsilon^i$. So, a monomial $p = x^\alpha y^\beta z^\gamma t^\delta$ is associated to the character χ_i if and only if its weight is i. Thus, a G-graph is a set of 15 monomials of weights 0 to 14, satisfying (1) and (2) of Definition 1.2.

Definition 2.3. Given S a finite set of monomials in $\mathbb{C}[x, y, z, t]$ and s one of the variables, we set $\max.p.(s)$ to be $-\infty$ if S doesn’t contain any monomial in s and $\max\{l \in \mathbb{N} / s^l \in S\}$ otherwise. We call it the **maximal power** associated to the variable s in the set S.

Lemma 2.4. The G-graphs for the group $G = \mu_{15}$ are the following:

<table>
<thead>
<tr>
<th>No.</th>
<th>μ_{15}-graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$(1, x, y, y^2, \ldots, y^7, xy, xy^2, \ldots, xy^6)$</td>
</tr>
<tr>
<td>2</td>
<td>$(1, x, y, y^2, y^3, t, xy, xy^2, \ldots, xy^2t, xt, y^2t, y^3t, xyt, xy^2t)$</td>
</tr>
<tr>
<td>3</td>
<td>$(1, x, y, z, t, xy, xz, xt, yz, zt, xyt, xzt, yzt)$</td>
</tr>
<tr>
<td>4</td>
<td>$(1, x, x^2, x^3, z, t, xz, x^2z, xz^2, yz, y^2z, yz^2, xyt, xzt, yzt)$</td>
</tr>
<tr>
<td>5</td>
<td>$(1, x, x^2, x^3, z, t, xz, x^2z, xz^2, yz, y^2z, yz^2, xyt, xzt, x^2t, x^3t, zt, xzt, yzt)$</td>
</tr>
<tr>
<td>6</td>
<td>$(1, x, x^2, x^3, z, t, xz, x^2z, xz^2, yz, y^2z, yz^2, xyt, xzt, x^2t, x^3t, zt, xzt, yzt)$</td>
</tr>
<tr>
<td>7</td>
<td>$(1, x, x^2, \ldots, x^6, t, xt, x^2t, \ldots, x^6t)$</td>
</tr>
<tr>
<td>8</td>
<td>$(1, x, x^2, \ldots, x^{14})$</td>
</tr>
<tr>
<td>9</td>
<td>$(1, y, y^2, \ldots, y^{14})$</td>
</tr>
<tr>
<td>10</td>
<td>$(1, y, y^2, y^3, t, t^2, t^3, yt, yt^2, y^3t, y^2t^2, y^3t^2, y^4t, y^3t^3)$</td>
</tr>
<tr>
<td>11</td>
<td>$(1, y, z, z^2, \ldots, z^7, yz, y^2z, \ldots, yz^7)$</td>
</tr>
<tr>
<td>12</td>
<td>$(1, y, z, t, t^2, t^3, yz, y^2z, y^3zt, y^2t, y^3t^2, y^4zt, y^3t^3)$</td>
</tr>
<tr>
<td>13</td>
<td>$(1, z, t, t^2, \ldots, t^7, zt, zt^2, \ldots, zt^7)$</td>
</tr>
<tr>
<td>14</td>
<td>$(1, z, z^2, \ldots, z^14)$</td>
</tr>
<tr>
<td>15</td>
<td>$(1, t, t^2, \ldots, t^{14})$</td>
</tr>
</tbody>
</table>

Table 1. List of G-graphs for $G = \mu_{15}$.
Proof. The idea of the proof is to consider, for a given G-graph, the possible choices of $\text{max.p.}(s)$, where s is one of the variables x, y, z or t. By (1) in Definition 1.2, the constant monomial 1 is in the G-graph. In particular, for any variable s we have $\text{max.p.}(s) \geq 0$. By condition (2) of Definition 1.2 and Remark 2.2, $\text{max.p.}(s)$ is also less than 15 for any variable s.

Now, for any G-graph Γ, there are two possible cases: either $\text{max.p.}(x) = 0$ – that is x doesn’t occur in Γ, or $\text{max.p.}(x) > 0$ – meaning that Γ contains at least one monomial in x.

We discuss now the case where x occurs in a G-graph Γ. We claim that in this case $\text{max.p.}(x)$ cannot be $2, 4, 5, 6, 8, 9, 10, 11, 12$ nor 13. To see this, we argue by contradiction. We suppose that there exists a G-graph Γ such that we have $\text{max.p.}(x) = 2$. Then, using (2) of Definition 1.2 and Remark 2.2, we see that y, z^4, t^2 cannot occur in any monomial of Γ. In particular, $\text{max.p.}(y) = 0$, $\text{max.p.}(z) \leq 3$ and $\text{max.p.}(t) \leq 1$. On the other hand, there has to be a monomial of weight 3 in Γ and the only possible choice is x^2z^2t. We use (2) of Definition 1.2 to deduce that x^2z^2 and x^2t should both belong to Γ. But these monomials both have the same weight, which contradicts Remark 2.2 and thus the definition of a G-graph. Now, if $\text{max.p.}(x)$ were $4, 5$ or 6, we see in a similar way that there is no possible choice of monomial of weight 7. When $\text{max.p.}(x)$ is one of $8, 9, 10, 11, 12$ or 13, there are no monomials divisible by y, z or t. This is because the monomials x^2, x^4 and x^8 are already in Γ and they have the same weights as y, z and t. But then the G-graph Γ contains less then 15 monomials, which is a contradiction.

We discuss now the case $\text{max.p.}(x) = 1$. With the notations of Definition 2.1, we have $w(y^8) = w(z^4) = w(t^2) = 1$. We get $\text{max.p.}(y) \leq 7, \text{max.p.}(z) \leq 3$ and $\text{max.p.}(t) \leq 1$. A similar discussion as above proves that $\text{max.p.}(y)$ equals $1, 3$ or 7. Now, if $\text{max.p.}(y) = 7$, we get the G-graph Γ_1 of Table 1. If $\text{max.p.}(y) = 3$, there are no monomials in z and we obtain Γ_2. For $\text{max.p.}(y) = 1$, either $\text{max.p.}(z) = 1$ and we get Γ_3, or $\text{max.p.}(z) = 3$ and no monomial in t is allowed – we get Γ_4.

For the case $\text{max.p.}(x) = 3$, the G-graph contains no monomial in y and has $\text{max.p.}(z) \leq 3$ and $\text{max.p.}(t) \leq 1$. We obtain the G-graphs Γ_5 and Γ_6 of Table 1.

The case $\text{max.p.}(x) = 7$ gives $\text{max.p.}(y) = 0, \text{max.p.}(z) = 0$, and $\text{max.p.}(t) \leq 1$. The only possible G-graph is Γ_7, a “planar” G-graph in x and t.

For the last case, i.e. $\text{max.p.}(x) = 14$, we get a “linear” G-graph containing only monomials in the variable x – this is the G-graph Γ_8.

A smooth four-dimensional G-Hilbert scheme
Now, if \(x \) does not occur in the \(G \)-graph, we prove, by a similar argument, that \(\max.p.(y) \) is one of 1, 3 or 14. We obtain the \(G \)-graphs \(\Gamma_9, \Gamma_{10}, \Gamma_{11}, \Gamma_{12} \). If neither \(x \), nor \(y \) occur, then we get again a “planar” \(G \)-graph in \(z \) and \(t \) — this is \(\Gamma_{13} \) and two “linear” graphs – \(\Gamma_{14} \) only in \(z \) and \(\Gamma_{15} \) only in \(t \). □

Let \(\Gamma \) be a \(G \)-graph as in Table 1. We associate to it a finite set, denoted \(E(\Gamma) \), as follows. If the variable \(x \) occurs in \(\Gamma \), let the vector \(v_g \) associated to the matrix \(g \) be in \(E(\Gamma) \), otherwise include in \(E(\Gamma) \) the vector \(e_1 \) of the canonical base. Similarly, if \(y \) is in \(\Gamma \) we take the vector associated to the matrix \(g^8 \) in \(E(\Gamma) \) and otherwise include the vector \(e_2 \). For the variable \(z \), we take either the vector associated to the matrix \(g^4 \) or the vector \(e_3 \). Finally, if \(t \) is in \(\Gamma \) let the vector associated to the matrix \(g^2 \) be in \(E(\Gamma) \), otherwise include the vector \(e_4 \).

For example, the set \(E(\Gamma_8) \) is \(\{ \frac{1}{15}(1, 2, 4, 8), e_2, e_3, e_4 \} \).

Lemma 2.5. With the notations at the end of section 1, the cones \(\sigma(\Gamma) \) are generated by the sets \(E(\Gamma) \).

Proof. We want to prove that any vector \(u \) of a cone \(\sigma(\Gamma) \) is a linear combination with positive coefficients of elements of the associated \(E(\Gamma) \). Equivalently, the system:

\[
\sum_{v \in E(\Gamma)} x_v \cdot v = u,
\]

has to admit a solution with \(x_v \) positive for any \(v \) in \(E(\Gamma) \). For this, we note that each \(x_v \) is nothing but the scalar product of \(u \) and the vector associated to the ratio of a monomial generator of \(I(\Gamma) \) (see section 1 for definitions and notations). We use the definition of \(\sigma(\Gamma) \) to conclude. □

Example 2.6. For a more explicit approach, let us actually see what happens for the \(G \)-graph \(\Gamma_8 \). The set \(E(\Gamma_8) \) is given by the vectors \(e_2, e_3, e_4 \) and the vector associated to the matrix \(g \) – this is \(v_g = \frac{1}{15}(1, 2, 4, 8) \). Let \(u = (u_1, u_2, u_3, u_4) \) be a vector of \(\sigma(\Gamma_8) \). The solutions of the system (2.1) are:

\[
\begin{align*}
 x_{v_g} &= \langle u, 15e_1 \rangle, \\
 x_{e_2} &= 15\langle u, e_2 - 2e_1 \rangle, \\
 x_{e_3} &= 15\langle u, e_3 - 4e_1 \rangle, \\
 x_{e_4} &= 15\langle u, e_4 - 8e_1 \rangle.
\end{align*}
\]
The monomial generators of \(I(\Gamma_8) \) are \(x^{15}, y, z, t \). The vectors associated to the ratios of those monomial generators are \(15e_1, e_2 - 2e_1, e_3 - 4e_1 \) and \(e_4 - 8e_1 \). By definition of \(\sigma(\Gamma_8) \), the numbers \(\langle u, 15e_1 \rangle \), \(\langle u, e_2 - 2e_1 \rangle \), \(\langle u, e_3 - 4e_1 \rangle \) and \(\langle u, e_4 - 8e_1 \rangle \) are positive. Thus the solutions given by (2.2) are also positive numbers, as wanted. □

Corollary 2.7. The toric variety obtained by gluing together all the affine pieces \(\text{Spec}[\sigma^\vee(\Gamma) \cap N^\vee] \), where \(\Gamma \) runs over \(\text{Graph}(G) \), is a smooth variety.

Proof. It is enough to see that every such affine piece is a copy of \(\mathbb{C}^4 \). For this, we use the “smoothness criterion” of [11], Theorem 1.10, page 10. Now the result follows because each cone \(\sigma(\Gamma) \) is generated by the sets \(E(\Gamma) \) of the Lemma 2.5 which are a [part of a] basis for the lattice \(N \). □

Lemma 2.8. With the notations of Corollary 2.7, for any \(G \)-graph, we have \(S(\Gamma) = \sigma^\vee(\Gamma) \cap N^\vee \).

Proof. By definitions of \(\sigma(\Gamma) \) and \(S(\Gamma) \), the inclusion \(S(\Gamma) \subset \sigma^\vee(\Gamma) \cap N^\vee \) follows immediately. Now, for the reverse inclusion, it is enough to prove that \(\sigma^\vee(\Gamma) \cap N^\vee \) is generated by a set of vectors contained in \(S(\Gamma) \). For this, we proceed as follows. We call a monomial pure if it involves only one of the variables \(x, y, z \) or \(t \). We denote by \(v_G(s) \) the vectors associated to the ratios of the pure monomials \(s \) that generate \(I(\Gamma) \).

We claim that any vector \(v \) in \(\sigma^\vee(\Gamma) \cap N^\vee \) is a linear combination with non-negative integer coefficients of the vectors \(v_G(s) \) above. A case-by-case analysis of each \(I(\Gamma) \) shows that this is equivalent to resolving a \(4 \times 4 \) system. The proof is very similar to that of Lemma 2.5 and the calculations made in the subsequent Example 2.6, so we omit it. □

Theorem 2.9. Let the cyclic group of order 15 act by weights 1, 2, 4, 8 on the affine four dimensional space. Then, the \(\mu_{15} \)-Hilbert scheme of \(\mathbb{A}^4 \) is a smooth variety and it provides a crepant resolution of the Gorenstein quotient singularity \(\mathbb{A}^4/\mu_{15} \).

Proof. We use (iii) of Theorem 2.11 of [10] to see that \(\mu_{15} \)-Hilb\(\mathbb{A}^4 \) is the variety obtained by gluing together all the \(\text{Spec}\mathbb{C}[S(\Gamma)] \), when \(\Gamma \) runs over \(\text{Graph}(\mu_{15}) \). By Lemma 2.8, this is the same as the toric variety whose fan is given by the cones \(\sigma(\Gamma), \Gamma \in \text{Graph}(\mu_{15}) \). We apply Corollary 2.7 to conclude that \(\mu_{15} \)-Hilb\(\mathbb{A}^4 \) is smooth. In particular, the \(\mu_{15} \)-Hilbert scheme of \(\mathbb{A}^4 \) provides a toric resolution of the quotient \(\mathbb{A}^4/\mu_{15} \), by subdivision of the cone \(\gamma \) into the sub-cones \(\sigma(\Gamma), \Gamma \in \text{Graph}(\mu_{15}) \).
Now, for crepancy, we use the equivalence stated in [3], page 656. For this, we see that the Euler number of μ_{15}-HilbA^4 is given by the number of three-dimensional cones of the associated fan. In this case, this is $\#\text{Graph}(\mu_{15}) = \#G = 15$. Together with smoothness, this gives crepancy. □

Remark 2.10. Equivalently, we could use Theorem 4.1 of [7] to prove the crepancy of the desingularization defined by μ_{15}-HilbA^4. This is because the first skeleton of any cone $\sigma(\Gamma)$, for Γ a μ_{15}-graph, is formed only by elements in the simplex $\Delta_4 := \{(u_1, u_2, u_3, u_4) \in \mathbb{R}^4/u_1 + u_2 + u_3 + u_4 = 1\}$, as proved in Lemma 2.5.

3. Miscellaneous remarks.

Remark 3.1. The H-Hilbert scheme of A^4 for H the cyclic group of order 40 acting by weights 1, 3, 9, 27 on A^4 fails to provide a smooth crepant resolution for the quotient singularity A^4/H. This is mainly because the number of H-graphs in this case is not equal to the cardinal of the group.

Remark 3.2. It is interesting to note that in the situation described in Section 2, the McKay correspondence as stated by Reid holds (see [4] page x for a statement of the conjecture). The Betti numbers b_l of a crepant resolution (in this case μ_{15}-HilbA^4) are the cardinalities of the conjugacy classes of elements of same “age” l in the group μ_{15}.

Remark 3.3. (cf. with [10] “deformation” and [5] “ratio”). We can recover all the μ_{15}-graphs from a given one, by using ratios of the generating monomials of the associated ideal, as follows. We take for example the μ_{15}-graph Γ_3 in Table 1. The associated ideal is generated by the monomials $x^2, y^2, z^2, t^2, xyzt$. The corresponding ratios are x^2/y, y^2/z, z^2/t, t^2/x, $xyzt/1$. Let us take one of those, say z^2/t.

By repeatedly replacing every occurrence of t in Γ_3 by z^2, we recover the μ_{15}-graph Γ_4. We do the same with the other ratios (note that the ratio $xyzt/1$ provides no μ_{15}-graph), to recover Γ_2, Γ_5 and Γ_{12}. By repeating the procedure, we get all remaining μ_{15}-graphs of Table 1. The result is given in the figure below.

In the Figure 1, the direction of the arrows can be reverted, as follows. We take for example the “bottom” μ_{15}-graph Γ_9. The pure monomial x of $I(\Gamma_9)$ has as associated ratio the fraction x/y^8. Replacing in Γ_9 the monomial y^8 and all its occurrences by x, we obtain the μ_{15}-graph Γ_1.

...
A smooth four-dimensional G-Hilbert scheme

Figure 1. Deforming G-graphs for $G = \mu_{15}$.

REFERENCES

